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Introduction

For forecasting intermittent demand the well-known Croston
method, or one of its variants, is often applied.

But when demand obsolescence occurs (all demands are 0
after a given time period) most variants continue to forecast the
same nonzero demand forever.

This motivated two recent variants that are designed to handle
obsolescence. They differ qualitatively in the way their forecasts
decay when demand is 0:

◮ those of the Teunter-Syntetos-Babai (TSB) method decay
exponentially via smoothing

◮ those of the Hyperbolic-Exponential Smoothing (HES)
method decay hyperbolically via Bayesian updating



Introduction

Both are unbiased on stochastic intermittent demand∗ and are
competitive with SBA and SY on various demand patterns.

∗The occurrence of a nonzero demand is a Bernoulli
event occurring at each time period with some
probability. The magnitude of the demands may have
any distribution.

In experiments TSB handled obsolescence better than HES,
while HES had more robust performance under parameter
change.

In this talk I describe a new variant called Linear-Exponential
Smoothing (LES) that asymptotically handles obsolescence
better than both.

First some background...



Background

Simple Exponential Smoothing (SES) generates estimates ŷt of
the demand by exponentially weighting previous observations
using the formula

ŷt = αyt + (1− α)ŷt−1

where α ∈ (0,1) is a smoothing parameter .

SES is known to perform poorly on stochastic intermittent
demand.



Background

A well-known method for handling intermittency is Croston’s
method (CR) which applies SES to demand size y and
inter-demand interval τ independently, where τ = 1 for
non-intermittent demand:

ŷt = αyt + (1− α)ŷt−1

τ̂t = βτt + (1− β)τ̂t−1

(α, β might be different.) The CR forecast is

ft =
ŷt

τ̂t

Both ŷt and τ̂t are updated at each time t for which yt 6= 0.



Background

CR was shown by [Syntetos & Boylan 2005] to be biased on
stochastic intermittent demand. They corrected the bias (SBA)
by modifying the forecasts to:

ft =
(

1−
β

2

)

ŷt

τ̂t

SBA works well for intermittent demand but is biased for
non-intermittent demand, as its forecasts are those of SES
multiplied by (1− β/2). This problem is avoided by [Syntetos
2001] who uses a forecast (SY)

ft =
(

1−
β

2

)

ŷt

τ̂t − β/2

This removes the bias on non-intermittent demand, though it
increases the forecast variance.



Background

Another variant is described by [Levén & Segerstedt 2004] who
apply SES to the ratio of demand size and inter-demand period
when a nonzero demand occurs:

ft = α

(

yt

τt

)

+ (1− α)ft−1

This turns out to be biased on stochastic intermittent demand.

None of these variants handles obsolescence well. When
obsolescence occurs they continue to forecast a fixed nonzero
demand forever.



Background

The first Croston variant explicitly designed to handle
obsolescence is TSB [Teunter, Syntetos, Babai 2011] which
updates an estimate of the demand probability instead of the
inter-demand interval.

Instead of τ̂t it uses a smoothed probability estimate p̂t where
pt is 1 when demand occurs at time t and 0 otherwise. p̂t is
updated at every period while ŷt is only updated when demand
occurs.

The TSB forecast is
ft = p̂t ŷt

It is unbiased.



Background

Another Croston variant designed to handle obsolescence is
HES [Prestwich et al. 2014]. Like most Croston variants HES
separates demands into yt and τt . Its forecasts are

ft =
{

ŷt/τ̂t if yt > 0
ŷt/(τ̂t + βτt/2) if yt = 0

As usual ŷ is updated when demand occurs, but τ̂ is updated at
every period.

Between demands τ increases linearly, producing a hyperbolic
decay in the forecasts: this can be viewed as Bayesian
updating with a Beta prior distribution. HES is unbiased.



This talk

In this talk I describe a new variant called Linear-Exponential
Smoothing (LES) that:

◮ is unbiased
◮ decays linearly to zero in a finite time
◮ asymptotically handles obsolescence better than TSB and

HES
◮ performs well in experiments

(Full description available at
http://arxiv.org/abs/1409.1609)



The LES method

LES is similar in form to HES but uses forecasts

ft =
{

ŷt/τ̂t if yt > 0
(ŷt/τ̂t)(1− βτt/2τ̂t)

+ if yt = 0

where x+ denotes max(0, x).

