Retail Sales Forecasting at Walmart

Brian Seaman
WalmartLabs
The biggest challenge as a forecasting practitioner

The boss says:

I need a forecast of ...

A forecaster should respond:

Why?
Today’s Focus

The boss says:

I need a better sales forecast

What the boss really means:

We have an issue staying in-stock on certain items and think that pricing may be causing a problem
Domain Overview: Item Flow

Manufacturer → Fulfillment Center → Customer

Replenishment → Pricing
Domain Overview: Replenishment

Objective
- Maintain lowest inventory level to meet the expected customer service level

Challenges
- Variable or long lead time items
- Uncertain forecasts
- Limited budgets
- Network flow constraints
- Holiday peaks
- Met demand and inventory trade off
- Leveraging store orders and inventory

[Diagram showing stock levels, reorder points, and inventory trade-off curves]

- Stock
- Lot size
- Reorder level
- Safety stock
- Reorder point
- Delivery date
- Time

- Inventory Trade-Off Curves
- Met Demand
- Inventory
Domain Overview: Pricing

Objective
- Set the item price to drive sales

Challenges
- What is a fair price?
- How much will we sell?
- How long will inventory last?
- What is impact to other items?

Customers deserve the lowest price that we can offer at all times
Domain Overview: Forecasts and Price

• Replenishment:
 – place order based on a forecast of an assumed future price
 – \(O = F(f(P)) \)

• Pricing:
 – set the price based on a predicted forecasts of possible prices
 – \(P = G(f(p)) \)

• Pricing happens after inventory is purchased
different problems require different solutions
Possible Forecast Objectives for an Item

- Forecast Demand
- Forecast a Distribution
- Forecast by Location
- Forecast by Customer
- Forecast Sales
- Forecast In-stock Rates
- Forecast Profit Margin
- Forecast Social Media Posts
Objective is to Improve the Customer Metrics

- **Replenishment:**
 - Forecast Demand Distribution
 - Assume in-stock in the future
 - Focus on upper percentiles of distribution

- **Pricing:**
 - Forecast Sales
 - Predict future in-stock rates

- Demand and Sales can differ based on in-stock rates
- Imputation of data can either improve or worsen forecasts depending on use
- A good mean forecast may generate a bad 95th percentile
Error Metrics

• Error
 – Defines the accuracy of the forecasts
 – \(E = \sum | f - a |^2 \)

• Bias
 – Defines if the forecasts on average are high or low
 – \(B = \sum (f - a) \)

• Volatility
 – Defines how much the forecast changes over time
 – \(V = \sum | f_t - f_{t-1} |^2 \)

• Feel free to weight and normalize these metrics according to use case
• When deciding between models, you must make tradeoffs between metrics
Tradeoffs: Error Metrics

• Replenishment:
 – High volatility can cause huge overstocks
 – Volatility trumps accuracy and bias

• Pricing:
 – Bias can be ignored depending on objectives
 – Accuracy trumps bias and volatility

• True impact must be determined through experimentation and simulation
Tradeoffs: Timescales

• Replenishment:
 – Set by the ordering lead times
 – Generally days to months

• Pricing:
 – Set by pricing strategy
 – Varies from seconds to months

• Long time scales must include seasonality, with short time scales it is optional
Tradeoffs: Computation Speed

• **Replenishment:**
 – Slow reaction times allow for slower forecasting
 – There is time to correct and change orders

• **Pricing:**
 – Fast reaction times demand faster forecasting
 – Must react quickly due to immediate customer impact
Tradeoffs

<table>
<thead>
<tr>
<th></th>
<th>Replenishment</th>
<th>Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Demand Distribution</td>
<td>Mean Sales</td>
</tr>
<tr>
<td>Metric</td>
<td>Low Volatility</td>
<td>High Accuracy</td>
</tr>
<tr>
<td>Timescale</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow</td>
<td>Fast</td>
</tr>
</tbody>
</table>
Item Size

- Walmart Stores
 - ~12k Stores
 - ~200k items per store
 - ~2b unique store/items to forecast
 - ~40b item/item correlations

- Walmart.com
 - >50m items
 - 40k ZIP codes
 - ~2t unique ZIP/items to forecast
 - ~2000t item/item correlations
Walmart.com Item Information

