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Motivation: Special Event Forecasting



Application: Anomaly Detection

Internal dynamic configuration down. High Uber Pool latency caused 
millions of users to drop

Intermittent fraud activity causes 
millions lost in revenue.



Application: Anomaly Detection - Argos

Rollout  Post rollout 

Narnia
Real-time rollout monitoring for 
business metrics 

F3
Seasonal Anomaly 
detection 

JainCP
Change point detection

MeRL
Model Selection /
Parameter tuning

P3
Event data store → 
Root Cause tool

Root cause 

While we have a sophisticated anomaly detection system currently … 



Application: Anomaly Detection

High false 
positive 
rate during 
holidays

Figure: Histogram of alerts sent per 30m. Current system has a large number of false positive during holidays.



Current Solution
Two step process:

a) Backfill using a classical time-series model
b) Training a machine learning model on the residuals



Current Solution: Cons
● System design cons

○ Not scalable
○ Not end-to-end

● Classical forecasting methods
○ ARIMA: Cyclicality, Exogeneous variables
○ GARACH
○ Exponential smoothing (Holt-Winters)
○ Generalized autoregressive scoring
○ ...

● Cons of classical approaches
○ Low flexibility: They have difficulty adapting
○ Phase fluctuations, accelerating trends, repeated irregular patterns
○ Can happen in: Sensor data for dynamic systems, metrics, asset time-series
○ Require frequent retraining
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● Easy to incorporate exogenous variables
○ External context variables
○ Other time-series (e.g., other sensor data)
○ Summary statistics (mean, max, min, std) for semi-regular telemetry
○ Less prone to errors from infrequent retraining.

Background: Neural Nets



● A powerful class of machine learning models
● Collection of simple, trainable mathematical functions
● Model reincarnation of Artificial Neural Networks

Background: Neural Nets

Each neuron implements a 
simple mathematical function. A 
composition of 106 - 109 of them 
is surprisingly powerful

Image Credit: Jeff Dean



Background: Neural Nets

Loss



Background: Base Model

Figure: Base Recurrent Neural Network Model

Figure: Variation of an LSTM Cell
Image Credit: http://colah.github.io/

This is how 
we update 
the model 
with every 
example



Data: External Features
● Available data

○ Weather
○ Trip data
○ City data

● Challenges
○ City to city holiday behavior is different
○ Little data for holidays
○ Sparse data for new Uber cities



Data: External Features



Data: Input Creation



Data: Input Creation

● NNs learn faster and give better performance if the input variables are 
pre-processed before being used to train the network
○ Exactly the same pre-processing should be done to the test set

○ Log

○ scaledX = (X - minX)/(maxX - minX)

○ Detrending, de-seasoning (using STL)



Data: Input Creation

Detrend



Modeling: Base Model (Keras + Tensorflow)

def create_dataset(dataset, look_back = 1, forecast_horizon = 1):
    dataX, dataY = [], []
    for i in range(0, ... ):
        dataX.append(dataset[i:(i + look_back), ])
        dataY.append(dataset[i + look_back:i + look_back +  
                                           forecast_horizon, 0])
    return np.array(dataX), np.array(dataY)

trainX, trainY = create_dataset(train, look_back, forecast_horizon)
testX, testY = create_dataset(test, look_back, forecast_horizon)

model = Sequential()
model.add(LSTM(64, input_dim = features, input_length = look_back ... ))
model.add(LSTM(32, ... ))
model.add(Dense(forecast_horizon))
model.compile(loss = 'mean_squared_error', optimizer = 'sgd')
model.fit(trainX, trainY, validation_data=(testX, testY))



Modeling: Base model pros & cons

● Pros
○ End-to-end
○ Infrequent retraining
○ Good performance

● Cons
○ Does not measure uncertainty
○ Does not scale to millions of time-series



Modeling: Uncertainty of a forecast

Decompose uncertainty into two parts: 
● Model uncertainty
● Forecast Uncertainty



Modeling: Uncertainty of a forecast

Uncertainty of the forecast 
given model

Uncertainty of an input given the model



Modeling: Empirical Uncertainty Using Dropout

● The longer the time-series, the more useful dropout is. 
● Dropout on the weights doesn’t work. Use dropout on activations.
● Regularization on the activation did not show improvement. Use 

regularization on the weights. 



Modeling: Uncertainty

vals = []
for r in range(100):
  vals.append(model.eval(x, dropout = normal(0,1)))
mean = np.mean(vals)
var = np.var(vals)

model.add(Lambda(lambda x: K.dropout(x, level = normal(0,1))))

Dropout is normally done during training. 
To make it work during testing, add this:

Bayesian uncertainty 



Note: Term                              goes away assuming model and 
forecast error correlation is very high.

Modeling: Model and Forecast Uncertainty

Forecast Uncertainty
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Modeling: Uncertainty Example

Forecast with uncertainty. Lag = 7 days, Forecast Horizon = 7 days



Modeling: Scaling to millions of time-series

● Training a separate neural network for every city is infeasible
● Manually encoding city level features is prone to error
● How can we automate feature extraction to support a single model?



Modeling: Scaling to millions of time-series

Figure: Some manually developed time-series features we extracted in our prior work.



Modeling: Scaling to millions of time-series

LSTM Autoencoder

LSTM Layer

LSTM Layer

LSTM 
Layer

LSTM Layer

LSTM Layer
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...

...

...

InputnewInputpast(n)

Take 
average of 
resulting 
vectors & 
concat with 
new input.



Modeling: Scaling to millions of time-series

LSTM Autoencoder

LSTM Layer

LSTM Layer

LSTM 
Layer

LSTM Layer

LSTM Layer

Inputpast(n)

Take 
average of 
resulting 
vectors & 
concat with 
new input.

