Forecasting support systems: ways forward

Fotios Petropoulos
Cardiff Business School, Cardiff University, UK
Disclaimer
Some of my collaborators

- Prof. Spyros Makridakis (INSEAD Business School, France)
- Prof. Paul Goodwin (University of Bath, UK)
- Prof. Robert Fildes (Lancaster University, UK)
- Prof. Aris Syntetos (Cardiff University, UK)
- Prof. Konstantinos Nikolopoulos (Bangor University, UK)
- Prof. Vassilios Assimakopoulos (NTUA, Greece)
- Dr. Nikolaos Kourentzes (Lancaster University, UK)
- Prof. Rob Hyndman (Monash University, Australia)
- Dr. George Athanasopoulos (Monash University, Australia)
Forecasting and ancient Greece

Pythia: the Oracle of Delphi
(established in the 8th century BC)

Pythia: Business Forecasting System
Forecasting & Strategy Unit
Forecasting

```
library(forecast)
fit = ets(AirPassengers)
plot(forecast(fit))
```

Long-term planning
Forecasting Support Systems

• Sets of “procedures that facilitate interactive forecasting of key variables in a given organizational context” [Ord & Fildes, 2013]

• Include aspects of operational forecasting, such as data pre-processing, statistical modelling and monitoring processes.

• Offer to the users the ability to perform judgmental interventions to the statistical estimates.

• Forecasting Support Systems can be viewed as integral parts of decision support systems [Fildes & Goodwin, 2013]
Technological dimension
Forecasting Support System: architecture
Free, open-source software

• Many companies still rely on Excel-like solutions as their main means for producing forecasts.

• R: free, open-source, publicly available statistical software

• Well-documented → acceptability

• Enthusiastic and big user base, offer advice for free

• Multiple resources (packages)

• State-of-the-art methods

• Great visualisations

• A good educational tool

• RStudio is a free GUI for using R

• R requires some programming knowledge
Time series packages for \(\mathbb{R} \)

- CRAN Task View: Time Series Analysis, maintained by Rob Hyndman
- 179 time series analysis and forecasting related packages
- Forecasting and univatiate modeling (forecast, exponential smoothing, theta, structural models, ARIMA models, GARCH models, count time series, change detection points)
- Frequency analysis (spectral density estimation, wavelet methods, harmonic regression)
- Decomposition, seasonality and filtering (AR and MA linear filters, singular spectrum analysis, analysis of seasonality)
- Stationarity, unit roots, cointegration
- Nonlinear time series analysis
- Dynamic Regression Models
- Multivariate time series models
- Large groups of time series, hierarchical data
Web-based solutions

- **Accessible** anytime (24/7 availability)
- **Compatible** for any OS (cross-platform compatibility) and for a range of devices (work from anywhere)
- **No installation** (all devices have a web-browser), easier to set-up and maintain (always up-to-date)
- Easily **customisable**, increased interoperability
- **Centralised data**, direct access to latest information (increased collaboration), easy backup and recovery
- **Efficiency**: scalable/adaptable to increased workload (cloud storage and computing)
- **Cost efficient**: reduced spending on technology infrastructure
- Online training
- But... technical issues, dependent on an internet connection, security in the cloud, prone to hacking
(Web) Forecasting Support System: architecture

Customisable

- Each company has its very individual forecasting needs
- **Is there is one FSS to fit them all?**
- Forecasting for retailers’ demand, forecasting for call centres, energy consumption forecasting
- Different data (low/high frequencies, fast/slow-moving)
- Different forecasting process (pre-processing, post-processing, monitoring)
- Special events/promotions and integration of managerial judgment
- Different forecasting methods
- Does it make sense to provide a super-complex FSS that is able to do all, or to allow for a **customisable user interface:**
 - for different companies
 - for different levels/groups within a company
- Clean interface = **easier to use**
Mobile forecasting

• Mobile devices (such as smart phones and tablets) are continuously featuring high-end specifications.

