
Time-Series Modeling with
Neural Networks at Uber

June 26, 2017

Nikolay Laptev

Outline

● Motivation
● Modeling with Neural Nets
● Results & Discussion

Outline

● Motivation
○ Special Event Prediction
○ Applications
○ Current solution

● Modeling with Neural Nets
● Results & Discussion

Motivation: Special Event Forecasting

Application: Anomaly Detection

Internal dynamic configuration down. High Uber Pool latency caused
millions of users to drop

Intermittent fraud activity causes
millions lost in revenue.

Application: Anomaly Detection - Argos

Rollout Post rollout

Narnia
Real-time rollout monitoring for
business metrics

F3
Seasonal Anomaly
detection

JainCP
Change point detection

MeRL
Model Selection /
Parameter tuning

P3
Event data store →
Root Cause tool

Root cause

While we have a sophisticated anomaly detection system currently …

Application: Anomaly Detection

High false
positive
rate during
holidays

Figure: Histogram of alerts sent per 30m. Current system has a large number of false positive during holidays.

Current Solution
Two step process:

a) Backfill using a classical time-series model
b) Training a machine learning model on the residuals

Current Solution: Cons
● System design cons

○ Not scalable
○ Not end-to-end

● Classical forecasting methods
○ ARIMA: Cyclicality, Exogeneous variables
○ GARACH
○ Exponential smoothing (Holt-Winters)
○ Generalized autoregressive scoring
○ ...

● Cons of classical approaches
○ Low flexibility: They have difficulty adapting
○ Phase fluctuations, accelerating trends, repeated irregular patterns
○ Can happen in: Sensor data for dynamic systems, metrics, asset time-series
○ Require frequent retraining

Outline

● Motivation
● Modeling with Neural Nets

○ Background
○ Data
○ Model
○ Inference

● Results & Discussion

● Easy to incorporate exogenous variables
○ External context variables
○ Other time-series (e.g., other sensor data)
○ Summary statistics (mean, max, min, std) for semi-regular telemetry
○ Less prone to errors from infrequent retraining.

Background: Neural Nets

● A powerful class of machine learning models
● Collection of simple, trainable mathematical functions
● Model reincarnation of Artificial Neural Networks

Background: Neural Nets

Each neuron implements a
simple mathematical function. A
composition of 106 - 109 of them
is surprisingly powerful

Image Credit: Jeff Dean

Background: Neural Nets

Loss

Background: Base Model

Figure: Base Recurrent Neural Network Model

Figure: Variation of an LSTM Cell
Image Credit: http://colah.github.io/

This is how
we update
the model
with every
example

Data: External Features
● Available data

○ Weather
○ Trip data
○ City data

● Challenges
○ City to city holiday behavior is different
○ Little data for holidays
○ Sparse data for new Uber cities

Data: External Features

Data: Input Creation

Data: Input Creation

● NNs learn faster and give better performance if the input variables are
pre-processed before being used to train the network
○ Exactly the same pre-processing should be done to the test set

○ Log

○ scaledX = (X - minX)/(maxX - minX)

○ Detrending, de-seasoning (using STL)

Data: Input Creation

Detrend

Modeling: Base Model (Keras + Tensorflow)

def create_dataset(dataset, look_back = 1, forecast_horizon = 1):
 dataX, dataY = [], []
 for i in range(0, ...):
 dataX.append(dataset[i:(i + look_back),])
 dataY.append(dataset[i + look_back:i + look_back +
 forecast_horizon, 0])
 return np.array(dataX), np.array(dataY)

trainX, trainY = create_dataset(train, look_back, forecast_horizon)
testX, testY = create_dataset(test, look_back, forecast_horizon)

model = Sequential()
model.add(LSTM(64, input_dim = features, input_length = look_back ...))
model.add(LSTM(32, ...))
model.add(Dense(forecast_horizon))
model.compile(loss = 'mean_squared_error', optimizer = 'sgd')
model.fit(trainX, trainY, validation_data=(testX, testY))

Modeling: Base model pros & cons

● Pros
○ End-to-end
○ Infrequent retraining
○ Good performance

● Cons
○ Does not measure uncertainty
○ Does not scale to millions of time-series

Modeling: Uncertainty of a forecast

Decompose uncertainty into two parts:
● Model uncertainty
● Forecast Uncertainty

Modeling: Uncertainty of a forecast

Uncertainty of the forecast
given model

Uncertainty of an input given the model

Modeling: Empirical Uncertainty Using Dropout

● The longer the time-series, the more useful dropout is.
● Dropout on the weights doesn’t work. Use dropout on activations.
● Regularization on the activation did not show improvement. Use

regularization on the weights.

