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Introduction

I Cordeiro and Neves (2009) and Bergmeir et al. (2016), have
proposed new ways to generate forecasts using a very popular
Machine Learning technique, called Bagging (Bootstrap
Aggregating), proposed by Breiman (1996), in combination
with Exponential Smoothing methods to improve forecast
accuracy

I The main idea is to use Bootstrap to generate an ensemble of
forecasts that is combined into one single output
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Bagged.BLD.MBB.ETS - Bergmeir et al.(2016)

Best model using Bagging and Exponential Smoothing
methods

I Box-Cox transformation (stabilizes variance)

I STL decomposition (decompose time series into seasonal, trend and
remainder)

I Moving Block Bootstrap (generate new versions of the remainder)

I Forecasts are obtained selecting one ETS model for each time series
(original and bootstrap versions)

I Final forecast is obtained using the median (other possibilities are
mean, trimmed mean, among others)
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Bagged.BLD.MBB.ETS - Bergmeir et al.(2016)
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Why Bagging tends to work

The Mean Squared Forecast Error (MSFE) can be decomposed
into three terms:

MSFE = Var(yt+1|t) + bias(ŷt+1|t)
2 + Var(ŷt+1|t)
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Why Bagging tends to work

The average forecast over the Bootstrap samples can be written as:

ỹt+1|t = 1
B

B∑
i=1

ŷ∗(i)t+1|t

where the tilde indicates Bagging forecast and B is the total
number of Bootstrap samples.
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Why Bagging tends to work

bias(ỹt+1|t) = 1
B

B∑
i=1

bias(ŷ∗(i)t+1|t)

I Note that unbiased Bootstrapped versions lead to a relatively
unbiased ensemble
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Why Bagging tends to work

Var(ỹt+1|t) = 1
B2

B∑
i=1

Var(ŷ∗(i)t+1|t) + 1
B2

∑
i 6=i ′

Cov [ŷ∗(i)t+1|t , ŷ
∗
(i ′)t+1|t ]

I Variance tends to be reduced
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Why Bagging tends to work

I When applying Bagging and Exponential Smoothing what
happens is variance reduction

I If the variances are approximately equal and there is no
correlation:

Var(ỹt+1|t) ≈ 1
BVar(ŷ∗(1)t+1|t)
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Why Bagging tends to work

I Reducing covariance seems to be a good idea

Var(ỹt+1|t) = 1
B2

B∑
i=1

Var(ŷ∗(i)t+1|t) + 1
B2

∑
i 6=i ′

Cov [ŷ∗(i)t+1|t , ŷ
∗
(i ′)t+1|t ]

I The proposed approach tries to use this idea in order to
reduce forecast error
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Proposed Approach
The proposed approach can be divided in two parts:

1. Generation of Bootstrapped series - Algorithm developed by
Bergmeir et al. (2016)

2. The procedure to forecast and aggregate the series - New
developments
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Proposed Approach

Generating bootstrapped series

I Bootstrapped series are generated in the same way as
Bagged.BLD.MBB.ETS
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Algorithm 1 Generating bootstrapped series

1: procedure BOOTSTRAP(ts,num.boot)
2: λ← BoxCox.lambda(ts,min=0,max=1)
3: ts.bc← BoxCox(ts,λ = 1)
4: if ts is seasonal then
5: [trend seasonal remainder] ← stl(ts.bc)
6: else
7: seasonal ← 0
8: [trend,remainder] ← loess(ts.bc)
9: end if
10: recon.series[1] ← ts
11: for i in 2 to num.boot do
12: boot.sample[i] ← MBB(remainder)
13: recon.series.bc[i] ← trend + seasonal +boot.sample[i]
14: recon.series[i] ← InvBoxCox(recon.series.bc[i],λ)
15: end for
16: return recon.series
17: end procedure
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Proposed Approach
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Proposed Approach

The procedure to forecast and aggregate the series

I the Proposed approach and Bagged.BLD.MBB.ETS differ in
the way the ensemble is constructed

I Bagged.BLD.MBB.ETS consider all of the Bootstrapped
versions to make forecasts

I The proposed approach considers a less correlated group of
time series to make forecasts
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Proposed Approach

I To create a less correlated ensemble, the proposal is to
generate clusters from the Bootstrapped versions

I Cluster procedures maximize similarity within the group and
minimize it between them

I The expectation is that selecting series from different clusters
would lead to an ensemble less correlated and, therefore, less
correlated forecasts to be aggregated
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Proposed Approach

I Partitioning Around Medoids Algorithm (PAM) and euclidean
distance are used to create the clusters (fast algorithm and
less sensible to outliers)

I The number of cluster can be defined using cross-validation or
any other method (e.g. Silhouette Information)
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Proposed Approach
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Proposed Approach
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Proposed Approach

I The user has to define the total number of series to aggregate
(100 was the choice made by Bergmeir and colleagues)

I The number of series to be selected in each cluster is defined
as proportionally equal to the size of each cluster

Example: B =1000 and the total number of series to be
aggregated is 100. If cluster 1 has 20 series, therefore 2 series
would be selected (10%). But, Which 2 time series?
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I A validation set is defined

I The time series with best results (sMAPE) in the validation
set are the ones selected in each cluster

