Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) Model for Thailand Export

Chaleampong Kongcharoen∗1 and Tapanee Kruangpradit2

1Faculty of Economics, Thammasat University, Thailand
2Thailand Ministry of Commerce

23 June 2013

Abstract

This paper considers a univariate time series model to forecast Thailand exports to major trade partners. The main question is whether the explanatory variable, i.e. trade partners’ leading indicator, help improving forecasting performance. Specifically, we compare integrated autoregressive moving average (ARIMA) and ARIMA with explanatory variable. We find that for exports to China, European Union (27 countries) and the United State, the ARIMA model with leading indicator outperforms the ARIMA model. Moreover, at the Thailand Ministry of Commerce, the practitioners try to forecast the disaggregated export by commodities for each export destination then they combined those series for the country’s export forecast. We called this approach “indirect” forecast but we suspect that whether this procedure provides more accurate forecast than modeling the aggregate countries export, called “direct” forecast. From our rolling out-of-sample forecasts, we find that the indirect forecasts do not outperform the direct forecasts in all trade partners considered.

Keywords: Evaluating forecasts; ARIMAX model; Export; Leading indicator

1 Introduction

Between 1993 and 2011, export is accounted for about a half of Thailand GDP. Growth and economic volatility are heavily driven by exports. As a result, the Ministry of Commerce, as a main government agency to promote export and lessen negative shock on the export sector, requires appropriate forecasting models to forecast changes in Thailand export.

One of the main forecasting models used by the Ministry is linear time series model using Box-Jenkins approach or Integrated Autoregressive Moving Average (ARIMA) model. However, ARIMA model does not capture some turning points in export data. In order to improve forecasting performance, should we include other explanatory variable in to ARIMA model, i.e. ARIMAX model? The first question, we compare

∗Corresponding author. chaleampong@econ.tu.ac.th. This paper is a collaborative effort by the Faculty of Economics, Thammasat University and the Office of the Permanent Secretary, the Ministry of Commerce of the Kingdom of Thailand. This paper is presented at the 33rd International Symposium on Forecasting, South Korea, June 2013.
the forecasting performance of ARIMA and ARIMAX model for Thailand export data by trade partners and main export commodities.

For particular trade partners, sometimes, practitioners at the Ministry implement ARIMA model for each main commodities and then combine them to be that country’s export forecast, called indirect forecast. Does this method provide the better forecasting performance than implementing ARIMA model to country’s export, called direct forecast? Hubrich (2005)1 found that it depends on the Data Generating Process. Specifically, the second objective is to investigate the accuracy of direct and indirect forecasting approaches using Thailand export data.

2 Framework and Methodology

2.1 Time Series Model

Time series models use the past movements of variables in order to predict their future values. Unlike structural models that relate the variable we want to forecast with a set of other variables, the time series model is not based on economic theory. However, in term of forecasting, the reliability of the estimated equation should be based on out-of-sample performance (Stock and Watson, 2003). The time series model can mostly produce quite accurate forecasts, especially in case that there are multidimensional relationships among variables. Because of the complexity of international economic relations, large structural models are likely to suffer from omitted variable bias, misspecifications, simultaneous causality and other problems leading to substantial forecasting errors (Keck, Raubold and Truppia, 2009).

The time series model using Box-Jenkins approach has been proposed by Box and Jenkins (1970). This approach has been widely used in the literature because of its performance and simplicity. Most time series can be described by Autoregressive Moving Average (ARMA) model. The stationary series Y_t is said to be $ARMA(p,q)$ if

\[
Y_t - \phi_1 Y_{t-1} - \cdots - \phi_p Y_{t-p} = \epsilon_t + \theta_1 \epsilon_{t-1} + \cdots + \theta_q \epsilon_{t-q}
\]

where ϵ_t is white noise and there is no common factor between autoregressive polynomial, $(1 - \phi_1 L - \phi_2 L^2 - \cdots - \phi_p L^p)$, and moving average polynomial, $(1 + \theta_1 L + \cdots + \theta_q L^q)$, where L is a lag operator. Also, these polynomials can be represented by $\phi(L)$ and $\theta(L)$, respectively.

