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Abstract

Based on a set of carefully designedMonte Carlo exercises, this paper documents the behav-
ior and performance of several newly developed advanced forecast combination algorithms
in unstable environments, where performance of candidate forecasts are cross-sectionally
heterogeneous and dynamically evolving over time. Results from these exercises provide
guidelines regarding the selection of forecast combination method based on the nature, fre-
quency, and magnitude of instabilities in forecasts as well as the target variable. Following
these guidelines, a simple forecast combination procedure is proposed and demonstrated
through a real-time forecast combination exercise using the U.S. Survey of Professional
Forecasters, where combined forecasts are shown to have superior performance that is not
only statistically significant but also of practical importance.
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1. Introduction

Combining forecasts has long been a standard practice for researchers and policymakers.
A large number of studies have clearly demonstrated that combining forecasts results in
improved forecast accuracy. Many new and exciting forecast combination algorithms have
been proposed recently. However, even today, practitioners often resort to the most basic
method of combination, simple averaging, despite the availability of sophisticated forecast
combination algorithms. One of the main reasons behind this preference is, arguably, the
“forecast combination puzzle”2. While explanations of the puzzle have since been offered
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(c.f., Smith & Wallis (2009)), simple averaging remains the most popular method in the
field. The relatively mediocre performance of more sophisticated algorithms in practice is
often attributed to structural instabilities in real world data. Several studies3 have stressed
the need for combination algorithms to be robust to different types of instabilities.

However, most of relevant existing studies focus on some specific algorithm’s robust-
ness in some specific type of instability4. These studies, many of which also propose new
combination algorithms or strategies, invariably show the effectiveness of proposed algo-
rithms under specific and favorable conditions. While making valuable contributions in
their own right, limited by space and scope, they give little consideration to alternative al-
gorithms or alternative types of instabilities. There has been no systematic study that looks
into the robustness of several algorithms in realistic unstable environments and documents
their characteristics across a wide array of scenarios.

This void is in fact quite understandable. Theoretical work on this issue is difficult if
not impossible. Each combination algorithm works under a strict set of assumptions with
proved optimality. Deviations from the assumptions often make the math intractable, espe-
cially when the deviations involve time-varying parameters, thick-tailed distributions, and
non-stationarity. Studies using real world data is also limited. Macroeconomists rarely see
experimental data. Using observational data, while one easily observes the performance of
different combination algorithms, no clear clue of why the algorithms perform the way they
are can be easily deduced. To systematically study the performance and robustness of fore-
cast combination algorithms in unstable environments, the only feasible way is simulation.
In fact, as early as 1989, Armstrong (1989) have explicitly cited “realistic simulations” as
one of three broad directions for future research, along with meta-analysis and rule-based
forecasting.

The main objective of this study is to provide some evidence regarding the robustness
of various forecast combination algorithms in a number of situations with structural insta-
bilities that are commonly seen but difficult to quantify in practice. Two families of combi-
nation algorithms are studied. The first is the set of aggregate forecast through exponential
re-weighting (AFTER) algorithms, proposed in Yang (2004), Wei & Yang (2012), and most
recently Cheng&Yang (2015). These algorithms accommodate the squared error loss, abso-
lute error loss, and a synthetic loss, which is a flexible mixture of squared and absolute error
losses. They are designed to adapt quickly to changes in candidate forecasters’ performance
and deliver improved accuracy while guard against outliers. They work both in terms of
being robust to outliers in candidate forecasts, and in terms of producing fewer outliers in
combined forecasts. The other is the algorithm proposed in Sancetta (2010). This algorithm
complements the AFTER algorithms by offering more flexibility in the choice of loss func-
tions and by relaxing the assumptions on candidate forecasts. It also includes a shrinkage

Lahiri et al. (2015) documented that when combining U.S. SPF forecasts using many of the methods also con-
sidered in this study, simple average remains difficult to beat.
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Pesaran et al. (2013) Tian & Anderson (2014)
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step (i.e., shrinking individual weights towards equal weight) that helps to hedge against
structural instabilities. Both families of algorithms have been shown by their respective au-
thors to perform well in simulated environments.

In generating simulated data sets that accommodate structural instabilities, the stan-
dard approach is to use models such as simple linear regression models (such as in Cheng
& Yang (2015)) and ARIMA models (such as in Pesaran & Timmermann (2005), Sancetta
(2010), and Chevillon (2016)). Candidate forecasts are usually misspecified versions of the
true model. While this approach creates clear linkage between the data generating process
and theoretical assumptions, it is often not immediately clear how well candidate forecasts
perform, especially when the models include complex settings to induce instabilities. In
this study, a different approach is used, where aggregate shocks and forecast errors are di-
rectly drawn from standard distributions. This way, the magnitude of unbiasedness of can-
didate forecasts, the variance of idiosyncratic forecast errors, and that of aggregate shocks
and uncertainty are immediately clear from the data generating process. Furthermore, it is
immediately clear what is the true optimum weight for each candidate forecaster.