I The final forecast is obtained taking the median of the
forecasts (other possibilities are the mean, trimmed mean)
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Proposed Approach
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MSE decomposition
Bagged.BLD.MBB.ETS (black) and the Proposed Approach (blue)
- Forecast (up to 18 steps ahead) - Time series 1083 - M3
competition
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Empirical Results

I The proposed approach was validated on public available time
series from the M3 competition (1428 monthly, 756 quarterly
and 645 yearly time series)

I The experiment was conducted using R and the majorly the
forecast package (version 8.0)

I The results for Bagged.BLD.MBB.ETS were obtained using
baggedETS()
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Monthly data
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Methods Rank sMAPE Mean sMAPE Median sMAPE
Proposed Approach 11.15 13.62 8.74
Bagged.BLD.MBB.ETS 11.30 13.65 8.85
THETA 11.53 13.89 8.92
ForecastPro 11.56 13.90 8.81
COMB S-H-D 12.54 14.47 9.37
ForcX 12.76 14.47 9.21
HOLT 12.78 15.79 9.28
WINTER 13.06 15.93 9.30
RBF 13.27 14.76 9.21
AAM1 13.48 15.67 9.67
DAMPEN 13.48 14.58 9.44
AutoBox2 13.60 15.73 9.28
B-J auto 13.69 14.80 9.32
AutoBox1 13.69 15.81 9.27
SMARTFCS 13.82 15.01 9.52
Flors-Pearc2 13.84 15.19 9.61
AAM2 13.85 15.94 9.62
Auto-ANN 13.91 15.03 9.62
PP-Autocast 14.13 15.33 9.90
ARARMA 14.20 15.83 9.80
AutoBox3 14.21 16.59 9.40
Flors-Pearc1 14.54 15.99 9.96
THETAsm 14.58 15.38 9.65
ROBUST-Trend 14.79 18.93 9.73
SINGLE 15.22 15.30 10.03
NAIVE2 16.04 16.89 10.12
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Quarterly data
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Methods Rank sMAPE Mean sMAPE Median sMAPE
THETA 11.39 8.96 5.37
COMB S-H-D 12.18 9.22 5.32
ROBUST-Trend 12.44 9.79 5.00
DAMPEN 12.66 9.36 5.59
PP-Autocast 12.81 9.39 5.26
ForcX 12.86 9.54 5.62
Bagged.BLD.MBB.ETS 12.96 9.80 5.81
B-J auto 13.16 10.26 5.69
ForecastPro 13.20 9.82 5.84
Proposed Approach 13.24 9.89 5.82
HOLT 13.27 10.94 5.71
RBF 13.30 9.57 5.67
AutoBox2 13.38 10.00 5.59
WINTER 13.38 10.84 5.71
Flors-Pearc1 13.48 9.95 5.61
ARARMA 13.49 10.19 6.11
Auto-ANN 13.89 10.20 6.28
THETAsm 14.18 9.82 5.65
AAM1 14.25 10.16 6.36
SMARTFCS 14.27 10.15 5.71
Flors-Pearc2 14.30 10.43 6.22
AutoBox3 14.38 11.19 6.15
AAM2 14.41 10.26 6.44
SINGLE 14.66 9.72 6.18
AutoBox1 14.69 10.96 6.14
NAIVE2 14.80 9.95 6.18
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Yearly data
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Methods Rank sMAPE Mean sMAPE Median sMAPE
ForcX 11.15 16.48 11.34
RBF 11.46 16.42 10.74
AutoBox2 11.48 16.59 11.31
Flors-Pearc1 11.57 17.21 10.72
THETA 11.58 16.97 11.25
ForecastPro 11.73 17.27 11.05
ROBUST-Trend 11.81 17.03 11.30
PP-Autocast 11.87 17.13 10.83
Bagged.BLD.MBB.ETS 11.89 17.40 11.20
DAMPEN 11.92 17.36 10.95
COMB S-H-D 11.99 17.07 11.68
Proposed Approach 12.21 17.56 11.42
SMARTFCS 12.38 17.71 11.83
HOLT 12.64 20.02 11.77
WINTER 12.64 20.02 11.77
Flors-Pearc2 13.02 17.84 12.55
ARARMA 13.03 18.36 11.35
B-J auto 13.04 17.73 11.70
Auto-ANN 13.32 18.57 13.08
AutoBox3 13.52 20.88 12.89
THETAsm 13.55 17.92 12.21
AutoBox1 13.82 21.59 12.75
NAIVE2 14.16 17.88 12.37
SINGLE 14.21 17.82 12.44
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Concluding Remarks

I This proposed approach make forecasts combining Bagging,
Exponential Smoothing and Cluster methods

I The empirical results demonstrate the approach was capable
of generating highly accurate forecasts for monthly time series

I The so far, not explicitly addressed, covariance effect on the
combination of Bagging and Exponential Smoothing, is
probably resposible for reducing the forecast error

I The method doesn’t seem to work well on short time series
(such as the case of yearly and quarterly time series from the
M3 competition)
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Concluding Remarks

Future work

I Other weighting schemes for selected series

I Other decomposition and forecasting methods
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Thank You!
t.mendesdantas@gmail.com
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