If the series is difference-stationary, the integrated autoregressive moving average (ARIMA) model

1The first discussion about this matter is provided by Theil (1954) and Grunfeld and Griliches (1960).
is implemented. The series Y_t is said to be $ARIMA(p, d, q)$ if

$$
\phi(L)(1 - L)^d Y_t = \theta(L) \varepsilon_t
$$

(2)

where d is the d^{th} difference operator.

Empirical studies on macroeconomic forecasting, such as Stock and Watson (1999), found that including leading indicators into the model improves forecasting performance. Hamilton and Perez-Quiros (1996) suggested that Composite Leading Indicator (CLI) is a good predictor for GDP especially in case of turning point in an economy. Since Thailand export depends heavily on trade-partners’ economy, we believe that our forecasting performance will improve if we include CLI into the model. The $ARIMA$ model will be extended into $ARIMA$ model with explanatory variable (X_t), called $ARIMAX(p, d, q)$. Specifically, $ARIMAX(p, d, q)$ can be represented by

$$
\phi(L)(1 - L)^d Y_t = \Theta(L)X_t + \theta(L) \varepsilon_t
$$

where X_t is trade partner’s CLI. Moreover, some export commodities, such as rice and agricultural goods, have seasonal feature. We employ seasonal $ARIMA$ and seasonal $ARIMAX$ model to capture seasonality.

2.2 Methodology

In this section, we explain the method that we use to evaluate forecasting performance. We compare the out-of-sample performance between $ARIMA$ model and $ARIMAX$ model. Moreover, we compare the forecasts from direct and indirect method.

In our empirical study, we separate our data into two sets: estimation sub-sample and evaluation sub-sample. For each forecasting experiment, we use rolling window method to keep the length of estimation period constant. We perform the following steps for our experiments:

1. We employ Augmented Dickey-Fuller test (Dickey and Fuller, 1979, 1981) to our export series. We find that all our export data that categorized into countries or commodities have a unit root. Then, for both $ARIMA$ and $ARIMAX$ model, we fixed the order of integration (d) at one.

2. For each experiment, we employ Schwarz Information Criteria (SIC) to select the optimal lags for autoregressive and moving average polynomials (p, q). In our experiment, we limit maximum order at six months. For explanatory variable, composite leading indicator (CLI), we tried different lags
between two to eight months and found that lag of three provide the superior result. Therefore, we use CLI with lag of three in our ARIMAX \((p, 1, q)\) model.

3. After obtaining the optimal lags, we compute three-period-ahead forecasts.

4. We use rolling window method and repeat steps one to three.

5. We obtain a set of forecasting data from both models. We compare accuracy of both models by using Mean Square Forecast Error (MSFE) and Diebold-Mariano test.

Diebold-Mariano test

Let \(Y_t\) be the data that we need to forecast. We have two forecasting series \(Y_{t+h|t}^1\) and \(Y_{t+h|t}^2\) which are based on the data until time \(t\). Specifically, \(Y_{t+h|t}^1\) is a forecasting series from an ARIMA model and \(Y_{t+h|t}^2\) is a forecasting series from an ARIMAX model. Then we can compute forecast errors \(\epsilon_{t+h|t}^1 = Y_{t+h} - Y_{t+h|t}^1\) and \(\epsilon_{t+h|t}^2 = Y_{t+h} - Y_{t+h|t}^2\).

Assume that we predict \(h\)-step forecasts for \(t = t_0, \ldots, T\). Then, we have two series of \(T_0\) forecasts and two errors series, \(\{\epsilon_{t+h|t}^1\}^T_{t_0}\) and \(\{\epsilon_{t+h|t}^2\}^T_{t_0}\). We can measure an accuracy using the loss function \(L(Y_{t+h}, Y_{t+h|t}^i)\) where \(i = 1, 2\). Two popular loss functions are square error loss \((\epsilon_{t+h|t}^i)^2\) and absolute error loss \(|\epsilon_{t+h|t}^i|\). If any two forecast methods perform indifferently, these loss measures should be close. Diebold-Mariano test is based on the null hypothesis

\[
H_0 : E[L(\epsilon_{t+h|t}^1)] = E[L(\epsilon_{t+h|t}^2)]
\]

against

\[
H_1 : E[L(\epsilon_{t+h|t}^1)] \neq E[L(\epsilon_{t+h|t}^2)].
\]

