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Summary

3 key developments:

1 We generalise the forecasting process in
"properly" accounting for grouped data.
(Empirical Application 1).

2 We advance the “optimal combination”
approach by proposing two new estimators
based on WLS.
Both now implemented in the hts package.

3 We introduce temporal hierarchies.
(Empirical Application 2).
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Hierarchical versus grouped

Table: Geographical Hierarchy

Level Total series per level
Australia 1
States and Territories 7

VIC, NSW, QLD, SA, WA, NT, TAS;

Zones 27
VIC (5): Metro, West Coast, East Coast, Nth East, Nth West;

NSW (6): Metro, Nth Coast, Sth Coast, Sth, Nth, ACT;

QLD (4): Metro, Central Coast, Nth Coast, Inland;

Regions 76
Metro VIC: Melbourne, Peninsula, Geelong;

Metro NSW: Sydney, Illawarra, Central Coast;

Metro QLD: Brisbane, Gold Coast, Sunshine Coast;
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Australian domestic tourism
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Hierarchical:
Australia (1)

States (7)

Zones (27)

Regions (76)

Total: 111 series

PoT (×4):
AustraliaPoT (4)

StatesPoT (28)

ZonesPoT (108)

RegionsPoT (304)

Total: 444 series

Grouped
Grand total: 555 series



Forecasting such structures

Existing methods:

ã Bottom-up

ã Top-down

ã Middle-out

Key idea: forecast reconciliation
å Ignore structural constraints and forecast

every series of interest independently.

å Adjust forecasts to impose constraints.
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Hierarchical data

Total

A B C
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Yt : observed aggregate of all
series at time t.

YX,t : observation on series X at
time t.

Bt : vector of all series at
bottom level in time t.
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Optimal forecasts

Key idea: forecast reconciliation
å Ignore structural constraints and forecast

every series of interest independently.

å Adjust forecasts to impose constraints.

Let Ŷn(h) be vector of initial h-step forecasts,
made at time n, stacked in same order as Yt.

Yt = SBt . So Ŷn(h) = Sβn(h) + εh .

βn(h) = E[Bn+h | Y1, . . . ,Yn].
εh has zero mean and covariance Σh.
Estimate βn(h) using GLS?
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Optimal combination forecasts

Ỹn(h) = Sβ̂n(h) = S(S′Σ†hS)
−1S′Σ†hŶn(h)

Optimal P = (S′Σ†hS)
−1S′Σ†h.

Σ†h is generalized inverse of Σh.

Revised forecasts unbiased: SPS = S.

Revised forecasts minimum variance:

Var[Ỹn(h)|Y1, . . . ,Yn] = S(S′Σ†hS)
−1S′.

Problem: Σh hard to estimate.
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Var[Ỹn(h)|Y1, . . . ,Yn] = S(S′Σ†hS)
−1S′.

Problem: Σh hard to estimate.
Forecasting hierarchical (and grouped) time series Optimal forecasts 12



Optimal combination forecasts
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Approx. optimal forecasts
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Ỹn(h) = S(S′Σ†hS)
−1S′Σ†hŶn(h)

Solution 1: OLS
Assume εh ≈ SεB,h where εB,h is the forecast
error at bottom level.

If Moore-Penrose generalized inverse used,
then (S′Σ†S)−1S′Σ† = (S′S)−1S′.

Ỹn(h) = S(S′S)−1S′Ŷn(h)



Approx. optimal forecasts
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Ỹn(h) = S(S′Σ†hS)
−1S′Σ†hŶn(h)

Solution 2: Rescaling
Suppose we approximate Σh by its diagonal.

Let Λ =
[
diagonal

(
Σ̂1

)]−1
contain inverse

one-step ahead in-sample forecast error
variances.

Ỹn(h) = S(S′ΛS)−1S′ΛŶn(h)



Approx. optimal forecasts
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Ỹn(h) = S(S′ΛS)−1S′ΛŶn(h)

Solution 3: Averaging
If the bottom level error series are
approximately uncorrelated and have similar
variances, then Λ is inversely proportional to
the number of series contributing to each
node.

So set Λ to be the inverse row sums of S:

Λ = diag(S× 1)−1

where 1 = (1,1, . . . ,1)′.
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Temporal hierarchies: quarterly

Annual

Semi-Anual1

Q1 Q2

Semi-Anual2

Q3 Q4

Basic idea:
å Forecast series at each available

frequency.

å Optimally combine forecasts within the
same year.
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Temporal hierarchies: monthly

Annual

Semi-Anual1

Q1

M1 M2 M3

Q2

M4 M5 M6

Semi-Anual2

Q3

M7 M8 M9

Q4

M10 M11 M12

Aggregate: 3, 6, 12
Alternatively: 2, 4, 12.
How about: 2, 3, 4, 6, 12?
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Temporal hierarchies: monthly

Annual

FourM1

BiM1

M1 M2
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M3 M4

FourM2
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Temporal hierarchies: monthly
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Monthly data

A
SemiA1

SemiA2

FourM1

FourM2

FourM3

Q1

...
Q4

BiM1

...
BiM6

M1

...
M12


︸ ︷︷ ︸

(28×1)

=



1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0

...
0 0 0 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0

...
0 0 0 0 0 0 0 0 0 0 1 1

I12


︸ ︷︷ ︸

S



M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12


︸ ︷︷ ︸

Bt
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Experimental setup:

M3 forecasting competition (Makridakis
and Hibon, 2000, IJF). In total 3003 series.

1,428 monthly series with a test sample of
12 observations each.

756 quarterly series with a test sample of
8 observations each.

Forecast each series with ETS (ARIMA)
models. Methods performed well in the
actual competition.
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Results: Monthly

Forecast Horizon (h)
sMAPE Annual SemiA FourM Q BiM M Average
(obs) (1) (2) (3) (4) (6) (12)

ETS

Initial 9.66 9.18 9.76 10.14 10.82 12.85 10.40

Bottom-up 8.38 9.14 9.78 10.06 11.04 12.85 10.21

OLS 7.80 8.64 9.39 9.72 10.68 12.68 9.82
Scaling 7.64 8.44 9.15 9.49 10.45 12.40 9.60
Averaging 7.51 8.31 9.05 9.38 10.34 12.30 9.48
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Results: Quarterly

Forecast Horizon (h)
sMAPE Annual Semi-Ann Quart Average
(obs) (2) (4) (8)

ETS

Initial 10.50 9.97 9.84 10.10

Bottom-up 8.87 9.35 9.84 9.35

OLS 9.31 9.78 10.28 9.79
Scaling 8.75 9.19 9.70 9.21
Averaging 8.81 9.26 9.78 9.28
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Outline

1 Hierarchical and grouped time series

2 Optimal forecasts

3 Approximately optimal forecasts

4 Temporal hierarchies

5 References
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More information
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Vignette on CRAN
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