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My Perspective

• Machine Learning Perspective on Forecasting: accuracy and automation

• Not: Given specific problem and set of existing methods, how do we solve the problem best?

• But: Given a number of different forecasting problems, which methods should we have to address
them?
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Outline

• Examples of Forecasting Problems at Amazon

• Forecasting Methods & Systems developed in Berlin
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Forecasting Problems at Amazon I: Retail Demand

2016−01 2016−07 2017−01

Date

variable

actual

forecast

Weekly shipped units and forecast

• Problem: predict overall Amazon retail demand years into the future.

• Decision Problems: topology planning, market entry/segment analyses
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Forecasting Problems at Amazon II: AWS Compute Capacity

• Problem: predict AWS compute capacity demand

• Decision Problem: how many servers to order when and where
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Forecasting Problems at Amazon III: Staff Planning

• Problem: predict attendance rate of Distribution Centre staff

• Decision Problems: how to schedule staff and when to hire how much staff
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Forecasting Problems at Amazon IV: Retail Product Forecasting

• Problem: predict the demand for each product available on Amazon websites

• Decision Problems: how many units to order when, when to mark products down
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Forecasting Problems at Amazon V: Product Translations

• Problem: predict which products are going to sell in another country (cold start)
• Decision Problem: which products should be offered in other countries

Many more examples: streaming data applications, short-term compute capacity forecasts, etc.Tim Januschowski — Core ML Berlin, Amazon Amazon Confidential — 8/42



Taxonomy of Forecasting Problems: Dimensions

• number of time series/ratio of scientists per time series

• training of scientists: econometrics, statistics, machine learning, computer science

• forecast horizons: years to days

• time granularities: years, months, weeks, days

• aggregation granularity (for hierarchically organized time series)

• latency of forecast production/forecast computation frequency

• consumer of forecast/degree of automation/human interaction with forecast

• characteristics of time series

• forecasting methods: white vs black box (impose structure, parameter sharing, transparency)
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Taxonomy of Forecasting Problems: Forecasting Methods
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Taxonomy of Forecasting Problems: Strategic Forecasting

2016−01 2016−07 2017−01

Date

variable

actual

forecast

Weekly shipped units and forecast

• Example: Overall demand for retail products
on Amazon

• lots of econometricians for few time series

• forecast horizon: years, time granularity:
weekly at most

• runs irregularly or a few times per months

• high degree of interaction with forecast

• models which estimate uncertainty correctly,
allow to enforce structure, allow for careful
modelling of effects

• high counts, relatively smooth, trend breaks
possible, long history (in most cases)
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Taxonomy of Forecasting Problems: Operational Forecasting

• Example: Demand forecast for retail
products

• millions of time series per scientists
(machine learning & software development
engineers)

• forecast horizon: days, weeks, at most
months

• runs at least daily/on-demand

• hands-off approach

• models can be more black box as long as
they are robust

• low counts, bursty, short history and life
cycles, intermittent
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Taxonomy of Forecasting Problems: Tactical Forecasting

• Example: Ordering of compute racks for
AWS

• 100s-1000s of time series per scientist

• varying roles from business analysts to
machine learning to econometrics

• forecast horizon: months, granularity:
weekly at most

• runs irregularly or at most every week

• limited degree of interaction with forecast,
but some constraints on stability of forecast
over time and automated output checking

• models estimate uncertainty correctly, some
transfer of information across time series
necessary

• high counts, relatively smooth, trend breaks
possible, short history & life cycles possible,
burstiness
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Focus of this talk: Automatable Forecasts

• what forecasting methods do we need?

• what software/systems do we need?
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Forecasting Methods: General Setup

xt

zt

predictions
sample paths

• Predict the future behavior of a time series given its past

. . . , zt0−3, zt0−2, zt0−1 =⇒ P(zt0 , zt0+1, . . . zT )

• Make optimal decisions

best action = argmin
a

EP[cost(a, zt0 , zt0+1, . . . zT )]
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Forecasting Methods: The Classical Approach

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0
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The Classical Approach(es): Box-Jenkins, State-space Models, . . .

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

PROS

• De-facto standard; widely used

• Decomposition → decoupling

• White box: explicitly model-based

• Embarassingly parallel

CONS

• Requires lots manual work by
experts

• joint-learning of parameters across
decomposition layers is involved

• Cannot learn patterns across time
series

• Cannot handle cold-starts

• Model-based: all effects need to be
explicitly modelled

⇒ Suitable for strategical forecasts & in situations when there is a lot of history available per time
series
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Local Methods
Amazon data typical violates Gaussianity assumptions:
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A Typical Time Series in Large Inventories

Figure: Left: Marginal histogram of demand values {zit} for a typical dataset. Right: A typical time series in
large inventories.
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Extensions to ETS

Incorporate non-Gaussian likelihoods, e.g. for k ≥ 2

P(z |{y (k)}) = Ppoi(z − 2|y (2))I{z≥2}

1∏
k=0

σ(z̃ky
(k))I{z≥k} , z̃k := I{z=k} − I{z>k}.

with latent process:

yt = a>t l t−1 + bt , bt = w>x t , l t = F l t−1 + g tεt , εt ∼ N(0, 1).

• bt is the GLM deterministic linear function, l t is a latent state.

• a single Gaussian innovation variable εt per time step.

• This innovation state space model (ISSM) is defined by at , g t and F , as well as the prior
l 0 ∼ P(l 0).

