
Ensemble	of	Specialized	Neural	
Networks	for	Time	Series	Forecasting

Slawek Smyl – slawek@uber.com
ISF	2017

Ensemble	of	Predictors
• Ensembling	a	group	predictors	(preferably	diverse)	or	choosing	one	
of	them	do	a	forecast	in	a	particular	situation	is	an	attractive	idea	
being	actively	researched.	
• Dr.	Sven	F.	Crone	in	his	talk*	during		2016	International	Joint	
Conference	on	Neural	Networks	(IJCNN)	reported	a	method	of	
creating	diversity	of	a	group	of	neural	networks	by	training	them	on	
different	subset	of	features.
•My	work	has	been	inspired	by	his	talk,	but	it	uses	different	method	
of	achieving	the	diversity	and	also	attempts	a	more	traditional	(and	
usually	unsuccessful	goal	J)	of	choosing	a	best	predictor	from	a	
pool.

*Sven	F.	Crone	and	Stephan	Häger,	Feature	selection	of	autoregressive	Neural	Network	inputs	for	trend	
Time	Series	Forecasting	,	2016	International	Joint	Conference	on	Neural	Networks	(IJCNN)

The	Idea
1. Create	a	pool	of	NNs	that	specialize	(i.e.	are	particularly	good)	in	a	

subset	of	time	series.
2. Find	a	good	way	either	to	ensemble	them	or	to	choose	one	of	them	

to	do	the	forecast
• An	obvious	way	to	approach	task	1	is	to	apply	clustering,	but	it	is	not	
obvious	what	metric	should	be	used,	as	a	standard	metric	may	not	
have	much	to	do	with	the	forecasting	performance

Data	Preprocessing

All	experiments	were	done	on	1428	monthly	time	series	of	M3	Competition	data	set	(package	Mcomp of	R)

Data	Preprocessing,	cont.

All	inputs	and	
outputs	are	
normalized	(e.g.	
divided)	by	some	
reasonably	stable	
value	reflecting	size	
of	the	series	near	
end	of	the	output	
window.	
Here	it	is	last	point	
of	deseasonalized
and	smoothed	input

Data	Preprocessing,	cont.

This	is	a	simple	data	processing.	
Instead	we	could	e.g.
1. Create	several	(perhaps	

overlapping)	smaller	output	
windows

2.	Apply	statistical	algorithm	on	
the	time	series	(up	to	and	
including	last	input	point)	and	
extract	some	features	(e.g.	acf,	ETS	
model	types,	ETS	forecast)

Data	Preprocessing,	cont.
Last	record	in	the	training	set	(for	this	time	series)	

Data	Preprocessing,	cont.
Last	record	(and	only	one	used)	in	the	validation	set	(for	this	time	series)	

Because	M3	time	series	
are	short,	each	of	them	
is	split	into	training	
part,	and	an	non-
overlapping	validation	
part	composed	of	last	
18	points	(=forecast	
horizon).	I	am	not	doing	
a	proper	backtesting.

Neural	Network	Architecture

Output	(vector	of	max	forecast	horizon	length)

Standard	hidden	layer	(no	bias)

• Applying	idea	of	ResNet
(Residual	Networks)	while	
stacking	LSTM	(Long	Short	
Term	Memory)	recurrent	
neural	networks

LSTM2

LSTM1

Inputs

Loss	Function

• Many	Neural	Network	systems	allow	to	specify	a	custom	loss	
function,	which	opens	possibility	to
• Optimize	for		a	metric	(e.g.	sMAPE)
• Using	pinball	loss	to	make	a	neural	network	to	do	a	quantile	regression,	and	
therefore	by	running	it	several	times	getting	a	number	of	prediction	intervals.

E.g.	in	CNTK,	using	Python,	one	can	define	sMAPE loss	as
def sMAPELoss (z,	t):
loss=o.reduce_mean(o.abs(t-z)/(t+z))*200
return	loss

This	definition	will	work,	even	if	actuals	and	forecasts	are	normalized	
by	dividing	by	a	common	‘level’

Task	1:	Creating	Pool	of	Specialized	NNs
• Start	with	randomly	allocating	a	part,	e.g.	half	of	
the	time	series,	to	each	network	(e.g.	7	of	them)
• In	a	loop	for	each	network
• Execute	a	single	training	on	the	allocated	training	
subset
• Record	performance	on	the	whole	training	set	(in-
sample,	average	per	all	points	of	the	training	part	of	a	
series)
• Rank	the	networks	for	each	series.	A	series	gets	
allocated	to	top	N	(e.g.	2)	best	networks
• Repeat,	make	an	early	stop	when	average	error	in	the	
validation	area	starts	growing.	

