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Unobserved Components Model

� Response Time Series = Superposition of components such as
Trend, Seasons, Cycles, and Regression effects

� Each component in the model captures some important
feature of the series dynamics.

� Components in the model have their own probabilistic models.

� The probabilistic component models include meaningful
deterministic patterns as special cases.
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Melanoma Incidences in Connecticut
The age-adjusted numbers of melanoma incidences per 100,000 for
the years of 1936 to 1972 (from Connecticut Tumor Registry):
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Melanoma Incidences = Trend + Cycle + Irregular
Estimated trend µt = 0.75 + 0.11t Estimated cycle component

Estimated irregular component Residual diagnostics
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How Did the Components Add-Up
The estimated linear trend Trend + Cycle
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More Examples of Time Series
Monthly traffic injuries in Italy Region-wise yearly per-capita cigarette sales

Hourly electricity load at 10 am during 2007-2008 in Italy Daily spot price (lspot) and future contract (lfut) for Brent crude
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Unobserved Components Model

Yt = Xtβββ +µµµt +ψψψt + . . .+ εεεt

� Univariate or multivariate response at time t: Yt

� Effect of regression variables: Xtβββ

� Time varying mean (level/trend): µµµt

� Periodic/Seasonal component: ψψψt

� Noise component: εεεt

� A component could be turned on/off, or scaled, based on an
external input, e.g., the trend could be scaled as bt µµµt

� All of these components need not be present in a UCM

� Many more types of components are often needed/used
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Local Linear Trend (LLT)

µµµt = µµµt−1 + ηηηt−1 + νννt Level equation

ηηηt = ηηηt−1 + ξξξt Slope equation

� νννt ∼ N(0,Σν) are i.i.d. disturbances in the level equation

� ξξξt ∼ N(0,Σξ) are i.i.d. disturbances in the slope equation

� The initial level µµµ1 and the initial slope ηηη1 are (usually)
unknown vectors

LLT in a vector recursion form:[
µµµt
ηηηt

]
=

[
I I
0 I

] [
µµµt−1

ηηηt−1

]
+

[
νννt
ξξξt

]
Even the simple LLT + Noise model, Yt = µµµt + εεεt, turns out to be
a very versatile model.
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Some Special Cases of LLT

µµµt = µµµt−1 + ηηηt−1 + νννt Level equation

ηηηt = ηηηt−1 + ξξξt Slope equation

� Random walk µµµt = µµµt−1 + νννt (initial slope ηηη1 and the slope
disturbance covariance Σξ are zero).

� Random walk with drift µµµt = µµµt−1 + ηηη1 + νννt (the slope
disturbance covariance Σξ is zero).

� Integrated random walk µµµt = µµµt−1 + ηηηt−1; ηηηt = ηηηt−1 + ξξξt
(the level disturbance covariance Σν is zero).

� Deterministic time trend µµµt = µµµ1 + t ηηη1 (the level disturbance
covariance Σν and the slope disturbance covariance Σξ are
zero).

� Time invariant mean µµµt = µµµ1 (ηηη1, Σξ, and Σν are all zero).
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Simulated Univariate Trends
Constant Trend µt = 5 Random Walk

Linear trend µt = 5− 0.1t Local linear trend
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A Recursive Formula For Cycle

For t = 1, 2, . . ., and 0 < ω < π,

ψt = a cos(ωt) + b sin(ωt)

is a cycle with period 2π/ω, amplitude
√
a2 + b2, and phase

arctan (b/a). That is

ψt = γ cos(ωt − φ), γ =
√

a2 + b2, φ = arctan (b/a)

You can verify that ψt satisfies the recursion[
ψt

ψ∗t

]
=

[
cosω sinω
− sinω cosω

] [
ψt−1

ψ∗t−1

]
when ψ0 = a and ψ∗0 = b. Moreover, ψ2

t + ψ∗2t = a2 + b2, ∀t.
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A Recursive Formula For Stochastic Cycle

A stochastic generalization of the cycle can be obtained by adding
random noise to the cycle recursion and by introducing a damping
factor, ρ, for additional modeling flexibility[