First layer is 
wide, approx 
512

Mid layer is narrow, 
< dimensions of the 
feature matrix, 
32-64

<0.4, 0.3, …, 0.2>
<0.3, 0.2, …, 0.1>
            ….
            ….
            ….
<0.5, 0.3, …, 0.3>



Modeling: Scaling to millions of time-series

LSTM Autoencoder

LSTM Layer

LSTM Layer

LSTM 
Layer

LSTM Layer

LSTM Layer

Inputpast(n)

One can plot the extracted features in a 2D space to 
visualize the time-series. A deeper study of this is 
part of our future work



Modeling: Scaling to millions of time-series

LSTM Forecaster

LSTM Layer 1

Fully Connected Layer

...

...

...

Inputnew

● First layer is wide, approx 512
● For mid-layers we use depth of 4 with 

polynomially decreasing widths
● Last layer is a fully connected layer 

with size = forecast
● No retraining is required to forecast 

any part of the time-series given the 
immediate past.



Modeling: Scaling to millions of time-series

● Different ways to combine feature extractor 
and forecaster:
○ Extend the input of forecasting module
○ Extend the depth of the forecasting 

module
○ Separate modules give best 

performance
● This architecture allows for a ‘generic 

forecasting machine’ 



Inference: at Uber Scale
● Want to avoid 3rd party dependencies (e.g., Tensorflow, Keras [Python])
● Export weights and model architecture and execute natively in Go
● Applicable to a generic time-series

○ Vision - Let other teams use the model and adapt to specialized use 
cases with add-on layers if necessary

Export 
weights and 
operations

func (tt timeTravel) nnForecast(x []float64) ([]float64, error) {
  layerWeights := tt.layerWeights
  layerBias := tt.layerBias
  var h1 []float64
  if layerWeights == nil || layerBias == nil {
    return h1, errNNForecast
  }
  prev := x

  for i := range layerWeights {
    h1, _ = stats.ElemSum(stats.DotProduct(prev,  
                          layerWeights[i]), layerBias[i])
    prev = h1
  }
  return h1, nil
}

Train, infrequently, using Tensorflow, Keras, 
GPUs

Export weights and operations to native Go code

Inputpast(n)
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LSTM
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Results: Experiments & Methodology

● Internal and public datasets
● Three years of data from 10 cities
● Target variable is completed trips.
● Records for holidays, weather, eyeballs.
● Forecast is done one week ahead.
● Measure SMAPE:                                   



Query Previous Model Described Neural 
Network 

Query #1 10.60 13.05

Query #2 23.23 22.60

Query #3 48.57 18.23

Query #4 47.41 26.35

Query #5 19.40 16.87

Query #6 19.25 22.65

Query #7 21.35 19.78

Query #8 39.31 36.31

Query #9 22.11 21.01

Mean 32.44 26.66
Median 25.42 22.62

Results: Forecasting (Uber Data)

Table: SMAPE Comparison on sample queries

● Single neural network model 
is constructed compared to 
per query training requirement 
for the previous model.



Results: Forecasting (Public dataset - M3 Monthly)

Table: Experiment on the public M3 Monthly Dataset showing 
the generalization power of the Uber Neural Network

Uber Neural Network: Single model trained on an 
unrelated dataset to show the network generalization 
power compared to the specialized models shown.



Model Training Time Inference Time

Neural Network O(1) O(M)

Prod Best O(N*L) O(1)

Results: Scalability

Table: Scalability comparison, where N is the number of time-series, L is their length 
and M is Neural Network’s set up stage. M << L.



Results: Special Event Prediction Performance (SMAPE)

Feature Described Neural 
Network

Previous Model

Christmas Day 11.1 29.2

MLK 8.7 20.2

Independence Day 2.8 17.6

Labor Day 2.9 6.9

New Year’s Day 6.8 7.8

Veteran’s Day 4.7 8.9



Results: Special Event Use Case Forecast Errors (SMAPE)



Results: Example of a forecast (Testing)

Figure: Testing time-series and forecast.



Results:  Lessons learned

Time-Series Type RNN Performance Classical Model Performance

Short Time-Series Not enough data to train. Symbolic Regression, HMMs 
perform well.

Long Time-Series Able to optimize. Classical Model Performance 
is Equivalent to RNN.

Multivariate Short Time-Series Not enough data. 
While RNNs able to represent 
any function, need a lot of 
data.

Multi-varaite regression, 
Symbolic regression, 
Hierarchical forecasting 
perform well.

Multivariate Long Time-Series RNN is able to model nonlinear 
relationships among features. 
Computationally efficient. 
Automatic feature selection.

Computation efficiency may 
not be optimal.
Feature selection challenging.



Results: Lessons learned

● Classical models are best for:
○ Short or unrelated time-series
○ Known state of world

● Neural Network is best for:
○ A lot of time-series
○ Long time-series
○ Hidden interactions
○ Explanation is not important

● Future work
○ Model debugging using uncertainty for special events.
○ Work towards a general forecasting machine

■ To be used as a building block in a larger forecasting model (e.g., similar to the 
ImageNet model)

● See more
○ Eng blog
○ ICML paper under review



Results: Anomaly Detection

Rollout  Post rollout 

Narnia
Real-time rollout monitoring for 
business metrics 

F3
Seasonal Anomaly 
detection 

JainCP
Change point detection

MeRL
Model Selection /
Parameter tuning

P3
Event data store → 
Root Cause tool

Root cause 

We are pleased to introduce a Neural Network into Argos suite of models.

Uber 
Neural 
Network

Live on 
Argos & 
uMonitor
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