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Forecasting and ancient Greece

Pythia: the Oracle of Delphi -
(established in the 8th century BC)
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Forecasting
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library (forecast)

fit = ets (AirPassengers)

plot (forecast (fit))
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Forecasting Support Systems

e Sets of “procedures that facilitate interactive forecasting of key variables in
a given organizational context” [ord & Fildes, 2013]

* Include aspects of operational forecasting, such as data pre-processing,
statistical modelling and monitoring processes.

e Offer to the users the ability to perform judgmental interventions to the
statistical estimates.

* Forecasting Support Systems can be viewed as integral parts of decision
support systems [Fildes & Goodwin, 2013]



Technological dimension



Forecasting Support System: architecture
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Free, open-source software

Many companies still rely on Excel-like solutions as their main means for

producing forecasts.

R: free, open-source, publicly available statistical software

Well-documented —> acceptability

Enthusiastic and big user base, offer advice for free

Multiple resources (packages)
State-of-the-art methods

Great visualisations

A good educational tool
RStudio is a free GUI for using R

R requires some programming knowledge
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Time series packages for R

 CRAN Task View: Time Series Analysis, maintained by Rob Hyndman
179 time series analysis and forecasting related packages

 Forecasting and univatiate modeling (forecast, exponential smoothing,
theta, structural models, ARIMA models, GARCH models, count time series,
change detection points)

* Frequency analysis (spectral density estimation, wavelet methods,
harmonic regression)

 Decomposition, seasonality and filtering (AR and MA linear filters, singular
spectrum analysis, analysis of seasonality)

e Stationarity, unit roots, cointegration

* Nonlinear time series analysis

 Dynamic Regression Models

* Multivariate time series models

 Large groups of time series, hierarchical data



Web-based solutions

* Accessible anytime (24/7 availability)

 Compatible for any OS (cross-platform compatibility) and for a range of
devices (work from anywhere)

 No installation (all devices have a web-browser), easier to set-up and
maintain (always up-to-date)

e Easily customisable, increased interoperability

 Centralised data, direct access to latest information (increased
collaboration), easy backup and recovery

* Efficiency: scalable/adaptable to increased workload (cloud storage and
computing)

e Cost efficient: reduced spending on technology infrastructure
* Online training

 But... technical issues, dependent on an internet connection, security in
the cloud, prone to hacking



(Web) Forecasting Support System: architecture
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Customisable

 Each company has its very individual forecasting needs
* |sthereisone FSS to fit them all?

 Forecasting for retailers’ demand, forecasting for call centres, energy
consumption forecasting

» Different data (low/high frequencies, fast/slow-moving)

e Different forecasting process (pre-processing, post-processing, monitoring)
* Special events/promotions and integration of managerial judgment

e Different forecasting methods

 Does it make sense to provide a super-complex FSS that is able to do all, or
to allow for a customisable user interface:

o for different companies
o for different levels/groups within a company

e C(Clean interface = easier to use



Mobile forecasting

* Mobile devices (such as smart phones and tablets) are continuously
featuring high-end specifications.

* Forecasting “in the pocket” [Asimakopoulos et al., 2014, Foresight]
* QOpportunities:
routine-use, communication, instant access to forecasts and reports,

recording tool, exception list reporting, tracking and sharing of events
and promotions

 Challenges:
loss and hacking, mobile limitations, data visualisation difficulties
* Design practices:
o Interactive dashboards
o FEasy toread in a smaller form factor
o Drill-down, filtering, content search
o Take advantage of the technical specs of mobile phones
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Methodological dimension



Forecasting methods

Rob J. Hyndman (2013) “Forecasting without forecasters”
Keynote Speech at the ISF2013
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Forecasting for intermittent demand

* Intermittent demand: infrequent demand arrivals coupled with variable
demand sizes, whenever demand occurs.

* 60% of the stock keeping units (SKUs) in a standard industrial setting are
characterised as intermittent [Johnston et al., 2003]

* Very limited support in handling count data and integration of methods
specialised for forecasting intermittent demand.