This novel design of the data generating process allows the creation of a comprehensive
set of scenarios with different but general types of structural instabilities, including: hetero-
geneous and time-varying relative forecast performance induced by one-time or multiple
breaks in forecast bias or forecast error variance; gradually but constantly changing forecast
performance; unexpected aggregate shocks to all forecasters; and forecaster specific outliers.
Results from these simulation exercises suggest that estimation errors that arise from hav-
ing to estimate the weights used in combination is significant. For several algorithms in
the AFTER family, there may be cases where the inaccuracies arising from estimation error
outweigh the performance gain from combining forecasts. In such cases, pre-filtering or
grouping candidate forecasts with similar performance, whereby significantly reduces the
number of candidate forecasts, may be beneficial. On the other hand, different combination
algorithms excel in different types of instabilities: The method proposed by Sancetta (2010)
is more robust to discrete changes in forecast error variance and the algorithm proposed in
Cheng & Yang (2015) are more robust to aggregate shocks. Based on the simulation results,
a simple forecast combination strategy is demonstrated to be useful in real-time combina-
tion of forecasts of four important macroeconomic variables reported in the U.S. Survey of
Professional Forecasters.

While performance of different combination algorithms are reported relative to that of
simple average, the intention of this study is not to run a horse race of different algorithms.
Whether an algorithm delivers superior performance than the simple average benchmark is
clearly a function of the parameters in simulation design. Therefore, when comparisons are
made, the focus lies in the performance of an algorithm across different types of instabilities.

The rest of the paper is organized as follows: Section 2 introduces the combinationmeth-
ods used in this study. Section 3 describes the setup of the simulation exercises and presents
simulation results. In Section 4, a forecast combination strategy based on the lessons learned
from Section 3 is applied to combining U.S. SPF forecasts. Concluding remarks are in Sec-
tion 5.
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2. Combination Methods

In this study, five recently developed advanced forecast combination algorithms are ex-
amined: s-AFTER algorithm from Yang (2004), L1-AFTER algorithm from Wei & Yang
(2012), h-AFTER algorithm from Wei & Yang (2012), L210-AFTER algorithm from Cheng
& Yang (2015), and the algorithm proposed in Sancetta (2010)5. In addition, six widely-
used combination methods are also examined: mean, median, trimmed mean, Winsorized
mean, recent best, and BG (Bates & Granger, 1969). Each of the methods and algorithms
used here could potentially deliver superior performance than simple average, when used
properly in a suitable environment.

Consider the task of combining a potentially large number of candidate forecasts of the
same target variable in real time: At each time period t + 1, after the latest release (yt) of
the target variable y becomes available, a set of weights ωj,t+h is calculated so as to combine
the forecasts of yt+h from candidates j = 1, 2, 3 . . . , n, where h is the forecast horizon. The
combined forecast is denoted ŷt+h. Without loss of generality, in this study, h = 1. Let
ej,t ≡ yt - ŷj,t be the most recent (period t) forecast error, and σ̂2

j,t be the estimated variance
for candidate forecast series j and time t. In addition, let to be the first period in the sample.

The AFTER algorithms differ in terms of what loss function is used as the key ingredient
in combination formulas. Proper selection of loss functions for this purpose helps to create a
more robust algorithm. The AFTER family examined in this study contains four algorithms
each with a unique loss function. The s-AFTER uses squared error loss (or L2 loss). The
L1-AFTER uses absolute error loss (or L1 loss). The h-AFTER uses Huber loss. And the
L210-AFTER uses a synthetic loss function – a mixture of L2, L1, and L0 loss (discussed
below). When applying the s-AFTER algorithm to combiningU.S. SPF forecasts, Lahiri et al.
(2015) observed that often, performance of the algorithm is inversely affected by just a few
large errors or outliers around turning points in the target variable, rather than many small
errors scattered throughout the sample period. The latest addition to the AFTER family,
L210-AFTER, is designed to specifically address this issue. By providing a direct penalty for
forecast outliers through the use of the L0 loss, L210-AFTER is more robust to outliers in
candidate forecasts and it produces fewer outliers itself.

Weights of s-AFTER can be written recursively as

ω̂s-AFTERj,t+1 =
ω̂s-AFTERj,t σ̂-1

j,t exp
(
-
e2j,t
2σ̂2

j,t

)
∑n

j=1

[
ω̂s-AFTERj,t σ̂-1

j,t exp
(
-
e2j,t
2σ̂2

j,t

)] for t ≥ to + 1 (1)

where ω̂s-AFTERj,to = 1
n ∀j, i.e., equal weights are used in the very first period.