Furthermore, we can rewrite these hypotheses in term of the difference between the losses, \(E[d_t = 0]\) where

\[
d_t = L(\epsilon_{t+h|t}^1) - L(\epsilon_{t+h|t}^2).
\]

Under the null hypothesis that both forecasting methods provide the same accuracy, \(H_0 : E(d_t) = 0\), the Diebold-Mariano (D-M) statistic can be calculated by

\[
S = \frac{\bar{d}}{(LRT_{d/T})^{1/2}}
\]

where \(\bar{d} = \frac{1}{T_0} \sum_{t=t_0}^T d_t\) and \(LRT_{\bar{d}} = cov(d_t, d_{t-j})\). Diebold and Mariano (1996) has shown that under \(H_0\) is true, \(S \sim N(0, 1)\). In practice, we will calculate the different between the loss function and regress the
differences on a constant term, then we will test the significance of the constant term.

2.3 Data

The data considered in this study include monthly export data by countries and commodities from Thailand Ministry of Commerce and Composite Leading Indicator from OECD\(^2\). Ten principal countries and two groups i.e. China, Japan, USA, EU(27), Hong Kong, Malaysia, Singapore, Vietnam, Indonesia, Australia, other countries are considered in our study. Export by countries data are ranging from January 1996 to December 2011. We fixed an estimation period at 120 months, therefore we have 72 forecasts. For export by commodities, the data are ranging from January 2002 to December 2011. We fixed the estimation period at 72 months, so we have 60 forecasts. For CLI, there is no monthly CLI for Malaysia, Singapore, Indonesia, Vietnam, and other countries. Five Asian countries CLI is used for Malaysia, Singapore, Indonesia, Vietnam and OECDs CLI is used for other countries group.

3 Empirical Results

After we obtained the optimal lags for \(p \) and \(q \), we forecast the export series and compare the forecasts from ARIMA model and ARIMAX model. The Mean Squares Forecast Errors (MSFE) and Diabole-Mariano \((D - M)\) statistics are calculated and shown in Table 1. We consider one- to three-period-ahead forecasts. From Table 1, we find that the forecast performance of ARIMAX model are statistically superior than one of ARIMA model in case of exports to Japan, USA and EU countries for all forecast horizons we considered. Furthermore, for the rest of the world data and whole world, the ARIMAX model provide the better forecasting results. On the contrary, for exports to Hong Kong, Malaysia, Singapore, India, Vietnam, and Indonesia, the ARIMAX model mostly provides the better MSFE than the ARIMA model. However, those MSFEs are not statistically different.

In order to address our second question, we consider two methods of forecasting, i.e. direct and indirect methods. In this exercise, we select four major trade counterparts which are China, Japan, USA and EU (27 countries) to compare these two forecast procedures. We also consider both ARIMA and ARIMAX models. The results are presented in Table 2. We found that, except for export to Japan data with ARIMA model, the forecasting performances of direct and indirect approaches are not statistically different.

Moreover, we consider the usefulness of CLI in forecasting exports in each commodity group. The results are presented in Table 3. We found that mostly the performances of ARIMA and ARIMAX models for

\(^2\)stats.oecd.org/Index.aspx?DatasetCode=MEI_CLI
Table 1: MSFEs - Export by countries, using ARIMA and ARIMAX