* In the best case, only Croston’s method is implemented (using fixed
smoothing parameters), without even considering the Syntetos-Boylan
approximation for bias correction.

 On the bright side: several inventory software include these techniques, as
well as classification strategies suggested in the literature.

* Publicly available tsintermittent package for R allows for incorporation
these methods into FSSs.



Temporal aggregation

 Temporal aggregation refers to aggregation in which a low frequency time
series (e.g. quarterly) is derived from a high frequency time series (e.g.
monthly).

* This strategy highlights or attenuates different series characteristics on each
level of aggregation:

o At lower aggregation (high frequency time series) periodic components, such as
seasonality will be prominent.

o At higher aggregation levels high frequency signals are filtered and more importance
is given to the lower frequency components, such as the level and trend of a time
series. Also, demand is less intermittent.
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Fotios Petropoulos and Nikolaos Kourentzes (2015) “Forecasting combinations for intermittent demand",
Journal of the Operational Research Society, Vol. 66, No. 6, pp. 914-924, Figure 1



Aggregate-disaggregate intermittent demand
approach (ADIDA)
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A: Original data (months)

B: Aggregate data (quarters)

C: A quarterly forecast is produced

D: The quarterly forecast is broken down to three equal monthly forecasts

Nikolopoulos K., Syntetos A.A., Boylan J.H., Petropoulos F., and Assimakopoulos V. (2011) “An Aggregate - Disaggregate Intermittent Demand
Approach (ADIDA) to Forecasting: An Empirical Proposition and Analysis”, Journal of the Operational Research Society, Vol. 62, pp. 544-554



Multiple aggregation prediction algorithm

(MAPA)

Standard
Approach

Multiple

Aggregation

Prediction
Algorithm

‘*/forecasts/
!

%@H/forecasts/
A

e
|

monthly / .| model
data | selection
monthly / .| model
data / selection
.| temporal bimonthly model

“| aggregation data selection

S temporal quarterly model
aggregation data selection

.| temporal yearly model
“laggregation data selection

« Combination across forecasts derived from transformed frequencies is efficient and
improves the forecasting performance.

 Also removes the problem of appropriately selecting the hyper-parameter for the
ADIDA framework.

e Combining across multiple aggregation levels results in reconciled forecasts for all
frequencies, suitable for matching operational, tactical and strategic forecasts.

Fotios Petropoulos and Nikolaos Kourentzes (2014) “Improving forecasting via multiple temporal aggregation”, Foresight 34, 12-17



Cross-sectional aggregation

 Producing forecasts at different hierarchical levels (company-level, sector-
level, SKU-level) using different aggregations of the data can lead to
numerical differences.

* Various statistical reconciliation approaches have been considered: bottom-
up, top-down, middle-out, optimal combination.

* Hierarchical forecasting can help improve the accuracy of the relevant
decision making series.

* Duality of hierarchies: “forecasting-optimal” hierarchies that are dual to the
decision making hierarchies, i.e. provide outputs relevant to the operations
of an organisation, while maximising the accuracy gains due to the
hierarchical structure.

 Grouped seasonal indices — better estimation of the seasonal component.



“Is it safe to assume that software is accurate?”

* NO. [McCullough, 2000]
* (In some cases) user-friendliness is appreciated more than accuracy.

* Even for the simplest methods (SES) different software packages might
provide different predictions.

e Different assumptions in optimisations and initialisations ...or bugs?

* Full documentation of the implemented algorithms and provision of
simple code/examples = increase user’s trust

e Software reviews in both academic and practitioners’ journals.

* Replicability and reproducibility - better software.