5Below, the first four may collectively be referred to as the AFTER algorithms or the AFTERs. Sancetta’s
algorithm is referred to as the SAN algorithm.
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Weights of L1-AFTER can be written recursively as

ω̂L1-AFTER
j,t+1 =

ω̂L1-AFTER
j,t d̂-1j,t exp

(
- |ej,t|
d̂j,t

)
∑n

j=1

[
ω̂L1-AFTER
j,t d̂-1j,t exp

(
- |ej,t|
d̂j,t

)] for t ≥ to + 1 (2)

where ω̂L1-AFTER
j,to = 1

n ∀j, i.e., equal weights are used in the very first period. As suggested

in Yang (2004), d̂j,t is simply substituted by σ̂j,t.
Weights of h-AFTER can be written recursively as

ω̂h-AFTERj,t+1 =
ω̂h-AFTERj,t σ̂-1

j,t exp
(
-hj,t

)
∑n

j=1

[
ω̂h-AFTERj,t σ̂-1

j,t exp
(
-hj,t

)] for t ≥ to + 1 (3)

where ω̂h-AFTERj,to = 1
n ∀j, i.e., equal weights are used in the very first period; hj,t = φs(

ej,t√
2σj,t

).

φs(·) is the loss function defined as

φs(x) =


x2 if - 1 ≤ x ≤ s
2sx - s2 if x > s
-2x - 1 otherwise

(4)

where the parameter s > 0 controls the shape of the loss, with the loss function being sym-
metric when s = 1 and asymmetric otherwise. Figure 1, a reproduction of Figure 1 in Wei
& Yang (2012), compares the absolute error loss, Huber loss with s = 1.5 and squared error
loss.

Weights of L210-AFTER can be written recursively as

ω̂L210-AFTER
j,t+1 =

ω̂L210-AFTER
j,t δ̂-1/2j,t exp

(
-L210(ej,t)/(2δ̂j,t)

)
∑n

j=1

[
ω̂L210-AFTER
j,t δ̂-1/2j,t exp

(
-L210(ej,t)/(2δ̂j,t)

)] for t ≥ to + 1 (5)

where ω̂L210-AFTER
j,to = 1

n ∀j, i.e., equal weights are used in the very first period. As discussed
in Cheng &Yang (2015), the version of the algorithm implemented here includes automated
data-driven estimation of the scale-parameter6, i.e., δ̂j,t = (1/t)

∑t
l=1 L210(yl - ŷj,l).

L210(·), the synthetic loss function designed for outlier-protective combination, is de-
fined as

L210(x) = |x| + α1
x2

m
+ α2mL̃0(x|γ1m, γ2m, r1r2) (6)

6See Remark 3 to Theorem 2 in Cheng & Yang (2015).
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whereα1,α2, γ1, γ2, r1, r2, andm are parameters of the loss function7. Figure 2, a reproduc-
tion of Figure 1 in Cheng and Yang(2015), shows the L̃0(·) loss function, which is designed
to provide direct penalty to outliers. The loss function is defined as

L̃0(x) =



1, if x ≥ γ1 or x ≤ γ2

1 - (x-γ1)2
γ2
1 (1-r1)2

if r1γ1 ≤ x ≤ γ1

1 - (x-γ2)2
γ2
2 (1-r2)2

if γ2 ≤ x ≤ r2γ2

0 if γ2r2 ≤ x ≤ γ1r1

(7)

The SAN algorithm is implemented according to Algorithm 1 in Sancetta (2010). In ad-
dition to allowing flexible loss functions to be used in deriving the weights, the algorithm
features a shrinkage step, where estimated weights for candidate forecasters are shrinked
towards equal weight. This feature in theory leads to suboptimal performance in stable en-
vironment, where either one candidate forecaster is clearly better than the rest, or when the
optimal combination weights change only slowly. But this feature should help in unstable
environments, where the optimal combination weights abruptly changes or when there are
forecast outliers. In addition, shrinkage, even when not delivering improved accuracy, often
serves well in reducing the variability of the algorithm and outliers in combined forecasts
(see Sancetta (2007) for additional empirical evidence).

The core step in the SAN algorithm is to compute the t+1weight before shrinkageωSAN
′

j,t+1
for each forecaster, based on her previous-period (t) weight ωSANj,t and current-period loss
lt(ωSANt ). Let∇lt(ωSANt ) be the gradient of the loss function with respect to previous period
weight ωSANt , and∇jlt(ωSANt ) be its jth element. The current-period weight is calculated as:

ωSAN
′

j,t+1 =
ωSANj,t exp

[
-ηt-α∇jlt(ωSANj,t )

]
∑n

j=1

{
ωSANj,t exp

[
-ηt-α∇jlt(ωSANj,t )

]} (8)

where η > 0 is the learning rate, and α ∈ (0, 1/2] is a parameter that controls the speed of
learning. In the shrinkage step that gives the current-period weight used for combination
ωSANj,t+1, all the ω

SAN′
j,t+1 s that are lower than a predetermined small threshold γ/n is replaced

by the threshold weight γ/n, and the remaining weights are scaled such that all weights add
up to 1. The threshold γ/n is controlled by the parameter γ ∈ [0, 1], given the number of
candidate forecasts to be combined n.