Modeling: Uncertainty

vals = []
for r in range(100):
 vals.append(model.eval(x, dropout = normal(0,1)))
mean = np.mean(vals)
var = np.var(vals)

model.add(Lambda(lambda x: K.dropout(x, level = normal(0,1))))

Dropout is normally done during training.
To make it work during testing, add this:

Bayesian uncertainty

Note: Term goes away assuming model and
forecast error correlation is very high.

Modeling: Model and Forecast Uncertainty

Forecast Uncertainty

LSTM Layer 1

LSTM Layer N

...

...

...

Input: X

Output: Y

D
ro

po
ut

 u
nc

er
ta

in
ty

 1
00

x
D

ropout uncertainty 100x

Model Uncertainty

LSTM Layer 1

LSTM Layer N

...

...

...

Input: X

Output: X

Modeling: Uncertainty Example

Forecast with uncertainty. Lag = 7 days, Forecast Horizon = 7 days

Modeling: Scaling to millions of time-series

● Training a separate neural network for every city is infeasible
● Manually encoding city level features is prone to error
● How can we automate feature extraction to support a single model?

Modeling: Scaling to millions of time-series

Figure: Some manually developed time-series features we extracted in our prior work.

Modeling: Scaling to millions of time-series

LSTM Autoencoder

LSTM Layer

LSTM Layer

LSTM
Layer

LSTM Layer

LSTM Layer

LSTM Forecaster

LSTM Layer 1

Fully Connected Layer

...

...

...

InputnewInputpast(n)

Take
average of
resulting
vectors &
concat with
new input.

Modeling: Scaling to millions of time-series

LSTM Autoencoder

LSTM Layer

LSTM Layer

LSTM
Layer

LSTM Layer

LSTM Layer

Inputpast(n)

Take
average of
resulting
vectors &
concat with
new input.

First layer is
wide, approx
512

Mid layer is narrow,
< dimensions of the
feature matrix,
32-64

<0.4, 0.3, …, 0.2>
<0.3, 0.2, …, 0.1>
 ….
 ….
 ….
<0.5, 0.3, …, 0.3>

Modeling: Scaling to millions of time-series

LSTM Autoencoder

LSTM Layer

LSTM Layer

LSTM
Layer

LSTM Layer

LSTM Layer

Inputpast(n)

One can plot the extracted features in a 2D space to
visualize the time-series. A deeper study of this is
part of our future work

Modeling: Scaling to millions of time-series

LSTM Forecaster

LSTM Layer 1

Fully Connected Layer

...

...

...

Inputnew

● First layer is wide, approx 512
● For mid-layers we use depth of 4 with

polynomially decreasing widths
● Last layer is a fully connected layer

with size = forecast
● No retraining is required to forecast

any part of the time-series given the
immediate past.

Modeling: Scaling to millions of time-series

● Different ways to combine feature extractor
and forecaster:
○ Extend the input of forecasting module
○ Extend the depth of the forecasting

module
○ Separate modules give best

performance
● This architecture allows for a ‘generic

forecasting machine’

Inference: at Uber Scale
● Want to avoid 3rd party dependencies (e.g., Tensorflow, Keras [Python])
● Export weights and model architecture and execute natively in Go
● Applicable to a generic time-series

○ Vision - Let other teams use the model and adapt to specialized use
cases with add-on layers if necessary

Export
weights and
operations

func (tt timeTravel) nnForecast(x []float64) ([]float64, error) {
 layerWeights := tt.layerWeights
 layerBias := tt.layerBias
 var h1 []float64
 if layerWeights == nil || layerBias == nil {
 return h1, errNNForecast
 }
 prev := x

 for i := range layerWeights {
 h1, _ = stats.ElemSum(stats.DotProduct(prev,
 layerWeights[i]), layerBias[i])
 prev = h1
 }
 return h1, nil
}

Train, infrequently, using Tensorflow, Keras,
GPUs

Export weights and operations to native Go code

Inputpast(n)

LSTM Autoencoder

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM Forecaster

LSTM Layer 1

LSTM Layer N

...