Judgmental component




Judgmental forecasting & adjusting

* |Improving judgmental forecasts through feedback, decomposition,
combinations, and advice [Lawrence et al., 2006, 1JF]
e Statistical outputs are often adjusted by managers/experts:
o Special events/promotions o Ownership vs “black box”

o Politically-related or budget targets o Confusion of the signal with the noise

* Better facilitate judgmental adjustments by:

o Memory support [Lee etal., 2007, UF] = structured analogies [Kesten & Armstrong,
2007, IJF]

o Monitor and report performance for both statistical and judgmentally
adjusted forecasts

o Requiring note recording — better understanding market intelligence
[Fildes et al., 2009, IJF]

e Support through restrictiveness (low flexibility) versus support through
guidance (“expert system”) [Fildes et al., 2006, DSS]



Judgmental model selection”
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An ‘optimal” model may be selected automatically by the software...
... or judgmentally!

* Based on a work in progress with Nikolaos Kourentzes and Kostas Nikolopoulos,
under the title “DIY forecasting: judgment, models and judgmental model selection”



Judgmental model selection: experiment

Model Selection Model Build
I
\ Model Trend Seasonality |
L\/\ Simple exponential smoothing (SES) X x \/\/
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Each of the 693 participants was randomly assigned in one of the two approaches and
was asked to provide selections for 32 time series.
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Overall, humans’ score is lower than statistics...

...while they select the ex-post best model less frequently.
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However, they do succeed in avoiding the worst model.

How does this translate to forecasting performance?
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Judgmental model selection: results
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Judgmental model selection & FSS

|II

Do not over-rely on the automatic “optima
system.

forecast selected by the

e Humans can be as good as (if not better) in selecting models as AIC.

* Improvements in forecasting performance are significant when a
weighted combination of the selections of multiple humans are
considered.

e Model build (selecting models based on data decomposition) is
better than traditional model selection.

— Advice the managers that manual selection has its merits!
— Provide the means for model build (decomposition) approach

— Allow for grouped judgmental model selection (wisdom of crowds)



Judgmental hierarchical reconciliation

A disadvantage of all statistical reconciliation approaches is their full
reliance on statistical weighting schemes that do not take into account the

special circumstances of each case, thus lacking the judgmental
component.

« Different stakeholders should be able only to share information, but also
their views and opinions with regard to the impact of future special events.

e Systems that would render the demand planners able to judgmentally
reconcile the differences in the forecasts of the various levels.

 The result of this approach would be consensus, and not only in terms of
numbers!

* By allowing the forecasters to manually fix any differences in the forecasts,
they keep the sense of “ownership” but in a collective manner.



A forecasting-foresight support system

* A need for audit and expand the means of communication and co-operation
between demand planners of the various hierarchical levels.

* Foresight Support Systems: “collaborative computer-based systems aimed
at supporting: communication; decision modelling; rules of order in
foresight processes’ [Banuls & Salmeron, 2011]

e Combine knowledge base and group models with quantitative data
Processes [Skulimowski, 2012]

* [Integration of more qualitative structured methods, such as the Delphi
method [Rowe & Wright, 1999; 2001]

* Forecasting and foresight support systems (F?SS) [Spithourakis et al., 2015, 1JF]

* A prototype web-based F2SS was introduced in a group of students, showing
good levels of satisfaction and influence from team co-operation.



A forecasting-foresight support system

A system that combines features of both forecasting & foresight processes
can:

o enhance the user experience

- allow for a deeper understanding of the underlying process

By enabling collaboration and communication between members of the
same team:

o increased input from members of different hierarchical levels

o increased levels of satisfaction in terms of collaboration

The application of such a system design in real life can lead to improved
operational performance, making forecasts highly acceptable to managers of
all different hierarchical levels.



FSSs: ways forward
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Use of open-source software

Web- and cloud-based solutions
Customisable

Forecasting on-the-go

Implementation of state-of-the-art methods
Methods for intermittent demand

Temporal and cross-sectional aggregation
Better integration of managerial judgment
Support for judgmental model selection
Support for judgmental forecast reconciliation
Bring in foresight features

Full documentation of approaches and procedures
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Thank you for your attention

PetropoulosF@cardiff.ac.uk — http://fpetropoulos.eu



