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3 key developments:

B We generalise the forecasting process in
"properly" accounting for grouped data.
(Empirical Application 1).

B We advance the “optimal combination”
approach by proposing two new estimators
based on WLS.

Both now implemented in the hts package.

B We introduce temporal hierarchies.
(Empirical Application 2).
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Hierarchical versus grouped

Table: Geographical Hierarchy

Level Total series per level
Australia 1
States and Territories 7
VIC, NSW, QLD, SA, WA, NT, TAS;
Zones 27

VIC (5): Metro, West Coast, East Coast, Nth East, Nth West;

NSW (6): Metro, Nth Coast, Sth Coast, Sth, Nth, ACT;

QLD (4): Metro, Central Coast, Nth Coast, Inland;
Regions 76

Metro VIC: Melbourne, Peninsula, Geelong;

Metro NSW: Sydney, lllawarra, Central Coast;

Metro QLD: Brisbane, Gold Coast, Sunshine Coast;
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Australian domestic tourism

Hierarchical: “ . kA

m Australia (1)
m States (7)

m Zones (27)
m Regions (76)

Total: 111 series
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Australian domestic tourism

m Holiday
m Visiting Friends and Relatives
m Business

m Other
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m Australia (1)
m States (7)

m Zones (27)
m Regions (76)

Total: 111 series
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Australian domestic tourism
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Forecasting such structures

Existing methods:
> Bottom-up
> Top-down
> Middle-out
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Forecasting such structures

Existing methods:

> Bottom-up

> Top-down

> Middle-out

Key idea: forecast reconciliation

w |gnore structural constraints and forecast
every series of interest independently.

w Adjust forecasts to impose constraints.
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Hierarchical data

(Total>
® ® ©
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Hierarchical data

Y: . observed aggregate of all

@ series at time t.

Yx:: observation on series X at
time t.

0 9 G B; : vector of all series at

bottom level in time t.
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@ series at time t.

Yx:: observation on series X at
time t.

0 9 G B; : vector of all series at

bottom level in time t.
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Hierarchical data
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Grouped data

S p &0
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Optimal forecasts

Key idea: forecast reconciliation
w |gnore structural constraints and forecast
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w Adjust forecasts to impose constraints.
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Optimal forecasts

Key idea: forecast reconciliation
w |gnore structural constraints and forecast

every series of interest independently.
w Adjust forecasts to impose constraints.

Let ¥,,(h) be vector of initial h-step forecasts,
made at time n, stacked in same order as Y;.

Yt — SBt
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Optimal forecasts

Key idea: forecast reconciliation
w |gnore structural constraints and forecast

every series of interest independently.
w Adjust forecasts to impose constraints.

Let ¥,,(h) be vector of initial h-step forecasts,
made at time n, stacked in same order as Y;.

Y: = SBt . So ?n(h) = S,Bn(h) + &p .
m B,(h) = E[Boon | Yu.. ... Y]
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Optimal forecasts

Key idea: forecast reconciliation
w |gnore structural constraints and forecast

every series of interest independently.
w Adjust forecasts to impose constraints.

Let ¥,,(h) be vector of initial h-step forecasts,
made at time n, stacked in same order as Y;.

Y: = SBt . So ?n(h) = S,Bn(h) + &p .

= Bn(h) = E[Bnin | Y1,..., Y]
m ¢, has zero mean and covariance 3.
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Optimal forecasts

Key idea: forecast reconciliation
w |gnore structural constraints and forecast

every series of interest independently.
w Adjust forecasts to impose constraints.

Let ¥,,(h) be vector of initial h-step forecasts,
made at time n, stacked in same order as Y;.

Y: = SBt . So ?n(h) = S,Bn(h) + &p .

= By(h) = E[Bnin | Y1,.... Y]
m &4 has zero mean and covariance 3.
m Estimate 3,(h) using GLS?
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Optimal combination forecasts

Y,(h) = SB,(h) = S(S'S1S) 18’3 ¥, (h)
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Optimal combination forecasts

Y,(h) = SB,(h) = S(S'S1S) 1’3 ¥, (h)

Initial forecasts
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Optimal combination forecasts

Y,(h) = SB,(h) = S(S'S1S) 1’3 ¥, (h)
Initial forecasts
= Optimal P = (§'S/s)1s'S3! .
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Optimal combination forecasts

V,(h) = §B,(h) = S(S'S18) 18’3 ¥, (h)
Revised forecasts Initial forecasts
= Optimal P = (§'S/s)1s'S3! .
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Optimal combination forecasts

V,(h) = §B,(h) = S(S'S18) 18’3 ¥, (h)
Revised forecasts Initial forecasts

= Optimal P = (§'S/s)1s'S3! .
N Z}; is generalized inverse of 3.
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Optimal combination forecasts