0

1

2

3

4

5

6

Net1 Net2 Net3 Net4 Net5 Net6 Net7

An	example	allocation	of	
10	series	to	7	nets,	topN=2

Series	1 Series	2 Series	3 Series	4 Series	5

Series	6 Series	7 Series	8 Series	9 Series	10

Task	1:	Creating	Poll	of	Specialized	NNs,	cont.
• The	success	is	reinforced	– a	network	that	does	well,	on	
average,	with	a	particular	series	is	likely	to	see	it	again	in	
the	next	epoch	of	training,	and	will	surely	see	it	if	this	
network	is	the	best	on	it.
• The	experiments	were	done	with	recurrent	NNs,	
therefore	a	particular	net	was	receiving	the	whole	series.	
If	I	were	to	use	standard	networks,	without	state,	it	
would	be	possible	to	allocate	pieces	of	one	series	to	
different	networks.
• The	architecture,	inputs	are	all	the	same,	what	is	
different,	and	actively	manipulated	between	epochs,	is	
the	composition	of	the	training	data	set	for	each	
network.

Example:	Identity	of	best	
network	for	a	particular	
series	along	the	series	
steps:
[0.,		0.,		1.,		0.,		0.,		0.,		0.]

[0.,		1.,		0.,		0.,		0.,		0.,		0.]

[0.,		1.,		0.,		0.,		0.,		0.,		0.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

[0.,		0.,		0.,		0.,		0.,		0.,		1.]

Task	2:	Ensembling	or	Choosing	Best	Network	
• Advanced,	second-level	network	methods
• Using	forecasts	of	each	of	the	network	as	an	additional	input	to	the	final	
network		- did	not	work
• Creating	a	recommender	network	that	chooses	which	of	the	base	network	
should	deal	with	a	particular	forecast	– did	not	work
• Creating	a	network	that	outputs	weights	for	the	base	network	– did	not	work

• Simpler,	rule	methods	worked
• Simple	average
• Weighted	average	by	average	training	loss
• Weighted	average	by	average	frequency	of	being	a	best	network
• Weighted	average	of	top	N	(2)	networks	(average	loss	in	training)
• Choosing	a	network	that	was	best	on	the	last	training	point
• Choosing	a	network	that	was	best	on	average

Comparing	Network	– Validation	Results,	sMAPE
Specialized Non-specialized

Best	Possible	(perfect	choosing	of)	single	net 11.46 13.47

Single	net 14.15,	sd=0.06

Best	nets	(min	avg error	over	all	
training	points	of	a	series)	

14.37,
sd=0.04

Single	best	(best	at	last	training	point)	net 14.51,	sd=0.07 14.3

Ensemble	of	top	2	out	of	7	nets	(by	average	
error	over	all	training	points	of	a	series)

14.09,	sd=0.04

Weighted	ensemble	of	the	above	nets 13.99 14.35

Results	In	Context
M3	dataset	is	a	popular	dataset,	sMAPE,	Monthly	series:

ARIMA 14.98

Ensemble	of	non-specialized	NNs 14.35

ETS	(ZZZ) 14.15

Ensemble	of	specialized	NNs 13.99

Hybrid	(mean	of	ARIMA	and	ETS) 13.91

Best	algorithm	in	M3	competition 13.89	(THETA)

SGT 13.72,	sd=0.019

Best	of	Bagged	ETS 13.64 (BLD.MBB)

SGT	– Seasonal,	Global	Trend	is	my	algorithm	that	is	a	kind	of	generalized	Exponential	Smoothing,	it	has	
generalized	(between	additive	and	multiplicative)	trend,	Student	distribution	of	error,	a	function	for	
error	size	etc., fitted	with	MCMC.

Questions?