ψt

ψ∗t

]
= ρ

[
cosω sinω
− sinω cosω

] [
ψt−1

ψ∗t−1

]
+

[
νt
ν∗t

]
where 0 ≤ ρ ≤ 1, and the disturbances νt and ν∗t are independent
N(0, σ2

ν) variables.
The resulting random sequence ψt is pseudo-cyclical with
time-varying amplitude, phase, and frequency (period).
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Simulated Cycles
Undamped deterministic cycle Damped deterministic cycle

Undamped stochastic cycle Damped stochastic cycle
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Stochastic Cycle: Review

ψψψt = ρtRt
ωψψψ0 +

t∑
j=0

ρt−jRt−j
ω ννν j , Rω =

[
cosω sinω
− sinω cosω

]

� If ρ < 1, the effect of initial condition and the shocks in the
distant past becomes negligible. ψt has a stationary
distribution with mean zero and variance σ2

ν/(1− ρ2).

� If ρ = 1, the effect of shocks persists and ψt is non-stationary.

� Cycles are very useful as building blocks for constructing more
complex periodic patterns. Periodic patterns of almost any
complexity can be created by superimposing cycles of different
periods and amplitudes. In particular, the seasonal patterns,
which are general periodic patterns with integer periods, can
be constructed as sums of cycles.
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Modeling Seasons

� The seasonal fluctuations are a common source of variation in
the time-series data

� The seasonal effects are regarded as corrections to the general
trend of the series due to seasonal variations, and these effects
sum to zero when summed over the full season cycle

� Therefore, a (deterministic) seasonal component γt is a
periodic pattern of an integer period s such that the sum

s−1∑
i=0

γt−i = 0, ∀t
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Two Representations of Seasonal Pattern (Period = s)

� As a list of s numbers that sum to zero

� As a sum of [s/2] deterministic, undamped cycles, called
harmonics, of periods s, s/2, s/3, ...

� Here [s/2] = s/2 if s is even and [s/2] = (s-1)/2 if s is odd.
� Example: For s = 12, the seasonal pattern can always be

written as a sum of six cycles with periods 12, 6, 4, 3, 2.4, and
2.
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Stochastic Seasonal: Dummy Type

s−1∑
i=0

γt−i = νt , νt ∼ N(0, σ2
ν)

� The periodic pattern sums to zero in the mean.

� The disturbance variance controls the variation in the seasons.
If it is zero the model reduces to a deterministic seasonal,
equivalent to having (s -1) dummy regressors.
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Stochastic Seasonal: Trigonometric Type

γt =

[s/2 ]∑
j=1

ψj ,t

where the stochastic cycles ψj ,t have periods pj = s/j .

� Here, all the cycles are un-damped, and usually have a
common disturbance variance σ2

ν .

� You can create custom seasonal patterns by dropping some of
the harmonics and by judiciously choosing their disturbance
variances.

� If all the disturbance variances are zero, the pattern reduces
to a deterministic seasonal.
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Simulated Seasons with Period = 12
Deterministic Season with All Harmonics Deterministic Season with First Two Harmonics

Stochastic Season with All Harmonics Stochastic Season with First Two Harmonics
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UCMs and SSMs

� All the unobserved component models (UCMs) discussed in
this workshop can also be formulated as (linear) state space
models (SSMs).

� An SSM is a dynamic version of the linear regression model
where the regression vector evolves with time in a Markovian
fashion.

� The SSM formulation of a UCM enables the use of the
famous Kalman filter/smoother (KFS) algorithm for UCM
based data analysis.
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State Space Model and Notation

Yt = Ztαααt + Xtβββ + εεεt Observation equation

αααt+1 = Ttαααt + Wt+1γγγ + ζζζt+1 State transition equation

ααα1 = A1δδδ + W1γγγ + ζζζ1 Initial condition

� Response values y and predictor vectors x = (x1, x2, . . . , xk)
are recorded at t = 1, 2, · · · , n.

� Number of measurements at t = p, say. Yt and Xt denote the
vector and matrix formed by vertically stacking y values and x
vectors at t. Dim(Yt) = p, and Dim(Xt) = p × k . Similarly,
Wt contains regressor values used in the state equation.