In addition to the AFTERs and SAN algorithms, several standard forecast combination
methods are implemented: Simple average (SA) assigns the same weight to every candidate
forecasts, i.e., ωj,t = 1/n, ∀j. Median (ME) produces combined forecast as the median of
all candidate forecasts. Bates and Granger’s method (BG) is introduced in Bates & Granger

7Please refer to Cheng & Yang (2015) for detailed discussions and examples of their interpretation and
selection. In general, different parameter choices are needed for different applications. The optimum selection
of parameters is beyond the scope of this study.
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(1969), where the weights are assigned as ωj,t+1 = σ̂-2
j,t /

∑n
i=1 σ̂

-2
i,t . Trimmed mean(TM)

produces combined forecast as the mean of candidate forecasts after discarding the largest
and the smallest k forecasts. k can be determined in one of two ways. (1) One may explic-
itly specify k. (2) One may specify the percentage of candidate forecasts to be trimmed, p,
where then k is calculated as k = max{||n · p

100 ||, 1} where ||x|| gives the nearest integer to
x. Similar to trimmed mean, Winsorized mean (WM) produces combined forecast as the
mean of candidate forecasts after replacing the largest k forecasts with the largest forecast in
the remaining n-2k forecasts and replacing the smallest k forecasts with the smallest forecast
in the remaining n - 2k forecasts. k is specified or calculated the same way as in trimmed
mean. Finally, as a naive benchmark, recent best (RB) identifies the best forecast from the
most recent period and uses the forecast made by the same forecaster as combined forecast.
Specifically, weights are assigned as ωj,t+1 = 1 if ej,t = min{e1,t, e2,t, . . . , en,t} and ωj,t+1 = 0
otherwise.

For all the above methods where the calculation of σ̂2
j,t is required, a window size pa-

rameter w is specified such that σ̂2
j,t = w-1 ∑w

τ=1 e
2
j,t-τ+1 This parameter w ∈ N controls

the length of the “memory” of combination algorithms. It puts a limit on how far back an
algorithm goes when calculating the performance of a candidate forecaster. Since the focus
of this study is on the behavior and performance of different combination algorithms in un-
stable environment, the need of limiting the “memory” of algorithms naturally arises. Note
that this limit is imposed only on the calculation of σ̂2

j,t. For algorithms that recursively up-
date each forecaster’s weight, information from earlier time periods that are outside of the
windoww is carried over. As discussed below, this may explain the apparent lack of agility of
certain algorithms in cases where there are breaks in performance of candidate forecasters.

3. Simulation Setup and Results

3.1. Simulation setup
Consider the task of combining multiple forecasts ŷjt of yt with j = 1, 2, . . . , n and t =

1, 2, . . . ,T. j is used to index forecasters and t is the usual time index. Whenever applicable,
estimation ofweights is based on a rollingwindowofw periods, i.e., weights used to combine
forecasts of at is based on information from t -w to t - 1. Unless otherwise specified, for each
exercise, consider n ∈ {5, 30}, T = 300, and w ∈ {24, 60}. The first 60 periods are used as
training sample and are excluded when evaluating the performance of combined forecasts.
In addition, let

yt = st + at, at ∼ N (0, 1) (9)

ŷjt = st + bjt + εjt, εit ∼ N (0,σ2
it) (10)

where bjt is an individual specific and potentially time-varying bias term, εjt is idiosyncratic
component of forecast error, and σ2

jt is an individual specific and potentially time-varying
variance of εjt. st is the structural or predictable part of yt. at represents unpredictable
aggregate shock. In this setup, the forecast error is

ejt = yt - ŷjt = at - bjt - εjt, (11)
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which is to say that forecast error consists of aggregate shock, forecast bias, and forecaster-
specific error.

The setup introduced here is a very general one, consistent with a wide variety of fore-
casting scenarios. There is no assumption on the nature of the process of the target variable.
st, the part of yt that can be forecast, can be any process. Since st will not explicitly enter
the expression of forecast error, no specific assumption or restriction need to be imposed
on it. When n = 5, the situation is similar to one where forecasts being combined are from
a small set of (not necessarily purely numerical) models. When n = 30, the situation is
similar to combining survey forecasts. w = 24 can be associated with a highly unstable en-
vironment; w = 60 may be used in a more stable environment by forecasters in practice.
These choices aim at creating an environment that is often found when combining macroe-
conomic forecasts on a monthly basis. Directly drawing different components of forecast
error (as opposed to using potentially misspecified models to generate forecasts) makes dif-
ferences in forecasting performance intuitively clear and precisely controllable. A fixed T
comes without loss of generality too: When reporting the results below, when necessary,
evaluation of combined forecasts is carried out without using the full T periods, mimicking
settings with smaller Ts.