When obsolescence occurs the forecasts decay linearly to zero
at a rate determined by β. When they reach zero they remain
there until nonzero demands reoccur. No extra parameters are
needed beside α, β.

We can show that LES is unbiased on stochastic intermittent
demand under the assumption that 1− βτt/2τ̂t ≥ 0. If this
assumption does not hold (which may occur if we set β to a
high value) then the term will be replaced by 0, causing a
positive bias, but in experiments this effect is negligible.



The LES method

Pseudocode for LES:

ŷ ← 1, τ ← 1, τ̂ ← 1
at each time period

y ← current demand
if y 6= 0

ŷ ← αy + (1 − α)ŷ
τ̂ ← βτ + (1− β)τ̂
f ← ŷ/τ̂
τ ← 1

else
f ← (ŷ/τ̂ )(1− βτ/2τ̂ )+

τ ← τ + 1



The LES method

Behaviour of SBA, TSB, HES and LES:
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(All forecasters use α = β = 0.1, except that TSB uses
β = 0.02 because a smaller value is recommended.)



Experiments

We compare LES, HES and TSB using experiments from
[Teunter, Syntetos, Babai 2011].

Stationary demand (no obsolescence).

Demand is nonzero with probability p0 where p0 is either 0.2 or
0.5. Demand size is logarithmically distributed with two values
to simulate low demand and lumpy demand. We test several
combinations of smoothing factors and report the best. To
compare forecasters we use Mean Error (ME) to measure bias,
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE).

Results. TSB and HES have lowest bias (ME) while HES and
LES have lowest deviation (MAE and RMSE). LES has low bias
(though not the lowest) so 1− βτt/2τ̂t rarely becomes negative
if we use reasonable β.



Experiments

Decreasing demand

As above, but the probability of a nonzero demand decreases
linearly from p0 in the first period to 0 during the last period. As
pointed out by Teunter et al., none of the forecasters use
trending to model the decreasing demand so all are positively
biased.

Results. Under ME, MAE and RMSE, TSB ranks first, LES
second and HES third.

Sudden obsolescence

Demand probability is reduced instantly to 0 after half the time
periods.

Results. LES wins under ME and MAE, TSB wins under
RMSE.



Experiments

Summary

Winners:
demand ME MAE RMSE
stationary TSB+HES HES+LES HES+LES
decreasing TSB TSB TSB
sudden LES LES TSB

No clear winner emerges as the rankings depend on many
factors: demand pattern, how long we compare forecasters
before and after obsolescence occurs, which error measures
we use for the comparison...

But all perform well on stationary demand, TSB is the clear
winner under decreasing demand, and LES wins more often
under sudden obsolescence. LES is highly competitive under
all three error measures so it is a reasonable forecaster.



Asymptotic obsolescence error

Can we say more about which best handles obsolescence?

When average case analysis is hard we may resort to worst
case analysis. We analyse the asymptotic behaviour of TSB,
HES and LES to look for a definitive answer.

Worst-case scenario. Highly intermittent demand, sudden
obsolescence, and a large number of forecasts after
obsolescence occurs.

This represents a scenario in which an automated inventory
control system continues to forecast nonzero demand for an
obsolete item for a long time, because it believes demand to be
highly intermittent based on previous data.



Asymptotic obsolescence error

We ignore the machine-dependent issue of arithmetic errors
causing truncation to 0 as forecasts become small.

All the forecasters are unbiased so we assume they have the
same forecast f0 when obsolescence occurs at time 0.

We compute error measures for the 3 forecasters, using times
starting from just after obsolescence occurs at time 0, up to
some large T →∞.

But which error measures should we use? Not as easy as it
seems as most turn out to be inapplicable.



Asymptotic obsolescence error

A surprising variety of measures have been used in the
literature. There is no consensus on which is best so it is
generally recommended to use several.

We consider all measures listed in the surveys of [de Gooijer,
Hyndman 2005] and [Hyndman, Koehler 2006] and the article
[Wallström, Segerstedt 2010].