� SSM form is not unique; many equivalent alternate forms are
possible.
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Latent Quantities in the Model

Yt = Ztαααt + Xtβββ + εεεt Observation equation

αααt+1 = Ttαααt + Wt+1γγγ + ηηηt+1 State transition equation

ααα1 = A1δδδ + W1γγγ + ηηη1 Initial condition

Vector Dim Description

αααt m State vectors
βββ k Regression vector in the observation equation
γγγ g Regression vector in the state equation
δδδ d Diffuse part of ααα1

εεεt p Observation noise (zero-mean, Gaussian)
ηηηt m State noise (zero-mean, Gaussian)
� Noise/shock/disturbance variables εεεt and ηηηt are mutually

independent white noise sequences (possibly with time-varying
covariances).
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Model System Matrices

Yt = Ztαααt + Xtβββ + εεεt Observation equation

αααt+1 = Ttαααt + Wt+1γγγ + ηηηt+1 State transition equation

ααα1 = A1δδδ + W1γγγ + ηηη1 Initial condition

Matrix Dim Description

Zt p ×m Design matrix for αααt

Tt m ×m State transition matrix
A1 m × d Diffuse condition specifier made up of 0’s and 1’s
Cov(εεεt) p × p Often diagonal
Cov(ηηηt) m ×m Often nondiagonal

� Missing elements are not allowed in any system matrix.
However, the system matrices can depend on some unknown
parameter vector θθθ (which must be estimated first for the
model to be practically useful). 23 / 61
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SSM Form of the Melanoma Incidences UCM

Suppose y denotes the incidences and µt , ψt , and εt are the local
linear trend, stochastic cycle, and random noise, respectively.

yt = µt + ψt + εt

This model can be expressed as

yt = Zαααt + εt Observation equation

αααt+1 = Tαααt + ζζζt+1 State transition equation

ααα1 = A1δδδ + ζζζ1 Initial condition

where αααt = [µt ηt ψt ψ
∗
t ], Z = [1 0 1 0], ζζζt = [νt ξt νt ν

∗
t ],

δδδ = [µ1 η1], A1 = [1 0; 0 1; 0 0; 0 0],
ζζζ1 ∼ N(0, [0, 0, σ2

ν/(1− ρ2), σ2
ν/(1− ρ2)]), and T =

[1 1 0 0; 0 1 0 0; 0 0 ρ cos(ω) ρ sin(ω); 0 0 − ρ sin(ω) ρ cos(ω)].
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Informal Description of the Kalman Filter (KF)

� Assume that the model parameter vector θθθ is known.

� KF recursively computes the one-step-ahead predictions of the
response values and the latent quantities.

� Let DATAt denote all the data up to time t.

� KF recursively computes:
Ŷt = E(Yt |DATAt−1) Ft = COV(E(Yt |DATAt−1))
α̂ααt = E(αααt |DATAt−1) Pt = COV(E(αααt |DATAt−1))

β̂ββt = E(βββ|DATAt−1) Gt = COV(E(βββ|DATAt−1))
· · · · · ·

� For latent noise vectors, the one-step-ahead predictions are
trivial:

� E(εεεt |DATAt−1) = 0 and COV(E(εεεt |DATAt−1)) = Cov(εεεt)
� E(ηηηt |DATAt−1) = 0 and COV(E(ηηηt |DATAt−1)) = Cov(ηηηt)
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Kalman Smoother (KS)

� KS computes the smoothed (full-sample) predictions of the
missing response values and the latent quantities.

� It is a backward recursive algorithm that uses the
one-step-ahead forecasts generated during the KF phase.

� KS computes:
Ỹt = E(Yt |DATAn) F̃t = COV(E(Yt |DATAn)), for missing Yt

α̃ααt = E(αααt |DATAn) P̃t = COV(E(αααt |DATAn))

β̃ββ = E(βββ|DATAn) G̃ = COV(E(βββ|DATAn))
· · · · · · · · · · · ·
η̃ηηt = E(ηηηt |DATAn) H̃t = COV(E(ηηηt |DATAn))

� KS also yields other useful quantities, such as delete-one cross
validation measures and structural break statistics.
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UC Modeling: General Steps

Phase 1: Choose a good UCM for the observed data.