For each given set of parameters {n,T,w}, the simulation is carried out as follows:

1. Draw {bjt,σ2
jt} ∀j according to the specification of the simulation exercise. Details on

the set up of each exercise are presented below.
2. For each t, draw at and εjt ∀j given σ2

jt. The forecast error ejt is calculated as yt - ŷjt =
at - bjt - εjt.

3. Apply combination algorithms discussed previously to generate combined forecasts.
Record the MSE of the combined forecasts produced by each algorithm.

4. Repeat Step 2 to Step 3 200 times. For each algorithm, obtain the average MSE across
these repetitions. These MSEs are conditioned on specific draws of bjt and σ2

jt.
5. Repeat Step 1 to Step 4 1000 times. For each algorithm, obtain the averageMSE across

these repetitions. These MSEs are what reported below, which are conditioned only
on distributional assumptions about bjt and σ2

jt.

For each simulation exercise, relative MSEs are reported instead of MSEs, which vary
from exercise to exercise. The relative MSE of an algorithm is its MSE from the last step
divided by that of simple average. A relative MSE bigger than 1 means that the algorithm
produces combined forecasts that have bigger MSE than the combined forecasts produced
by simple average. For L210-AFTER, parameter values are set to a1 = 1, a2 = 1, g1 = 2, g2 =
-2, r1 = 0.75, r2 = 0.75,m = 2, as suggested by the author. For Sancetta’s algorithm, two sets
of parameter values are considered. The first set (SAN1) has η = 0.3; the second set (SAN2)
has η = 0.7. For both of them, α = 0.5 and γ = 0.5.

While relative MSEs are reported and discussed, they do not provide any conclusion on
whether a combination algorithm is “better than” or “worse than” simple average. As will
become evident below, the choice of parameters of the simulation exercises is not made to
facilitate such comparisons. In fact, in some exercises, simple average is the theoretically
optimum method to use. A total of seven exercises are conducted. For each of the seven
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exercises, four sets of parameter values are considered. This gives a total of 28 sets of simu-
lation results. Each subsection below presents and discusses the results of one exercise.

3.2. Cost of estimation errors
In exercise 1, the focus is on the cost in terms of accuracy of combined forecasts that

comes from having to estimate individual specific weights, while the optimum weights are
equal weights. All forecasts are unbiased and homoskedastic, i.e., have the same variance for
all time periods. Specifically, in this exercise, bjt = 0 and σ2

jt = σ2 ∀j, t. While holding the
variance of aggregate shocks fixed at 1, a set of variances that become progressively larger is
considered here: σ2 ∈ {0.2, 0.4, 0.6, . . . , 20}.

Figure 3 plots the relative MSEs against σ2, so that increase in the cost of estimation
as forecast error variance increases can be clearly seen.8 Relative MSEs of RB, s-AFTER,
and L210-AFTER increase at a much higher rate than that of BG, SAN1, and SAN2. This is
even more so when there are 30 candidate forecasts to be combined, instead of 5. With this
increase in the number of candidate forecasts, relative MSE of BG almost stays the same;
relativeMSE of SAN1 and SAN2 slightly decreases; relativeMSE of RB and the two AFTERs
becomes almost 3 times bigger. Comparing the results from using a shorter window of 24
periods with that using a longer window of 60 periods, no discernible difference can be seen
for all but BG, where a longer window helps to achieve better performance.

These observations are consistent with theoretical results (see Smith & Wallis (2009)
and references therein) on the forecast combination puzzle, that is, the need to estimate a
potentially large number of weights may be so costly that despite the benefit of combining
forecasts, at the end of the day, combined forecasts are less accurate thanwhat simple average
offers. What may also be learned here is that AFTER algorithms seem to perform better
when the number of candidate forecasters is small. In other words, AFTER may be the
choice when combining a small set of forecasters/models, but may not be the best option
when combining forecasts from a large survey of many forecasters.

3.3. Biased forecasts in stable environment
Exercise 2 is conducted in a stable environment, where candidate forecasts are homoskedas-

tic but biased, with both the amount of bias and the variance of the idiosyncratic component
of the forecast error constant over time. Specifically, bjt = bj ∀t and σ2

jt = σ2 ∀j, t. This is
a situation with a significant amount of potential for performance based weighting algo-
rithms to perform well – simply by identifying the forecaster with the smallest amount of
bias. The simple average method is no longer optimum in this exercise. Four sets of param-
eter values are considered here. In exercise 2-1, the amount of bias that a forecaster may
have is relatively small. And the variance of the idiosyncratic component of forecast error,