...

...

Inputnew

(concat)

Outline

● Motivation
● Modeling with Neural Nets
● Results & Discussion

○ Forecasting and Special Event Performance
○ Lessons learned

Results: Experiments & Methodology

● Internal and public datasets
● Three years of data from 10 cities
● Target variable is completed trips.
● Records for holidays, weather, eyeballs.
● Forecast is done one week ahead.
● Measure SMAPE:

Query Previous Model Described Neural
Network

Query #1 10.60 13.05

Query #2 23.23 22.60

Query #3 48.57 18.23

Query #4 47.41 26.35

Query #5 19.40 16.87

Query #6 19.25 22.65

Query #7 21.35 19.78

Query #8 39.31 36.31

Query #9 22.11 21.01

Mean 32.44 26.66
Median 25.42 22.62

Results: Forecasting (Uber Data)

Table: SMAPE Comparison on sample queries

● Single neural network model
is constructed compared to
per query training requirement
for the previous model.

Results: Forecasting (Public dataset - M3 Monthly)

Table: Experiment on the public M3 Monthly Dataset showing
the generalization power of the Uber Neural Network

Uber Neural Network: Single model trained on an
unrelated dataset to show the network generalization
power compared to the specialized models shown.

Model Training Time Inference Time

Neural Network O(1) O(M)

Prod Best O(N*L) O(1)

Results: Scalability

Table: Scalability comparison, where N is the number of time-series, L is their length
and M is Neural Network’s set up stage. M << L.

Results: Special Event Prediction Performance (SMAPE)

Feature Described Neural
Network

Previous Model

Christmas Day 11.1 29.2

MLK 8.7 20.2

Independence Day 2.8 17.6

Labor Day 2.9 6.9

New Year’s Day 6.8 7.8

Veteran’s Day 4.7 8.9

Results: Special Event Use Case Forecast Errors (SMAPE)

Results: Example of a forecast (Testing)

Figure: Testing time-series and forecast.

Results: Lessons learned

Time-Series Type RNN Performance Classical Model Performance

Short Time-Series Not enough data to train. Symbolic Regression, HMMs
perform well.

Long Time-Series Able to optimize. Classical Model Performance
is Equivalent to RNN.

Multivariate Short Time-Series Not enough data.
While RNNs able to represent
any function, need a lot of
data.

Multi-varaite regression,
Symbolic regression,
Hierarchical forecasting
perform well.

Multivariate Long Time-Series RNN is able to model nonlinear
relationships among features.
Computationally efficient.
Automatic feature selection.

Computation efficiency may
not be optimal.
Feature selection challenging.

Results: Lessons learned

● Classical models are best for:
○ Short or unrelated time-series
○ Known state of world

● Neural Network is best for:
○ A lot of time-series
○ Long time-series
○ Hidden interactions
○ Explanation is not important

● Future work
○ Model debugging using uncertainty for special events.
○ Work towards a general forecasting machine

■ To be used as a building block in a larger forecasting model (e.g., similar to the
ImageNet model)

● See more
○ Eng blog
○ ICML paper under review

Results: Anomaly Detection

Rollout Post rollout

Narnia
Real-time rollout monitoring for
business metrics

F3
Seasonal Anomaly
detection

JainCP
Change point detection

MeRL
Model Selection /
Parameter tuning

P3
Event data store →
Root Cause tool

Root cause

We are pleased to introduce a Neural Network into Argos suite of models.

Uber
Neural
Network

Live on
Argos &
uMonitor

Acknowledgements

Jason Yosinksi, Uber AI Labs

Li Erran Li, ATC

Santhosh Shanmugam, IDS, Delphi

Eric McMillen, IDS, Delphi

Slawomir Smyl, IDS, Delphi

Calvin Worsnup, IDS, Delphi

Thank you

Proprietary and confidential © 2016 Uber Technologies, Inc. All rights reserved. No part of this document may be

reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any

information storage or retrieval systems, without permission in writing from Uber. This document is intended only for the

use of the individual or entity to whom it is addressed and contains information that is privileged, confidential or otherwise

exempt from disclosure under applicable law. All recipients of this document are notified that the information contained

herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate, or in any

way disclose this document or any of the enclosed information to any person other than employees of addressee to the

extent necessary for consultations with authorized personnel of Uber.

eng.uber.com
github.com/uber