1. Propose a tentative UCM.

2. If the specified UCM has unknown parameters, estimate them.

3. Check the model adequacy and complexity (residual analysis,
other diagnostics, ...).

4. If the model is inadequate or overly complex, modify it (back
to the beginning).

Phase 2: Deploy the chosen UCM

� Use the estimated regression vectors for decision making

� Interpolate/extrapolate response values, latent components, ...

� Obtain a seasonal decomposition of the data sequence

� ...

KFS is the main computational tool for both the phases
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KFS for Model Fitting and Diagnostics (Phase 1)

� Start with a proposed UCM, possibly with unknown parameter
vector θθθ.

� KF yields one-step-ahead residuals and the likelihood of the
data (at a specific trial value of θθθ):

� Rt = (Yt − Ŷt) ∼ N(0,Ft) is an uncorrelated sequence.
� −2logL(θθθ,DATAn) =

∑n
t=1 log(Det(Ft)) + R

′

tF
−1
t Rt + · · ·

� Obtain the ML estimate of θθθ by maximizing logL(θθθ,DATAn)
with respect to θθθ.

� Check the fitted model for adequacy and compare with other
fitted models:

� Residual analysis, structural break analysis, ...
� Compare models by using information criteria.
� KS yields delete-one cross validation measures, which can also

be used for model comparison.
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KFS for the Series and Component
Interpolation/Extrapolation, ... (Phase 2)

Once a suitable model is decided, you can use the KFS again for

� Forecasting and interpolating the response series

� Estimating and forecasting the unobserved components and
their linear combinations

� Estimating the sizes and types of structural breaks

� ...
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State Space Modeling: Computational Cost

� n = number of distinct time points, m = Dim(αtαtαt)

� Cost of single KFS run:
� Number of multiplications ∼ nm3

� Memory requirement of a KF run ∼ m2

� Memory requirement of a KS run ∼ nm2 (output of a full KF
run must be stored)

� ML estimation of parameter vector (θθθ) involves several runs of
KFS (KF is used for likelihood computation, and KS is useful
for the likelihood gradient computation).

� Computational/memory costs increase rapidly with m (only
linearly with n).

� In some situations, the computational efficiency can be
improved by exploiting the sparsity of the system matrices.
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UCM and SSM procedures in SAS/ETSr

� PROC UCM for modeling univariate response variables
� rich class of UCMs can be easily specified
� a variety of diagnostics–tabular and graphical
� series and component forecasts, and smoothed estimates

� PROC SSM for modeling with general linear SSMs
� provides a flexible language for specifying very general linear

SSMs
� supports univariate and multivariate time series, panels of

univariate and multivariate time series, and longitudinal data
� keyword support for easy specification of commonly needed

univariate and multivariate UCMs
� ...
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Where to Find Additional Info

� Books:
� Pelagatti, M. M. (2016). Time Series Modeling with

Unobserved Components. CRC Press.
� Harvey, A. C. (1989). Forecasting, Structural Time Series

Models, and the Kalman Filter. Cambridge: Cambridge
University Press.

� Durbin, J., and Koopman, S. J. (2012). Time Series Analysis
by State Space Methods. 2nd Ed. Oxford: Oxford University
Press.

� SAS/ETSr Procedure Documentation:
� PROC UCM (for univariate UCMs):
http://support.sas.com/documentation/cdl/en/etsug/

68148/HTML/default/viewer.htm#etsug_ucm_toc.htm
� PROC SSM (for multivariate and other custom UCMs):
http://support.sas.com/documentation/cdl/en/etsug/

68148/HTML/default/viewer.htm#etsug_ssm_toc.htm
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Modeling Motor Vehicle Injuries in Italy
� Based on Case Study # 1 from Pelagatti (2016)
� Monthly data on number of injuries due to road accidents
� A new traffic monitoring system introduced in July 2003
� Question: How effective is the new monitoring system?
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Injuries = IRW Trend + Seasonal + Irregular
Check for breaks in the level component:

proc ucm data=spain.italy;

id date interval=month;

level variance=0 noest checkbreak;

slope;

season length=12 type=trig;

irregular;

model injured;

estimate plot=panel;

forecast plot=decomp;

run;