8In this and the following exercises, results frommedian (ME), trimmed andWinsorizedmean (TM,WM),
as well as h-AFTER and L1-AFTER are omitted for brevity. These twoAFTER algorithms perform similar to s-
AFTER and L210-AFTER. TM andWMgive similar results. With small tomoderate amount of trimming, they
baheve similar to SA.With larger amount of trimming, they behave similar toME.Omitted results are available
from the author upon request. When reporting results, s-AFTER is labeled SAFTER, and L210-AFTER is
labeled L210A.
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which is common to all forecasters, is also relatively small: bj ∼ U(0, 1) and σ2 = 1. In
exercise 2-2, the distribution of the bias term is the same as in 2-1, but variance is much
larger: bj ∼ U(0, 1) and σ2 = 4. In exercise 2-3, bias is larger and variance is relatively
small: bj ∼ U(1, 2) and σ2 = 1. Exercise 2-4 is the one where both bias and variance are
large: bj ∼ U(1, 2) and σ2 = 4.

Table 1 shows the results from this exercise. If one extreme is exercise 1, where all the
forecasters have exactly the same performance and simple average is the optimum combi-
nation method, this is the opposite extreme, where the optimum weighting scheme is one
that places all weights on the forecaster with smallest amount of bias. In fact, in this exercise,
the performance based weighting algorithms perform well, as expected. Comparing exer-
cise 2-1 with 2-2 or comparing 2-3 with 2-4, it can be seen that as forecast errors become
more variable, it is more difficult to estimate forecasters’ performance accurately, so that
combined forecasts perform worse. It is particularly so for the AFTER methods, which, as
shown in exercise 1, are more sensitive to increase in variance. On the other hand, compar-
ing exercise 2-1 with 2-3 or comparing 2-2 with 2-4, it is obvious that combined forecasts
are much more accurate when individual forecasts have larger bias. In particular, results
from exercise 2-3 show that when combining forecasts with potentially large bias, aggres-
sive weighting algorithms such as the AFTERs may deliver superior performance, despite
having to combine a large number of forecasts.

While it is informative to examine the performance of combination algorithms over the
entire evaluation sample, examination of how performance evolves reveals additional char-
acteristics of the algorithms. Figure 4 shows the 12-period moving average of relative MSE
of BG, SAFTER, L210A and SAN2 when combining 30 candidate forecasts in exercise 2-3.
For BG, as more observations accumulate, performance of combined forecasts stay stable.
However, this is not the case for the other three algorithms. For SAFTER and L210A, there
is a clear upward trend in the MSE of combined forecasts, while there is a clear downward
trend in that of SAN2. This observation suggests that onemay benefitmore from theAFTER
type algorithms when applying them to shorter samples, or, by “resetting” the algorithm pe-
riodically, i.e., reverting the weights of individual forecasters to equal weight. Performance
of all the algorithms eventually stabilizes given a long enough sample period in this simu-
lated stable environment. But in reality, in unstable environment, there may never be long
enough a sample in each regime for performance to stabilize. So, in the exercises below,
structural instabilities are built into the simulation.

3.4. Biased forecasts with breaks in performance
In exercise 3, the setting in exercise 2 is reconsidered in the simplest kind of unstable

environment – a one time mean shift, or more specifically, a one-time break in biases (i.e.,
biases are re-drawn) for all forecasters. Specifically, bjt = bj1 for t ≤ 180 and bjt = bj2 for
t > 180; σ2

jt = σ2 ∀j, t. The four sets of parameters are the same as in the previous exercise.
In exercise 3-1, bj1, bj2 ∼ U(0, 1) and σ2 = 1. In exercise 3-2, bj1, bj2 ∼ U(0, 1) and σ2 = 4.
In exercise 3-3, bj1, bj2 ∼ U(1, 2) and σ2 = 1. And in exercise 3-4, bj1, bj2 ∼ U(1, 2) and
σ2 = 4.
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Table 2 presents the results. As expected, even with the break present, combined fore-
casts are more accurate when the variances of individual forecasters are small and/or when
the biases are large. Comparing the results in this table with the results in Table 1, one could
easily see that even though all of the combinationmethods performworse in presence of the
break, performance deterioration is minimal. This observation, however, should not lead to
the conclusion that the methods examined here are robust to breaks. Rather, it is the long
pre- and post-break period that have masked much of the fluctuations in performance.

A closer look at howperformance evolves provides additional insight: Figure 5 shows the
12-monthmoving average of relativeMSE of BG, L210A, SAN1 and SAN2when combining
30 candidate forecasts in exercise 3-3. Overall, one clearly sees the effect of the break, as the
MSE of combined forecasts suddenly increases then gradually declines as more data become
available post break. Comparing the cases with a longer estimation window (60 periods)
versus a shorter estimation window (24 periods), it is somewhat surprising to note that,
except in the case of BG, a shorter estimation window does not seem to shorten the time
it takes for the performance of combined forecasts to stabilize post break. This may be a
result of the design of the algorithms under examination, where in each period for each
forecaster, the weight from previous period is updated according to most recent forecast
performance. When a limited estimation window is imposed, even though only a limited
amount of historical information is used in calculating recent performance, a forecaster’s
entire performance record is always embedded in his weight.