• Forecasting “in the pocket” [Asimakopoulos et al., 2014, Foresight]

• Opportunities:
 routine-use, communication, instant access to forecasts and reports, recording tool, exception list reporting, tracking and sharing of events and promotions

• Challenges:
 loss and hacking, mobile limitations, data visualisation difficulties

• Design practices:
 o Interactive dashboards
 o Easy to read in a smaller form factor
 o Drill-down, filtering, content search
 o Take advantage of the technical specs of mobile phones
Click & forecast

2015: Google translate

2014: Photomath

2013: Foredroid
“A forecasting support system for mobile devices”,
26th European Conference on Operational Research
Methodological dimension
Forecasting methods

Rob J. Hyndman (2013) “Forecasting without forecasters”
Keynote Speech at the ISF2013

<table>
<thead>
<tr>
<th>Method</th>
<th>MAPE</th>
<th>sMAPE</th>
<th>MASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
<td>17.83</td>
<td>12.86</td>
<td>1.40</td>
</tr>
<tr>
<td>ForecastPro</td>
<td>18.00</td>
<td>13.06</td>
<td>1.47</td>
</tr>
<tr>
<td>BJauto</td>
<td>19.14</td>
<td>13.73</td>
<td>1.55</td>
</tr>
<tr>
<td>AutoARIMA</td>
<td>18.98</td>
<td>13.75</td>
<td>1.47</td>
</tr>
<tr>
<td>ETS-additive</td>
<td>18.58</td>
<td>13.69</td>
<td>1.48</td>
</tr>
<tr>
<td>ETS</td>
<td>19.33</td>
<td>13.57</td>
<td>1.59</td>
</tr>
<tr>
<td>ETS-ARIMA</td>
<td>18.17</td>
<td>13.11</td>
<td>1.44</td>
</tr>
</tbody>
</table>
Forecasting for intermittent demand

- Intermittent demand: infrequent demand arrivals coupled with variable demand sizes, whenever demand occurs.

- **60% of the stock keeping units** (SKUs) in a standard industrial setting are characterised as **intermittent** [Johnston et al., 2003]

- **Very limited support** in handling count data and integration of methods specialised for forecasting intermittent demand.

- In the best case, only Croston’s method is implemented (using fixed smoothing parameters), without even considering the Syntetos-Boylan approximation for bias correction.

- On the bright side: several **inventory software** include these techniques, as well as classification strategies suggested in the literature.

- Publicly available **tsintermittent** package for R allows for incorporation these methods into FSSs.
Temporal aggregation

• Temporal aggregation refers to aggregation in which a low frequency time series (e.g. quarterly) is derived from a high frequency time series (e.g. monthly).
• This strategy highlights or attenuates different series characteristics on each level of aggregation:
 o At lower aggregation (high frequency time series) periodic components, such as seasonality will be prominent.
 o At higher aggregation levels high frequency signals are filtered and more importance is given to the lower frequency components, such as the level and trend of a time series. Also, demand is less intermittent.

Fotios Petropoulos and Nikolaos Kourentzes (2015) “Forecasting combinations for intermittent demand”, Journal of the Operational Research Society, Vol. 66, No. 6, pp. 914-924, Figure 1
Aggregate-disaggregate intermittent demand approach (ADIDA)

A: Original data (months)
B: Aggregate data (quarters)
C: A quarterly forecast is produced
D: The quarterly forecast is broken down to three equal monthly forecasts

Multiple aggregation prediction algorithm (MAPA)

- Combination across forecasts derived from transformed frequencies is efficient and **improves the forecasting performance**.
- Also removes the problem of appropriately selecting the hyper-parameter for the ADIDA framework.
- Combining across multiple aggregation levels results in reconciled forecasts for all frequencies, suitable for **matching operational, tactical and strategic forecasts**.
Cross-sectional aggregation

• Producing forecasts at different hierarchical levels (company-level, sector-level, SKU-level) using different aggregations of the data can lead to numerical differences.

• Various statistical reconciliation approaches have been considered: bottom-up, top-down, middle-out, optimal combination.

• Hierarchical forecasting can help improve the accuracy of the relevant decision making series.

• Duality of hierarchies: “forecasting-optimal” hierarchies that are dual to the decision making hierarchies, i.e. provide outputs relevant to the operations of an organisation, while maximising the accuracy gains due to the hierarchical structure.

• Grouped seasonal indices → better estimation of the seasonal component.
“Is it safe to assume that software is accurate?”