<table>
<thead>
<tr>
<th>Country</th>
<th>ARIMAX</th>
<th>ARIMA</th>
<th>$D-M$</th>
<th>ARIMAX</th>
<th>ARIMA</th>
<th>$D-M$</th>
<th>ARIMAX</th>
<th>ARIMA</th>
<th>$D-M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>37,815</td>
<td>46,363</td>
<td>-8,547</td>
<td>48,704</td>
<td>66,521</td>
<td>-17,816</td>
<td>58,852</td>
<td>78,364</td>
<td>-19,512</td>
</tr>
<tr>
<td>Japan</td>
<td>17,848</td>
<td>26,249</td>
<td>-8,401.4**</td>
<td>22,977</td>
<td>37,931</td>
<td>-14,953***</td>
<td>31,399</td>
<td>55,794</td>
<td>-24,403**</td>
</tr>
<tr>
<td>USA</td>
<td>13,261</td>
<td>22,363</td>
<td>-9,102.6***</td>
<td>18,508</td>
<td>32,063</td>
<td>-13,555***</td>
<td>21,630</td>
<td>43,152</td>
<td>-21,522***</td>
</tr>
<tr>
<td>EU(27)</td>
<td>27,801</td>
<td>43,958</td>
<td>-16,156.8**</td>
<td>34,633</td>
<td>64,565</td>
<td>-29,932**</td>
<td>40,807</td>
<td>81,851</td>
<td>-41,043**</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>28,391</td>
<td>29,452</td>
<td>-1,061</td>
<td>35,823</td>
<td>55,794</td>
<td>-20,971**</td>
<td>40,369</td>
<td>59,095</td>
<td>-18,726**</td>
</tr>
<tr>
<td>Malaysia</td>
<td>18,689</td>
<td>20,185</td>
<td>-1,497</td>
<td>23,117</td>
<td>27,237</td>
<td>-4,119</td>
<td>28,310</td>
<td>33,131</td>
<td>-4,820</td>
</tr>
<tr>
<td>Singapore</td>
<td>22,500</td>
<td>24,574</td>
<td>-2,074</td>
<td>26,772</td>
<td>32,005</td>
<td>-5,233</td>
<td>32,606</td>
<td>42,032</td>
<td>-9,425**</td>
</tr>
<tr>
<td>India</td>
<td>2,430</td>
<td>2,346</td>
<td>84</td>
<td>3,082</td>
<td>3,387</td>
<td>333</td>
<td>3,667</td>
<td>4,342</td>
<td>675</td>
</tr>
<tr>
<td>Vietnam</td>
<td>5,545</td>
<td>5,838</td>
<td>-292.3</td>
<td>6,485</td>
<td>7,309</td>
<td>-824</td>
<td>7,405</td>
<td>8,341</td>
<td>-935</td>
</tr>
<tr>
<td>Indonesia</td>
<td>7,495</td>
<td>9,665</td>
<td>-2,170</td>
<td>8,675</td>
<td>11,355</td>
<td>-2,680</td>
<td>11,500</td>
<td>15,128</td>
<td>-3,628</td>
</tr>
<tr>
<td>Australia</td>
<td>35,772</td>
<td>31,962</td>
<td>3,809*</td>
<td>44,462</td>
<td>58,468</td>
<td>14,006</td>
<td>48,833</td>
<td>66,570</td>
<td>17,737</td>
</tr>
<tr>
<td>Other countries</td>
<td>163,921</td>
<td>226,126</td>
<td>-62,205**</td>
<td>208,139</td>
<td>271,066</td>
<td>-62,927**</td>
<td>235,264</td>
<td>330,022</td>
<td>-94,758**</td>
</tr>
<tr>
<td>World</td>
<td>1,834,572</td>
<td>2,891,132</td>
<td>-1,056,560**</td>
<td>2,380,657</td>
<td>4,296,280</td>
<td>-1,915,623***</td>
<td>3,000,026</td>
<td>5,183,303</td>
<td>-2,183,278**</td>
</tr>
</tbody>
</table>

Source: Authors’ calculation from forecasts using data between January 1996 and December 2011 with 120-month rolling window.
Note: Numbers in column $D-M$ are the difference between errors from two models. Negative value means the MSFE from ARIMAX model is less than one from ARIMA model. The differences marked with an asterisk (***) are significant at the 1 percent level of significance; (**), at the 5 percent level; and (*), at the 10 percent level, respectively.

