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We all know we should include important drivers in our forecasts
The classic airline passengers dataset & forecasts
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We all know we should include important drivers in our forecasts

Today’s question:

What about unimportant drivers?

(Or: less obviously important ones?)
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Overview

� Misspecified models can yield forecasts that are badly wrong (nothing new here)

� Even correct models can yield bad forecasts (also not new)

� However, a correct model can yield systematically worse forecasts than a simpler incorrect model!

� We illustrate & investigate the problem using a simple simulation (could be run in Microsoft Excel)

� Takeaways:

– Don’t insist on modeling weak signals

– Use hierarchical models or regularization

� This is adapted from and expands on an article in Foresight (Winter 2016, #40: 20-26)
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Simulated example
Data

� 10,000 “monthly” time series

� Each with 12 historical and 12 holdout observations

� Simulation:
�� = �� + �� + �

� Intercept:
�� = 140

� Seasonal effects:

�Jan = 0, �Feb = 5,

�Mar = 9, �Apr = 12,

�May = 14, �Jun = 16,

�Jul = 16, �Aug = 14,

�Sep = 12, �Oct = 9,

�Nov = 5, �Dec = 0

� Noise term:
� ∼ ((0,30+)
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Simulated example
The correct model

� Assume that the seasonal shape �� is known, but 
not the intercept or the seasonal contribution

� Model:

�� = -� + -.�� + ��

� This is the correct model!

� Run a separate linear regression for each time 
series to estimate -� and -. – and forecast
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Simulated example
Models (C) and (S)

� Assume that the seasonal shape �� is known, but 
not the intercept or the seasonal contribution

� Models:

�� = -� + -.�� + �� (C)

�� = -� + �� (S)

� (C) for “correct” (or “complex”) and (S) for “simple”

� Again, run linear regressions for each series
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Simulated example
Models (C) and (S) – and their forecasts

� How do forecasts perform?

� (Future data are simulated using the same data-
generating process!)
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Simulated example
Mean Squared Error in the holdout period

� The correct model (C) never has lower errors than the 
simple model (S)!

� In particular, model (C) is worse in January, June, July, 
December

� What’s going on?
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Simulated example
Expected Squared Error (ESE) decomposition

� Under certain technical conditions (which are met here),

/0/ =	Bias+ + Var(Fcst) + Var(Actuals)

� Let’s disregard the variance of the actuals

� The variance of the forecast shows the pattern we have seen 
in the MSE – this obviously drives the error
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Simulated example
Where does the variance in the forecasts come from?

� Let’s look at the distributions of parameter estimates 
across our 10,000 series

� Parameter estimates in the correct model are correct 
on average: they are unbiased (this is not surprising)

� Parameter estimates in the simple model are badly 
biased (this is not surprising, either)

� Key observation: estimates for both parameters in the 
correct model are more variable!



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 12Public

Simulated example
Mean Squared Error in-sample (left) and out-of-sample (right)

� The correct model 
is better in-
sample, but worse 
out-of-sample

� In-sample fit is not 
a reliable guide to 
out-of-sample 
forecasting 
accuracy!
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Let’s stop and look back at what we have learned

� If signals are present but weak, fitting them may yield worse 
forecasts than not fitting them. Examples:

– Day-of-week patterns for slow movers

– Lifecycle patterns or seasonality for slow movers

– Cannibalization on SKU × store level

– Weather impact on SKU × store level

� Why? Complex models exhibit less bias but more variance!

� Good in-sample fit does not imply good forecasting accuracy!

Bias2Variance

Bias2+Variance 
= Error

The Bias-Variance Trade-off 

(Conceptual)
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What to do?

� We know that there is seasonality in our data – we simulated it, and it’s visible on aggregate level

� How to include seasonality in our models without variance killing us?

� Hierarchical models can “transfer” information between different levels

� Regularization increases bias & reduces variance and may yield more accurate forecasts

– Bayesian statistics

– Lasso

– Ridge regression

– Elastic net
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Hierarchical forecasts
Top-down forecasting

� Top-down forecasting:

– Forecast on the top level

– Distribute this total forecast down to individual series

o By historical proportions (see right)

o By forecasted proportions
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Hierarchical forecasts
Top-down forecasting
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Hierarchical forecasts
Top-down forecasting

� Advantages:

– Models aggregate dynamics very well

– Simple to understand and explain

� Disadvantages:

– If the group does not share dynamics, top-down will 
be off

– Can’t account for known dynamics on granular level
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Hierarchical forecasts
Optimal combination forecasting

� Optimal combination forecasting:

– Forecast on all levels separately

– The result will not be sum-consistent…

– … so we modify all forecasts “slightly”

– The final forecasts are consistent and often better on 
all levels!

� Why?

– All modifications are based on information from other 
hierarchy levels

– � information is propagated through the hierarchy!

� See Hyndman & Athanasopoulos (Foresight, 2014, 
35:42-48)
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Hierarchical forecasts
Optimal combination forecasting

� Optimal combination forecasting:

– Forecast on all levels separately

– The result will not be sum-consistent…

– … so we modify all forecasts “slightly”

– The final forecasts are consistent and often better on 
all levels!

� Why?

– All modifications are based on information from other 
hierarchy levels

– � information is propagated through the hierarchy!

� See Hyndman & Athanasopoulos (Foresight, 2014, 
35:42-48)

� Advantages:

– Models dynamics on all levels

– Typically improves forecasts on all levels

� Disadvantages:

– Hard to explain

– Computationally difficult (has difficulties on more 
realistic hierarchies, e.g., crossing location ×
product hierarchies)
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Regularization

� Recall that the original problem was that parameter estimates in model C had low bias but high variance

� Regularization increases bias & reduces variance

– Bayesian statistics

– Lasso

– Ridge regression

– Elastic net

� Idea in each case:

– Constrain the model coefficients (in different ways)

– If something is constrained by a lasso or an elastic net, it can’t vary as much!

� This will reduce in-sample fit, but often improve forecasting accuracy
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Results

� Advantages of regularization:

– Does not require maintaining a hierarchy

– Is quite a general concept

� Disadvantages of regularization:

– Not very common in time series analysis , more in 
regression modeling and machine learning

– Hard to explain, though less so than optimal combination 
forecasting

– Computationally intensive (cross-validation), though less 
so than optimal combination forecasting
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Takeaways

� There are multiple sources of forecasting errors

– The bias of the model

– The variance of the model

– The residual variance

� Making our model more complex will reduce bias (and usually 
residual variance), but increase model variance

– Keep this trade-off in mind!

– Don’t automatically expect better forecasts from more 
complex models…

– …. especially if we model weak signals!

� Ways forward:

– Simple models

– Hierarchical forecasting

– Regularization
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