One other interesting observation made from Figure 5 is that the performance of com-
bined forecasts produced by different algorithms takes a different amount of time to stabilize
after the break. For BG, performance return to its pre-break level before the end of the evalu-
ation sample. For L210A, it takes significantly longer, such that even after 120 periods, MSE
of the combined forecasts remains much worse than its pre-break level. Comparing SAN1
with SAN2, where the latter has higher learning rate, one observes that SAN2 adapts much
quicker after the break, but the overall performance is actually slightly worse – an indication
of possibly excessive sensitivity to small performance changes during stable periods. This
is often the trade-off practitioners face: A more aggressive algorithm may work better in
unstable periods, but may be over sensitive during stable periods.

3.5. Heteroskedastic forecasts with breaks in performance
In the previous two exercises, candidate forecasts were assumed to be biased. From this

exercise onwards, the assumption of unbiasedness will bemaintained. In practice, this could
either be because that candidate forecasts are indeed unbiased, or, it could be that candidate
forecasts are pre-screend or pre-processed so that biased forecasts are either eliminated or
adjusted. Of course, in reality, when the sample is sufficiently short or is suspected to be
subjected to frequent structural breaks, it is difficult to assess whether candidate forecasts
are unbiased. Most combination algorithms donot explicitly differentiate components of the
forecast error. So, the assumption of unbiasedness, especially in short and unstable sample,
may have little practical impact.

Exercise 4 considers forecasts that are unbiased but heteroskedastic, in that the vari-
ance of idiosyncratic component of forecast error is different from forecaster to forecaster.
Forecasts with smaller variance are preferable and should receive higher weights. Two types
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of instability are introduced. The first is a one-time break half way through the sample.
The second is three breaks distributed throughout the evaluation sample. More specifically,
bjt = 0 ∀j, t, and σ2

jt = σ2
jr if δr-1 < t ≤ δr, where r ∈ {1, 2, . . . ,R} indexes regimes,

δ0 = 0, δR = +∞. There are only two regimes (R = 2, δ1 = 180), i.e., one break, in exercise
4-1 and 4-2. In exercise 4-1, σ2

jr ∼ U(0.1, 2.5). In exercise 4-2, σ2
jr ∼ U(0.1, 6.5). There are

four regimes (R = 4 and δ1 = 90, δ2 = 150, δ3 = 210), i.e., three breaks, in exercise 4-3 and
4-4. In exercise 4-3, σ2

jr ∼ U(0.1, 2.5). In exercise 4-4, σ2
jr ∼ U(0.1, 6.5).

Table 3 shows the results of this exercise. Comparing exercise 4-1 with 4-3 or comparing
exercise 4-2 with 4-4, it seems that while the introduction of two additional breaks does
lead to worse combined forecasts for all the methods, the effect of the two additional breaks
are marginal. But it is interesting to observe the behavior of the algorithms in cases with
different numbers of forecasters: Regardless of whether there are 5 or 30 forecasters, BG
performs better when variances of individual forecasters are scattered over a wider range,
as in exercise 4-2 and 4-4, where the two AFTER algorithms perform worse. However, the
performance of SAN1 and SAN2 is different. As an example, comparing 4-1 with 4-2, SAN1
performs better in 4-2 when there are only 5 forecasters, but it performs worse in 4-2 when
there are 30 forecasters. When there are more forecasters in the pool, the cost from having
to estimate all the weights becomes higher. But at the same time, there may be a higher level
of dispersion in forecasters’ performance. Performance of combined forecasts depends on
which effect dominates.

Figure 6 shows how performance of combined forecasts change over timewhen there are
three breaks in the sample (exercise 4-4). Much like the results from the previous exercise,
BG adapts quickly after the break, especially when the window size is small. SAFTER and
L210A suffer from slow adaptation and long memory such that as more breaks hit, errors
accumulate and combined forecasts become increasingly unreliable. In this simulation ex-
ercise, there are 60 periods between two breaks. In the real world, time between two breaks
may bemuch shorter. Thismay present a challenge for the AFTER algorithms. As suggested
earlier, “resetting” the algorithm from time to time may be an empirically viable strategy,
especially when breaks can be determined ex post.

3.6. Dynamically heteroskedastic forecasts
Previous exercise considers discrete break(s) in forecast performance. In this exercise,

continuously changing forecast performance is examined. In some cases, performance grad-
ually improves over time. In other cases, performance gradually deteriorates over time. In
this setup, it is unlikely for one single forecaster to stay the best for the entire sample period.
Combination algorithms that quickly and accurately identify and adapt to the best forecaster
may produce good combined forecasts.