Outlier Summary

Standard

Obs date Break Type Estimate Error Chi-Square DF Pr > ChiSq

31 JUL2003 Level -3856.27331 695.06886 30.78 1 <.0001

30 JUN2003 Level -2757.10253 695.15074 15.73 1 <.0001
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Injuries = IRW + Level Adjustment + Seasonal + Irregular

� Point Jul03 = (date = July 03)

� Shift Jul03 = (date >= July 03)

� Level Adjustment = β Shift Jul03 + Transfer Function

� Transfer Function λt = γ Point Jul03
1−κB , where B denotes the lag

operator
λt = κλt−1 + γ Point Jul03

� λt is assumed to be zero before Jul 03

� The level adjustment parameters: β, γ, κ

� PROC SSM is used to fit this model
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Estimated Components
λt = 0.564 λt−1 − 2735 Point Jul03 level adjustment = λt − 2531 Shift Jul03

Seasonal Component Irregular Component
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Series Decomposition
IRW Trend IRW Trend + level adjustment

IRW Trend + level adjustment + Seasonal Comparing the levels from the two models
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Modeling a Panel of 46 Time Series

� Yearly per capita cigarette sales for 46 states in the USA
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Panel of Time Series

Over a span of 30 years (1963 - 1992), a study measured four
variables in 46 states in USA:

� The response variable, lsales, denotes per capita cigarette
sales in the natural log scale

� The regression variables (all in the natural log scale) denote:
� price per pack of cigarettes (lprice)
� per capita disposable income (lndi)
� minimum price in adjoining regions per pack of cigarettes

(lpimin)

Question: How do the regression variables lprice, lndi , and lpimin
affect the response lsales? In particular, is the effect of lpimin,
called the ”boot-legging” effect, significant?
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Panel Study: Proposed Model

lsales i ,t = µµµi ,t + lprice βββ1 + lndi βββ2 + lpimin βββ3 + εεεi ,t

� For 1 ≤ i ≤ 46, µµµi ,t denote the region-specific IRW trends

� As a simplifying assumption, the disturbance variance in the
slope equation is taken to be the same for all the 46 regions

� (lprice βββ1 + lndi βββ2 + lpimin βββ3) denotes the contribution of
the regression variables

� εεεi ,t are independent, Gaussian noise values

The regional trends µµµi ,t account for the differences between the
regions because of unrecorded factors such as demographic
changes over time, results of anti-smoking campaigns, and so on.
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Panel Study Regression Estimates

Regression Parameter Estimates

Response Regression Standard

Variable Variable Estimate Error t Value Pr > |t|

lsales lprice -0.3480 0.0232 -15.01 <.0001

lsales lndi 0.1425 0.0344 4.15 <.0001

lsales lpimin 0.0619 0.0269 2.30 0.0214

� All three regression variables have statistically significant effects
� The signs of regression coefficients are reasonable:

� As the cigarette price increases, the sales decrease
� As the disposable income increases, the sales increase
� As the prices in the adjoining regions increase, the sales (within the state) increase
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Panel Study: Region-Wise Model Fit

� Trend + Regression Effects =

µµµi ,t + lprice βββ1 + lndi βββ2 + lpimin βββ3
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Panel Study: Region-Wise Trend Estimates (µµµi ,t)

For more information see the ”Getting Started” section in the SSM
documentation.
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Hourly Electricity Load in Italy

� Based on Case Study #3 in Pelagatti (2016)

� Hourly load history available for nine years: 01 Jan 2005 to 31
Dec 2014

� Such data exhibit several different types of seasonal behavior
at different time scales:

� Hour of the day pattern (season length 24 in hours)
� Hour of the week pattern (season length 168 in hours)
� Day of the week pattern (season length 7 in days)
� Day of the year pattern (approx season length 365 in days)

� Load on holidays is usually different
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Hourly Load During 10:00 am and 10:00 pm
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Model for Electricity Load
Many ways to model these data. A modeling strategy that works
reasonably well is as follows:

� Model the load in each hour of the day separately (i.e., 24
separate daily time series). The model for each series:

loadt = µt + Xβ + γ7
t + γ365

t + εt

where

� µt is a random walk trend

� Xβ is the correction for special days (mainly holidays)

� γ7
t is a trigonometric seasonal with season length = 7.