Slawek Smyl – slawek@uber.com

Tools	Used	- CNTK
• Microsoft’s	CNTK,	which	used	to	mean	Computational	Network	
Toolkit,	but	now	it	means	Cognitive	Toolkit	J
• It	is	modern,	fast	and,	I	believe,	easier	to	use	than	Tensorflow.
• Open	sourced,	it	runs	on	Windows	and	Linux.
• It	has	own	scripting/configuration	language,	as	well	as	Python	APIs	
that	I	used.	Also	C++	and	some	C#	APIs.

SGT	– Seasonal	Global	Trend	Algorithm
• Created	by	S.	Smyl	time	series	algorithm	that	generalizes	(between	
additive	and	multiplicative)	Trend	and	Error	Exponential	Smoothing	
models.	
• It	uses	Student-t	distribution	for	errors
• Formula	for	the	expected	value:	

µt =(𝑙#$%+𝛾 ∗ 𝑙#$%
)) ∗ 𝑠#

where	𝑙#$% is	previous	level;	γ is	the	global	trend	coefficient; 𝑝 ∈ <0,1>

• Function	for	scale	of	the	error	distribution:
σ ∗ 𝑙#$%

0 + 𝜍
where	σ,	𝜍 are	positive,	and	𝜏 ∈ <0,1>

• All	parameters	are	fitted	by	MCMC	(Stan)

LGT	– Local	Global	Trend	Algorithm
• Created	by	S.	Smyl	time	series	algorithm	that	generalizes	Additive	and	
Multiplicative	Trend	and	Error	Exponential	Smoothing	models.	
• It	uses	Student-t	distribution	for	errors
• Formula	for	the	expected	value:	

µt =	𝑙#$% + γ ∗ 𝑙#$%
3 + λ ∗ 𝑏#$%

where	𝑙#$% is	previous	level;	γ is	the	global	trend	coefficient;
𝑝,	λ ∈ <0,1>;	𝑏#$% is	previous	(local)	trend

• Function	for	scale	of	the	error	distribution:
σ ∗ 𝑙#$%

0 + 𝜍
where	σ,	𝜍 are	positive,	and	𝜏 ∈ <0,1>

• All	parameters	are	fitted	by	MCMC	(Stan)

My	ISF	2016	paper:	Results	for	Yearly	M3	series

• 645	series	(rather	short,	
14-40	points)

Summation	happens	over	prediction	horizons,	except	for	
the	divisor	of	the	MASE	equation,	where	it	happens	over	
past	(in-sample)	data

Algorithm/Metric sMAPE MASE
ETS	(ZZZ) 17.37 2.86
ARIMA 17.12 2.96
Auto	NN	(M3	
participant)

18.57 3.06

Best	algorithm	in	
M3

16.42
(RBF)

2.63	
(ROBUST-Trend)

LSTM with	minimal	
preprocessing

16.4 2.88

LSTM	using ETS	for	
preprocessing

15.94 2.73

LSTM	using	LGT	for	
preprocessing

15.46 2.65

LGT 15.23,	sd=	0.015 2.50,	sd=	0.004

𝑠𝑀𝐴𝑃𝐸 =
200
ℎ >

𝑦# − 𝑦#A
𝑦# + 𝑦#A

B

#C%

𝑀𝐴𝑆𝐸 =
ℎ$% ∑ 𝑦# − 𝑦#AB

#C%

F𝑛 − 𝑠)$% ∑ 𝑦0 − 𝑦0$HIJ
0CHK%

Quantile	Regression	and	Pinball	Loss

• In	“normal”	regression	we	minimize	sum	of	squared	errors,	that	leads	to	average	value	
forecast	.
• If	we	minimize	L1	metric,	we	get	median	forecast.	
• More	generally,	if	we	minimize	Pinball	loss	defined	as

(Forecast-Actual)*tau								when	Forecast>Actual
(Actual-Forecast)*(1-tau)			otherwise

we	are	going	to	obtain	quantile	forecast	for	the	specified	quantile	value,	tau,	e.g.	0.95

Code	for	Pinball	loss	in	CNTK:
def	PinballLoss (z,	t,	tau):	
tauV=o.constant(tau,	shape=t.shape,	dtype=np.float32)
tau1mV=o.constant(1-tau,	shape=t.shape,	dtype=np.float32)
loss=o.reduce_mean(o.element_select(o.greater_equal(t,	z											

o.element_times(o.minus(t,z tauV o.element_times(o.minus(z,t tau1mV)))	
return	loss