Table 2: MSFEs - Export by countries, using Indirect and Direct procedures

<table>
<thead>
<tr>
<th>Country</th>
<th>Indirect $h = t + 1$</th>
<th>Direct $h = t + 1$</th>
<th>$D-M$ stat $h = t + 1$</th>
<th>Indirect $h = t + 2$</th>
<th>Direct $h = t + 2$</th>
<th>$D-M$ stat $h = t + 2$</th>
<th>Indirect $h = t + 3$</th>
<th>Direct $h = t + 3$</th>
<th>$D-M$ stat $h = t + 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>43,885</td>
<td>43,880</td>
<td>-5</td>
<td>76,273</td>
<td>68,390</td>
<td>-7,882</td>
<td>114,440</td>
<td>92,195</td>
<td>-22,245</td>
</tr>
<tr>
<td>Japan</td>
<td>22,241</td>
<td>19,817</td>
<td>-2,424</td>
<td>34,044</td>
<td>35,254</td>
<td>1,210</td>
<td>51,326</td>
<td>47,694</td>
<td>-3,632</td>
</tr>
<tr>
<td>USA</td>
<td>26,572</td>
<td>35,029</td>
<td>8,457**</td>
<td>41,887</td>
<td>58,468</td>
<td>16,581***</td>
<td>62,049</td>
<td>86,570</td>
<td>24,520**</td>
</tr>
<tr>
<td>EU(27)</td>
<td>35,772</td>
<td>31,962</td>
<td>-3,809</td>
<td>44,462</td>
<td>42,203</td>
<td>2,259</td>
<td>48,433</td>
<td>46,229</td>
<td>2,203</td>
</tr>
<tr>
<td>Other countries</td>
<td>163,921</td>
<td>226,126</td>
<td>-62,205**</td>
<td>208,139</td>
<td>271,066</td>
<td>-62,927**</td>
<td>235,264</td>
<td>330,022</td>
<td>-94,758**</td>
</tr>
<tr>
<td>World</td>
<td>1,834,572</td>
<td>2,891,132</td>
<td>-1,056,560**</td>
<td>2,380,657</td>
<td>4,296,280</td>
<td>-1,915,623***</td>
<td>3,000,026</td>
<td>5,183,303</td>
<td>-2,183,278**</td>
</tr>
</tbody>
</table>

Source: Authors’ calculation from forecasts using data between January 2002 and December 2011 with 72-month rolling window.
Note: Numbers in column $D-M$ are the difference between errors from two models. Negative value means the MSFE from indirect method is less than one from direct method. The differences marked with an asterisk (***) are significant at the 1 percent level of significance; (**), at the 5 percent level; and (*), at the 10 percent level, respectively.
export commodities in China, Japan, U.S. and E.U. (27 countries) are not statistically different. Moreover, in case that both models provide different performance, there is uncertainty about which model is better.

Table 3: MSFEs - Export to USA, Japan, China, EU(27) by commodities, using ARIMA and ARIMAX models