Different harmonics use different disturbance variances.

� γ365
t is a trigonometric seasonal with season length = 365.

Only the first 16 harmonics used.

� εt is a Gaussian white noise
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PROC UCM Code

proc ucm data=load;

by hour;

id date interval=day;

irregular;

level;

cycle period=7 rho=1 noest=(period rho);

cycle period=3.5 rho=1 noest=(period rho);

cycle period=2.3333 rho=1 noest=(period rho);

season length=365 type=trig keeph=1 to 16 by 1;

model eload = dec24 dec25 dec26 jan1 jan6 aug15

easterSun easterMon easterTue holidays holySat

easterSat holySun bridgeDay endYear;

estimate back=14 plot=panel;

forecast back=14 lead=14 outfor=loadfor1;

run;

Specifies
loadt = µt + Xβ + γ7

t + γ365
t + εt

The program takes about 15 minutes to analyze all 24 time series.
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Estimated Components for 10:00 am
Random walk trend γ7

t , the trigonometric seasonal with season length = 7

γ365
t , the trigonometric seasonal with season length = 365 Irregular Component
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Residual Diagnostics and Forecasts for 10:00 am
Residual Diagnostics Forecasts for the last 14 days
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Adding Temperature Effect in the Load Modeling

� The electricity load, particularly in the residential areas, is
quite sensitive to the outside temperature

� The relationship between temp and load is usually nonlinear:
the load is higher for lower and upper temp ranges

� If good temp forecasts are available, the earlier model can be
improved by adding a nonlinear temp effect, λtemp

t , as follows

loadt = µt + Xβ + γ7
t + γ365

t + λtemp
t + εt
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PROC UCM Code with Temp Effect

proc ucm data=tempload;

by hour;

id date interval=day;

irregular;

level;

season length=7 type=trig;

season length=365 type=trig keeph=1 to 16 by 1;

splinereg temp degree=3 nknots=10;

model eload = dec24 dec25 dec26 jan1 jan6 aug15

easterSun easterMon easterTue holidays holySat

easterSat holySun bridgeDay endYear;

estimate back=14 plot=panel;

forecast back=14 lead=14 outfor=loadfor1;

run;

Specifies
loadt = µt + Xβ + γ7

t + γ365
t + λtemp

t + εt

with λtemp
t as a cubic spline with ten ”equally spaced” knots in the observed

temperature range
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Machine Learning Versus UCMs for Electricity Market Data

Lisi and Pelagatti (2015) analyzed daily electricity load and price
data by using UCMs and two popular machine learning techniques
(support vector machine regression and random forest regression).
General conclusions from their study:

� Loads are very regular and both UCMs and ML models do a
good job.

� Prices are more messy and the UCMs do better than their ML
counterparts.

� UCMs are more interpret-able and easier to ”tune”.

� Their presentation is available at
https://www.researchgate.net/publication/

301547386_Component_estimation_for_electricity_

market_data_deterministic_or_stochastic
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Common Trends in Multivariate RW

Consider an N-dimensional random walk µµµt :

µµµt = µµµt−1 + νννt , νννt ∼ N(0,Σν)

Suppose rank(Σν) = k , 1 ≤ k < N. Then,

µµµt = ΘΘΘµ µµµ
†
t + θθθµ

µµµ†t = µµµ†t−1 + ννν†t , ννν†t ∼ N(0,Σ†ν)

where dim(µµµ†t) = k , ΘΘΘµ =
( Ik

ΘΘΘ(N−k)×k

)
, and θθθµ =

( 0k
θ(N−k)×1

)
. That is,

� The N-dimensional random walk µµµt is driven by a
k-dimensional random walk µµµ†t

� ΘΘΘ is called the loading matrix

� The elements of ΘΘΘ, θ, and Σ†ν are the new parameters
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Trivariate RW with Common Trends (N = 3, k = 2)

Suppose µµµ†t is a 2-dimensional random walk

µµµ†t = µµµ†t−1 + ννν†t , ννν†t ∼ N(0,Σ†ν)