Scale-dependent measures are based on the mean error
et = yt − ŷt or mean square error e2

t , and include Mean Error,
Mean Square Error, Root Mean Square Error, Mean Absolute
Error and Median Absolute Error. As T →∞ all these tend to
zero so they cannot be used for an asymptotic comparison.



Asymptotic obsolescence error

Percentage errors are based on the quantities pt = 100et/yt

and include Mean Absolute Percentage Error, Median Absolute
Percentage Error, Root Mean Square Percentage Error, Root
Median Square Percentage Error, Symmetric Mean Absolute
Percentage Error, and Symmetric Median Absolute Percentage
Error. As yt = 0 for all t > 0 these are undefined for almost all
times.



Asymptotic obsolescence error

Relative error-based measures are based on the quantities
rt = et/e∗

t where e∗

t is the error from a baseline forecaster, and
include Mean Relative Absolute Error, Median Relative
Absolute Error, and Geometric Mean Relative Absolute Error.

The baseline forecaster is usually the random walk (or naive
method ) which simply forecasts that the next demand will be
identical to the current demand.

For almost all times e∗

t = 0 so these measures are undefined.
We could use another baseline but we would still have the
problem that the mean and median et are zero, so these cannot
be used for a comparison.



Asymptotic obsolescence error

The relative measures are usually the ratio of (i) an error
measure, and (ii) the same measure applied to a baseline
forecaster. These include Relative Mean Absolute Error,
Relative Mean Squared Error, and Relative Root Mean
Squared Error (for example the U2 statistic). The baseline is
again usually the random walk. Both measures→ 0 as T →∞
so these cannot be used.

A different form of relative measure is Percent Better, which
computes the percentage of times a forecaster has smaller
absolute error |et | than a baseline forecaster, again usually
random walk. Random walk has asymptotically perfect
performance so Percent Better cannot be used.

Another is Percent Best in which no baseline forecaster is used:
instead it computes the percentage of times each forecaster
being tested has smaller absolute error than the others. We
shall use this measure.



Asymptotic obsolescence error

The scaled errors include MAD/Mean Ratio [Kolassa, Schütz
2007]. It cannot be used because the denominator (the mean
error) tends to zero.

Another is Mean Absolute Scaled Error [Hyndman, Koehler
2006]. It cannot be used because it is proportional to et which
tends to zero.



Asymptotic obsolescence error

There are also three recent measures designed for intermittent
demand.

Cumulative Forecast Error is the sum of all errors over the time
periods under consideration. Not taking averages means that
errors do not become vanishingly small, so this measure can
be used.

The related (but not mentioned) Cumulative Squared Error can
also be used. But Number of Shortages and Periods in Stock
cannot be used.

Summary. Percent Best (PBt), Cumulative Forecast Error
(CFE) and Cumulative Squared Error (CSE) are the only error
measures we know of that can be used for our comparison.



Asymptotic obsolescence error

Analytical results:

CFE CSE PBt
TSB f0/β f 2

0 /β
2 0%

HES ∞ 2f 2
0 τ̂0/β 0%

LES f0τ̂0/β 2f 2
0 τ̂0/3β 100%

(Derivations given in the online paper.)

CFE: HES is worst with infinite error. TSB beats LES if they use
the same smoothing factor β, but it is recommended to use a
smaller β for TSB. We do not know how β and τ̂t are related
(inverse?) so the TSB & LES results are incomparable.

CSE: TSB is incomparable with HES and LES, but LES is 3
times better than HES.

PBt: LES beats both HES and TSB.



Asymptotic obsolescence error

LES is not beaten by TSB or HES under CFE or CSE, but beats
both under PBt, so we rank LES as the best variant for handling
obsolescence.

TSB beats HES under CFE, draws with it under PBt and is
incomparable under CSE, so we rank it second best.

HES ranks third best.



Conclusion

LES is a variant of Croston’s method with several good
features:

◮ It is unbiased on stochastic intermittent demand.
◮ It only requires two smoothing parameters to be tuned.
◮ It performs well in experiments.
◮ When obsolescence occurs its forecasts decay to 0 in a

finite time.
◮ It asymptotically handles obsolescence better than all

other variants.

THE END WE COULD WELCOME FEEDBACK ON HOW USEFUL

THESE FEATURES ARE IN PRACTICE.