<table>
<thead>
<tr>
<th>Product</th>
<th>USA ARIMA</th>
<th>USA ARIMAX</th>
<th>D-M-stat</th>
<th>Japan ARIMA</th>
<th>Japan ARIMAX</th>
<th>D-M</th>
<th>China ARIMA</th>
<th>China ARIMAX</th>
<th>D-M</th>
<th>EU(27) ARIMA</th>
<th>EU(27) ARIMAX</th>
<th>D-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>219</td>
<td>278</td>
<td>-59*</td>
<td>521</td>
<td>951</td>
<td>-429**</td>
<td>4,242</td>
<td>5,312</td>
<td>-1070</td>
<td>313</td>
<td>433</td>
<td>-120</td>
</tr>
<tr>
<td>Rubber</td>
<td>76</td>
<td>88</td>
<td>-11</td>
<td>37</td>
<td>22</td>
<td>155</td>
<td>416</td>
<td>549</td>
<td>-133</td>
<td>62</td>
<td>69</td>
<td>-7</td>
</tr>
<tr>
<td>Cassava products</td>
<td>1.2</td>
<td>0.8</td>
<td>0.3</td>
<td>13</td>
<td>14</td>
<td>-0.8</td>
<td>1,004</td>
<td>1,042</td>
<td>-38</td>
<td>53</td>
<td>43</td>
<td>10</td>
</tr>
<tr>
<td>Frozen shrimp</td>
<td>200</td>
<td>162</td>
<td>38</td>
<td>17</td>
<td>18</td>
<td>-0.9</td>
<td>2.3</td>
<td>2.8</td>
<td>-0.5</td>
<td>37</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Canned shrimp</td>
<td>184</td>
<td>144</td>
<td>-39*</td>
<td>62</td>
<td>53</td>
<td>9*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>111</td>
<td>118</td>
<td>-7</td>
</tr>
<tr>
<td>Canned fruit</td>
<td>46</td>
<td>49</td>
<td>-3</td>
<td>4.6</td>
<td>4.2</td>
<td>0.4</td>
<td>0.32</td>
<td>0.30</td>
<td>0.01</td>
<td>39</td>
<td>40</td>
<td>-8</td>
</tr>
<tr>
<td>Sugar</td>
<td>-</td>
</tr>
<tr>
<td>Computer and parts</td>
<td>2,094</td>
<td>2,072</td>
<td>21</td>
<td>500</td>
<td>556</td>
<td>-56</td>
<td>6,359</td>
<td>7,374</td>
<td>-1,015</td>
<td>2,349</td>
<td>2,698</td>
<td>-349</td>
</tr>
<tr>
<td>Motor cars and parts</td>
<td>27</td>
<td>33</td>
<td>-6</td>
<td>1,057</td>
<td>1,195</td>
<td>-138</td>
<td>26</td>
<td>24</td>
<td>2.5</td>
<td>594</td>
<td>911</td>
<td>-316</td>
</tr>
<tr>
<td>Electrical apparatus and parts</td>
<td>360</td>
<td>403</td>
<td>-43</td>
<td>272</td>
<td>257</td>
<td>14</td>
<td>129</td>
<td>107</td>
<td>21</td>
<td>286</td>
<td>375</td>
<td>-89**</td>
</tr>
<tr>
<td>Plastic and plastic products</td>
<td>26.5</td>
<td>26.0</td>
<td>0.3</td>
<td>168</td>
<td>224</td>
<td>-56</td>
<td>497</td>
<td>614</td>
<td>-117*</td>
<td>60</td>
<td>96</td>
<td>-36*</td>
</tr>
<tr>
<td>Jewelry and accessories</td>
<td>365</td>
<td>466</td>
<td>-101</td>
<td>94</td>
<td>92</td>
<td>2</td>
<td>7.1</td>
<td>6.4</td>
<td>0.7</td>
<td>564</td>
<td>683</td>
<td>-110</td>
</tr>
<tr>
<td>Garment</td>
<td>139</td>
<td>241</td>
<td>-101**</td>
<td>47</td>
<td>49</td>
<td>-2</td>
<td>26.2</td>
<td>28.6</td>
<td>-2.4</td>
<td>10,725</td>
<td>10,389</td>
<td>336</td>
</tr>
<tr>
<td>Other products</td>
<td>6,064</td>
<td>9,745</td>
<td>368</td>
<td>8,753</td>
<td>9,130</td>
<td>-376</td>
<td>11,394</td>
<td>10,345</td>
<td>1,049</td>
<td>20,087</td>
<td>20,863</td>
<td>-776</td>
</tr>
</tbody>
</table>

Source: Authors’ calculation from forecasts using data between January 2002 and December 2011 with 72-month rolling window.
Note: Numbers in column D-M are the difference between errors from two models. Negative value means the MSFE from ARIMAX model is less than one from ARIMA model. The differences marked with an asterisk (***) are significant at the 1 percent level of significance; (**), at the 5 percent level; and (*), at the 10 percent level, respectively. "-" indicates that data is too few to implement time series models.

4 Conclusion

This paper has examined the forecasting performance of ARIMAX and ARIMA models for Thailand export data. We also examined the direct and indirect approaches of forecasting. We find that, for country-level data, ARIMAX model outperforms ARIMA model only in some principal trade partners; Japan, USA, EU(27) and Australia. For commodity-level data, mostly, there is no statistically difference between performances of ARIMAX and ARIMA model. Moreover, for Thailand export data, indirect method does not provide better forecasting performance than direct method. As a result, we suggest practitioners at the Ministry to implement the ARIMAX model for export data using the direct method.

References