Then a three dimensional random walk with two common trends
has the following form:

µµµ1t = µµµ†1t

µµµ2t = µµµ†2t

µµµ3t = θ0 + θ1 µµµ
†
1t + θ2 µµµ

†
2t

The constants θ0, θ1, θ2, and the elements of Σ†ν are the model
parameters. θ1 and θ2 are called factor loadings.
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Trivariate RW with Common Trends: An Example

� Example 7.1 from Pelagatti (2016)

� pt denotes the spot price of Brent crude oil (in the log scale)

� ft denotes the future price of Brent crude oil (in the log scale)

� rt denotes the risk free continuously compounded annual
interest rate

According to the econometric considerations

ft ∼ pt + δrt

where δ denotes the time to delivery (in years). This suggests that
the three-dimensional series yt = (pt rt ft) might be driven by a
two dimensional mechanism.
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Model for yt = (pt rt ft)

Suppose yt = µµµt +φφφt where µµµt is a three dimensional random
walk with two common trends, and φφφt is a three dimensional
AR(1) process with diagonal coefficient matrix D. In effect,

pt = µµµ†1t +φφφ1t

rt = µµµ†2t +φφφ2t

ft = θ0 + θ1 µµµ
†
1t + θ2 µµµ

†
2t +φφφ3t

where

µµµ†t = µµµ†t−1 + ννν†t , ννν†t ∼ N(0,Σ†ν)

φφφt = D φφφt−1 + ζζζt , ζζζt ∼ N(0,Σζ), rank(Σζ) = 2
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PROC SSM Code

proc ssm data=brent; * opt(tech=activeset);

id date interval=weekday;

parms load1 load2 / lower=0;

one = 1.0;

state rw(2) type=rw cov(g);

comp rw1 = rw[1];

comp rw2 = rw[2];

comp rw3 = (load1 load2)*rw;

state ar(3) type=VARMA(p(d)=1) cov(rank=2);

comp ar1 = ar[1];

comp ar2 = ar[2];

comp ar3 = ar[3];

model lspot = rw1 ar1;

model intrate = rw2 ar2;

model lfut = one rw3 ar3;

run;
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Analysis Results
Log(spot) values and µµµ†1t Log(future) values and 0.29 + 0.93676 µµµ†1t + 0.00696 µµµ†2t

Interest rate values and µµµ†2t Three AR(1) processes φφφ1t , φφφ2t , φφφ3t
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Summary

� UCMs are structural models:
� Prior knowledge (or some data exploration) suggests the form

of the initial model
� A variety of models available to capture different types of

commonly needed structural patterns such as trend, cycles, etc.
� The analysis provides the in-sample and out-of-sample

estimates of these unobserved structural patterns. Such
estimates are important for a variety of purposes: seasonal
adjustment, determining the relative sizes of different effects,
...

� Refinement of the initial model is based on standard statistical
techniques: residual diagnostics, information criteria, structural
break analysis, etc
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Summary Continued ...

� UCMs are structural models (continued):
� In addition to the interpolation and extrapolation (forecasting)

of the response values, the analysis also provides similar
estimates for the model components

� UCMs have state space forms
� Model parameters are estimated by optimizing the likelihood,

which is computed by using the Kalman filter
� interpolation and extrapolation of the response values and the

model components is done by using the Kalman filter and
smoother
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Additional References

� Harvey, A.C. and Trimbur, T. (2003). General model-based
filters for extracting cycles and trends in economic time series.
The Review of Economics and Statistics 85(2), 244-55.

� Runstler, G. (2004) Modelling phase shifts among stochastic
cycles, Econometrics Journal (2004), volume 7, pp. 232-248.

� White papers/workshop slides by Rajesh Selukar:
� State Space Modeling of Sequence Data
https://forecasters.org/wp-content/uploads/

gravity_forms/7-621289a708af3e7af65a7cd487aee6eb/

2015/07/selukar_rajesh_isf2015.pdf
� Functional Modeling of Longitudinal Data with the SSM

Procedure: http://support.sas.com/resources/papers/

proceedings15/SAS1580-2015.pdf
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