• Innovation vector g t comes in terms of parameters to be learned (the innovation strengths), while
F and at are fixed

• initial state l 0 has to be specified (via a Gaussian prior distribution P(l 0), whose parameters
(means, standard deviation) are learned from data)

Tim Januschowski — Core ML Berlin, Amazon Amazon Confidential — 19/42



Out of Stock Handling
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Demand forecast for an item which is partially out of stock. Each panel: Training range left (green),
prediction range right (red), true targets black. In color: Median, P10 to P90. Bottom: Out of stock
(≥ 80% of day) marked in red. Left: Out of stock signal ignored. Demand forecast drops to zero,
strong underbias in prediction range. Right: Out of stock regions treated as missing observations.
Demand becomes uncertain in out of stock region. No underbias in prediction range.
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Modeling Seasonality Patterns

Modeling hourly seasonality via features (left panel) versus latent state (right panel).
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Local vs. Global Models
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Deep Learning for Forecasting

z3z2z1

θ • Deep Learning: Compose complex (differentiable) black-box functions from
simpler building blocks and learn them end-to-end.

• Recall our goal:

. . . , zt0−3, zt0−2, zt0−1 =⇒ Pθ(zt0 , zt0+1, . . . zT )

• Directly parameterize Pθ with a black-box function f (·), learned using a deep
network:

θ = f (z0, z1, . . . , zt0−1)

• For example,

Pθ(zt0 , zt0+1, . . . zT ) =

T−t0−1∏
i=0

N (zt0+i |µi (θ), σi (θ))
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Deep Learning for Forecasting
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• Input:
• time series past values z1, z2, . . . , zt0−1
• possibly some features x1, x2, . . . , xT

• Output: (estimated) joint distribution Pθ(zt0 , zt0+1, . . . , zT )

• Trained by maximizing likelihood on past windows
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From Feed-Forward to Recurrent Networks

Pθ(zt0 , . . . , zT )

z0 · · · zt0−1

θ

Feed-forward models can already work well, but have a
number of disadvantages:

• Outputs not correlated across time

• Models tend to be larger than comparable recurrent
ones; need more data to train

• Fixed-length conditioning and prediction ranges
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From Feed-Forward to Recurrent Networks

zt−2, xt−1

ht−1

`(zt−1|θt−1)

z̃t−1

zt−1, xt

ht

`(zt |θt)

z̃t

zt , xt+1

ht+1

`(zt+1|θt+1)

z̃t+1

Autoregressive Recurrent Networks

zt ∼ `(zt |θt)

θt = θ(ht)

ht = ψ (ht−1, zt−1, xt)

• The recurrent network ψ(·) can be
implemented e.g. using stacks of LSTM cells.
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DeepAR - Prediction
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• target zt is unobserved after the forecast time
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DeepAR - prediction

zt−2, xt−1

ht−1

`(zt−1|yt−1)

z̃t−1

zt−1, xt

ht

`(zt |yt)

z̃t

zt , xt+1

ht+1

`(zt+1|yt+1)

z̃t+1

target, features

network

likelihood

samples

z̃ ∼ `(·|y)

• zt target, xt features, ht stack of several LSTM

• `(zt |yt) likelihood: Gaussian, negative binomial

• prediction: use sample z̃ ∼ `(·|y) instead of true target for unknown (future) values
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DeepAR - Probabilistic Prediction
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• now we have a generative model!

• the joint distribution is represented with sample paths

• one can calculate confidence intervals, marginal distributions, ...
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Input scaling - what could go wrong

log ||z|| = log number of sales
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• Learning patterns across time series is
difficult if their amplitudes differ

• In practice, mean(zt) often follows a
power-law

• Scale-free ⇒ no good bucket separation!

• Occurs frequently in real data due to
rich-get-richer phenomena

Tim Januschowski — Core ML Berlin, Amazon Amazon Confidential — 30/42



Handling different Amplitudes

log ||z|| = log number of sales
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• Scale the input and output of the neural
network by item amplitude

• Weighted sampling to counter-balance
power-law behaviour

• Crucial to get good accuracy across all
amplitudes
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Some Empirical Results

• Dataset: 500K weekly time series of sales of US Softlines products

• Baseline: Innovation State Space Model (Seeger et al., NIPS16)

• On average 15% improvement for P50QL/P90QL (over 8 different time intervals)

• < 10 features; little hyper-parameter tuning

• Training/predicting/evaluating 500K time-series takes less than 10 hours on a single AWS
p2.xlarge instance (1 GPU & 4 CPU)
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Some Real-World Examples
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Deep Learning in Forecasting: Conclusion and Outlook
• Deep Learning methodology applied to

forecasting yields flexible, accurate, and
scalable forecasting systems

• Models can learn complex temporal patterns
across time series

• “Model-free” black-box approaches trained
end-to-end can replace complex
model-based forecasting systems

• Deep Learning tool boxes offer flexible and
efficient ML programming environments (we
use MXNet)

• Example (i): use custom loss function
• Example (ii): we can train on millions of

time series

Future Work

• how to make our methods more data
efficient?

• how to impose structure?

• how to explain results?
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Forecasting Systems developed by Core ML Berlin: Constraints

• Reproducible experiments

• Extensability

• Reusability

• Scalability

• Integration into Amazon infrastructure for data and Machine Learning infrastructure

Main components
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Data
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Forecasting Methods
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Getting into touch with us

• visiting positions across academic seniorities (starting from students)

• research grants of varying scales, e.g., http://ara.amazon-ml.com/

• AWS Grants.

• academic engagement events

• data sets

• and more

⇒ contact me for more information.
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Thank you!