V,(h) = §B,(h) = S(S'S18) 18’3 ¥, (h)
Revised forecasts Initial forecasts
= Optimal P = (§'S/s)1s'S3! .
N Z}; is generalized inverse of 3.
m Revised forecasts unbiased: SPS = S.
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Optimal combination forecasts

Y, (h) = SB,(h) = S(S'Z[S) 18’3 ¥, (h)
Revised forecasts Initial forecasts
= Optimal P = (§'S/s)1s'S3! .
N Z}; is generalized inverse of 3.

m Revised forecasts unbiased: SPS = S.
m Revised forecasts minimum variance:

Var[¥,(h)|Y1,...,Y,] = S(§'S!s) s’
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Optimal combination forecasts

Y, (h) = SB,(h) = S(S'Z[S) 18’3 ¥, (h)
Revised forecasts Initial forecasts
= Optimal P = (§'S/s)1s'S3! .
N Z}; is generalized inverse of 3.

m Revised forecasts unbiased: SPS = S.
m Revised forecasts minimum variance:

Var[¥,(h)|Y1,...,Y,] = S(§'S!s) s’

m Problem: 3J;, hard to estimate.
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Approx. optimal forecasts

Y.(h) = S(S'E]s)1s'Z! ¥, (h)

Solution 1: OLS

m Assume e, ~ Sepn Where g is the forecast
error at bottom level.

m If Moore-Penrose generalized inverse used,
then (§'218)"18'ST = (§'S)1§’.

Y,(h) = S(5'S)"1S'Y,(h)
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Approx. optimal forecasts

Y.(h) = S(S'E]s)1s'Z! ¥, (h)

Solution 2: Rescaling
m Suppose we approximate X, by its diagonal.

: A \71—1 I
m Let A = [diagonal(21)] ~ contain inverse
one-step ahead in-sample forecast error
variances.

Y,(h) = S(S'AS)"1S'AY,(h)

Approximately optimal forecasts
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Approx. optimal forecasts

Y.(h) = S(S'AS)~1S'AY,(h)

Solution 3: Averaging

m If the bottom level error series are
approximately uncorrelated and have similar
variances, then A is inversely proportional to
the number of series contributing to each
node.

m So set A to be the inverse row sums of S:
A = diag(S x1)7!
where1=(1,1,...,1).
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Temporal hierarchies: quarterly
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Temporal hierarchies: quarterly

Basic idea:
w Forecast series at each available
frequency.

w Optimally combine forecasts within the
same year.
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Temporal hierarchies: monthly

W B ) W ) B ) i i

m Aggregate: 3,6,12
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Temporal hierarchies: monthly

nnual

W B ) W ) B ) i i

m Aggregate: 3,6,12
m Alternatively: 2,4, 12.
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Temporal hierarchies: monthly

nnual

W B ) W ) B ) i i

m Aggregate: 3,6,12
m Alternatively: 2,4, 12.
m How about: 2,3,4,.6,127
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Monthly data
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Experimental setup:

m M3 forecasting competition (Makridakis
and Hibon, 2000, //F). In total 3003 series.
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Experimental setup:

m M3 forecasting competition (Makridakis
and Hibon, 2000, //F). In total 3003 series.

m 1,428 monthly series with a test sample of
12 observations each.

m 756 quarterly series with a test sample of
8 observations each.

m Forecast each series with ETS (ARIMA)
models. Methods performed well in the
actual competition.
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Results: Monthly

Forecast Horizon (h)
sMAPE Annual SemiA FourM Q BiM M Average

(obs) (1) (2) (3) (4) (6) (12)

ETS
Initial 9.66 9.18 9.76 10.14 10.82 12.85 10.40
Bottom-up 8.38 9.14 9.78 10.06 11.04 12.85 10.21
OLS 7.80 8.64 9.39 9.72 10.68 12.68 9.82
Scaling 7.64 8.44 9.15 9.49 1045 12.40 9.60

Averaging 7.51 8.31 9.05 9.38 10.34 12.30 9.48
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Results: Quarterly

Forecast Horizon (h)

sMAPE Annual Semi-Ann Quart Average
(obs) (2) (4) (8)
ETS

Initial 10.50 9.97 9.84 10.10

Bottom-up 8.87 9.35 9.84 9.35

oLS 9.31 9.78 10.28 9.79

Scaling 8.75 9.19 9.70 9.21

Averaging 8.81 9.26 9.78 9.28
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More information

hts: An R Package for Forecasting Hierarchical or
Grouped Time Series

Rob J Hyndman, George Athanasopoulos, Han Lin Shang

il Vignette on CRAN

This paper describes several methods that are curro™ ) o0
for forecasting hierarchical time series. The methods included are: top-down, buttom-up,
middle-out and optimal combination. The implementation of these methods is illustrated by
using regional infant mortality counts in Australia.

Keywords: top-down, bottom-up, middle-out, optimal combination .

Introduction

Advances in data collection and storage have resulted in large numbers of time series that are
hierarchical in structure, and clusters of which may be correlated. In many applications the
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