- >50m items
- Each item has 100s to 1000s of attributes
- Few items sell consistently and have a long and complete time series
- Sales can be sparse and occasional stock-outs lead to missing data
- New items with no or relatively short sales history
Modeling: Sample Sales Data
New Tradeoffs

<table>
<thead>
<tr>
<th></th>
<th>Replenishment</th>
<th>Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Demand Distribution</td>
<td>Mean Sales</td>
</tr>
<tr>
<td>Metric</td>
<td>Low Volatility</td>
<td>High Accuracy</td>
</tr>
<tr>
<td>Timescale</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Speed</td>
<td>Fast</td>
<td>Very Fast</td>
</tr>
</tbody>
</table>
Item Characterization

<table>
<thead>
<tr>
<th>History</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Consistent</td>
</tr>
<tr>
<td>• Pick your favorite method</td>
<td>• “Regular” distribution</td>
</tr>
<tr>
<td>• Most are generally “good enough”</td>
<td>• Most are generally “good enough”</td>
</tr>
<tr>
<td>Partial</td>
<td>Intermittent</td>
</tr>
<tr>
<td>• Off the shelf methods fail quickly</td>
<td>• Many zeros with occasional sales</td>
</tr>
<tr>
<td>• This is the hard part</td>
<td>• Be careful how the forecast is used</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>• Can’t use time series methods</td>
<td>• This is pretty simple</td>
</tr>
<tr>
<td>• Machine Learning problem</td>
<td></td>
</tr>
</tbody>
</table>
Partial History

• Why do we have partial history?
 – Recently introduced item
 – Items go out of stock
 – Data feeds are corrupted

• What can we do?
 – We have lots of items, some items with excellent history
 – Share information across items

• New problems:
 – How should they share information?
 – Which items should share information?
 – What information should they share?
Modeling

• Requirements
 – Fast
 – Include seasonality
 – Low volatility
 – Allow for missing data
 – Share information across items

• Our plan:
 – Cluster like items together
 – Calculate seasonal components
 – Forecast demand with multivariate DLMs
 – Estimate distribution function
Multivariate Dynamic Linear Model

\[Y_t = \begin{bmatrix} 1 & \psi(t) \\ \vdots & \vdots \\ \psi(t) & 1 \end{bmatrix} \begin{bmatrix} \mu_t \\ \alpha_t \end{bmatrix} + \epsilon_t, \]

\[\begin{bmatrix} \mu_t \\ \alpha_t \end{bmatrix} = \begin{bmatrix} \mu_{t-1} \\ \alpha_{t-1} \end{bmatrix} + \begin{bmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{bmatrix}, \]

\[\epsilon_t \sim N(0, \sigma^2 I_n) \& \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix} \sim N\left(0, \sigma^2 \begin{bmatrix} g_1 W_1 \\ g_2 W_2 \end{bmatrix}\right) \]

- Local level seasonal DLM
- Y is a vector of demand for a panel of n items
- g are variance scalars
- W are correlation matrices
 - Diagonals of W determine temporal smoothing
 - Off-diagonals of W determine cross section smoothing
- Models like DLM can be computed iteratively = fast
Modeling: Clustering

- Computing a DLM across 1b entities is probably overkill

- Possible similarity metrics:
 - Euclidean distance
 - L1 or L2 norm has issues with scale
 - Pearson correlation
 - Cosine angle is susceptible to outliers
 - Spearman correlation
 - Ranked vectors is our Goldilocks metric

- Cluster via your favorite K-means variant

- Leverage semantic information to improve sparsity issues
Final Thoughts: Ensembling

- Generally, ensembling gives better forecasts with fewer outliers
- Fit models with different parameters and use CV to identify best combination

\[y_{it}^* = w_1 y_{it}^1 + w_2 y_{it}^2 + \ldots + w_p y_{it}^p \text{ s.t. } w_i \geq 0 \& \sum_i w_i \approx 1 \]

- Forecasts may be correlated so you want parameters to be non negative
- Many ways to do this – LASSO, NNLS, Bagging, etc
- Boosting/Random Forests additionally helps to incorporate other predictors
Questions