• No. [McCullough, 2000]
• (In some cases) user-friendliness is appreciated more than accuracy.
• Even for the simplest methods (SES) different software packages might provide different predictions.
• Different assumptions in optimisations and initialisations ...or bugs?
• Full documentation of the implemented algorithms and provision of simple code/examples → increase user’s trust
• Software reviews in both academic and practitioners’ journals.
• **Replicability** and **reproducibility** → better software.
Judgmental component
Judgmental forecasting & adjusting

- Improving judgmental forecasts through feedback, decomposition, combinations, and advice [Lawrence et al., 2006, IJF]

- Statistical outputs are often adjusted by managers/experts:
 - Special events/promotions
 - Politically-related or budget targets
 - Ownership vs “black box”
 - Confusion of the signal with the noise

- Better facilitate judgmental adjustments by:
 - Memory support [Lee et al., 2007, IJF] → structured analogies [Kesten & Armstrong, 2007, IJF]
 - Monitor and report performance for both statistical and judgmentally adjusted forecasts
 - Requiring note recording → better understanding market intelligence [Fildes et al., 2009, IJF]

- Support through restrictiveness (low flexibility) versus support through guidance (“expert system”) [Fildes et al., 2006, DSS]
Judgmental model selection*

• An ‘optimal’ model may be selected automatically by the software...
• ... or judgmentally!

* Based on a work in progress with Nikolaos Kourentzes and Costas Nikolopoulos, under the title “DIY forecasting: judgment, models and judgmental model selection”
Each of the **693 participants** was randomly assigned in one of the two approaches and was asked to provide selections for **32 time series**.

<table>
<thead>
<tr>
<th>Model</th>
<th>Trend</th>
<th>Seasonality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple exponential smoothing (SES)</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>SES with seasonality</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>Damped trend</td>
<td>✓</td>
<td>❌</td>
</tr>
<tr>
<td>Damped trend with seasonality</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Selecting models judgmentally

- Overall, humans’ score is lower than statistics...
 ...while they select the ex-post best model less frequently.
- However, they do succeed in avoiding the worst model.
- How does this translate to forecasting performance?
Judgmental model selection: results

MASE

- Random Selection
- Simple Combination
- Statistical Selection
- 50%-50%
- Judgmental Model Build

Number of experts

MASE values for different methods as a function of the number of experts.
Judgmental model selection & FSS

- Do not over-rely on the automatic “optimal” forecast selected by the system.
- Humans can be as good as (if not better) in selecting models as AIC.
- Improvements in forecasting performance are significant when a weighted combination of the selections of multiple humans are considered.
- Model build (selecting models based on data decomposition) is better than traditional model selection.

→ Advice the managers that manual selection has its merits!
→ Provide the means for model build (decomposition) approach
→ Allow for grouped judgmental model selection (wisdom of crowds)
Judgmental hierarchical reconciliation

• A disadvantage of all statistical reconciliation approaches is their full reliance on statistical weighting schemes that do not take into account the special circumstances of each case, thus lacking the judgmental component.

• Different stakeholders should be able only to share information, but also their views and opinions with regard to the impact of future special events.

• Systems that would render the demand planners able to judgmentally reconcile the differences in the forecasts of the various levels.

• The result of this approach would be consensus, and not only in terms of numbers!

• By allowing the forecasters to manually fix any differences in the forecasts, they keep the sense of “ownership” but in a collective manner.
A forecasting-foresight support system

- A need for audit and expand the **means of communication** and **co-operation** between demand planners of the various hierarchical levels.

- Combine knowledge base and group models with quantitative data processes [Skulimowski, 2012]

- Integration of more qualitative structured methods, such as the **Delphi method** [Rowe & Wright, 1999; 2001]

- **Forecasting and foresight support systems** (F²SS) [Spithourakis et al., 2015, IJF]

- A prototype web-based **F²SS** was introduced in a group of students, showing good levels of satisfaction and influence from team co-operation.
A forecasting-foresight support system

• A system that combines features of both forecasting & foresight processes can:
 o enhance the user experience
 o allow for a deeper understanding of the underlying process

• By enabling collaboration and communication between members of the same team:
 o increased input from members of different hierarchical levels
 o increased levels of satisfaction in terms of collaboration

• The application of such a system design in real life can lead to improved operational performance, making forecasts highly acceptable to managers of all different hierarchical levels.
FSSs: ways forward

1. Use of open-source software
2. Web- and cloud-based solutions
3. Customisable
4. Forecasting on-the-go
5. Implementation of state-of-the-art methods
6. Methods for intermittent demand
7. Temporal and cross-sectional aggregation
8. Better integration of managerial judgment
9. Support for judgmental model selection
10. Support for judgmental forecast reconciliation
11. Bring in foresight features
12. Full documentation of approaches and procedures
Forecasting Society

bringing researchers and forecasters together

www.forsoc.net
Thank you for your attention