All forecasts are unbiased. bjt = 0 ∀j, t. For a forecaster, given the performance (i.e.,
variance of idiosyncratic component of forecast error) at the beginning and end of a sample
period, performance changes gradually following a linear time trend:

σ2
jt = σ2

j1 +
σ2
jT - σ2

j1
T - 1

× (t - 1) (12)
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with σ2
j,1 ∼ U(p1, q1) and σ2

j,T ∼ U(pT, qT), where p1, q1, pT, and qT are given parameters.
In exercise 5-1, random performance changes happen to all forecasters: p1 = pT = 0.1

and q1 = qT = 6.5. In exercise 5-2, with probability 0.5, p1 = pT = 0.1, q1 = qT = 3.5. with
probability 0.5, p1 = pT = 3.5, q1 = qT = 6.5. In this setting, with equal probability, a fore-
caster is placed in one of two groups, a good group and a poor group. Performance changes
in a way that forecasters do not move to the other group, but the relative performance of
forecasters within a group may change. In other words, the worst forecaster in the group of
good forecasters is always better than the best one from the group of poor forecasters. In
exercise 5-3, with probability 0.5, p1 = 0.1, q1 = 3.5, pT = 3.5, qT = 6.5. with probability 0.5,
p1 = 3.5, q1 = 6.5, pT = 0.5, qT = 3.5. This setting is identical to the setting of exercise 5-2,
except that here everyone slowly moves to the other group, i.e., the group of good forecast-
ers slowly become the group of poor forecasters, vice versa. Relative performance within a
group may change as well. In exercise 5-4, with probability 0.5, p1 = 0.1, q1 = 6.5 and σ2

jT is
non-random and equals σ2

j1. With probability 0.5, p1 = pT = 0.1 and q1 = qT = 6.5. In this
setting, roughly half the forecasters’ performance is stable, but the other half ’s performance
changes.

Results of exercise 5 are presented in Table 4. While one may expect that the more
widespread the breaks, the worse the performance of combination algorithms, it is not nec-
essarily true. Comparing exercise 5-1 with 5-4, where in the former, everyone’s performance
changes and in the latter, only half the forecasters’ performance changes, it can be seen that
SAN1 and SAN2 produce slightly better forecasts in exercise 5-1, when there are 30 forecast-
ers in the pool. A comparison between exercise 5-2 and 5-3 leads to similar observations.
When forecasters move only within group, as in exercise 5-2, performance of combination
algorithms are generally better. However, exception exists again for SAN1 and SAN2 when
there are 30 forecasters. Comparing exercise 5-1 with exercise 4-2 and 4-4, where in exer-
cise 4, forecasters’ performance change discretely, it can be seen that performance of com-
bination algorithms in 5-1 is generally worse than that in 4-2, but better than that in 4-4,
especially for the AFTERs.

3.7. Heteroskedastic forecasts with unexpected aggregate shock
Unlike the previous two exercises that consider breaks in forecasters’ performance, in

this exercise, large and unexpected aggregate shocks are considered. Candidate forecasts
continue to be unbiased. But the variance of idiosyncratic component of forecast error is
different for different forecasters. There is no break in this variance. The optimum weight-
ing scheme should place all weights on the forecaster with the lowest variance. The compli-
cation here is the occasional aggregate shocks that make accurate estimation of forecasters’
performance difficult.

Specifically, let bjt = 0 ∀j, t and σ2
jt = σ2

j ∼ U(0.1, 6.5). To accommodate aggregate
shocks, at now follows a mixture distribution: With probability 1 - p, at ∼ N (0, 1). With
probability p, at ∼ U(2.5, q). p and q are given parameters. p controls the frequency of
aggregate shock and q controls itsmagnitude. In exercise 6-1, lowprobability of small shocks
is considered, where p = 0.05, q = 4.5. Exercise 6-2 considers high probability of small
shocks with p = 0.2, q = 4.5. Exercise 6-3 considers low probability of large shock, where
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p = 0.05, q = 6.5. And finally, high probability of large shocks is considered in exercise 6-4
with p = 0.2, q = 6.5.

Table 5 shows the results. Aggregate shocks make it harder to differentiate good fore-
casters from poor ones. As a result, one would expect that as aggregate shocks come more
frequently and/or at a higher magnitude, combined forecasts would perform poorer. This
turns out to be the case for most of the algorithms examined here, where the best perfor-
mance is observed in exercise 6-1, followed by 6-3, then 6-2, and finally 6-4. However,
there is an important exception. The AFTER algorithms perform the opposite way, show-
ing strong robustness to aggregate shocks. Take SAFTER as an example, it performs the
best in exercise 6-4 in presence of large and frequent aggregate shocks, and performs the
worst in exercise 6-1, where shocks are small and infrequent. Compared with BG, SAN1
and SAN2 also display some robustness to aggregate shocks, in that their performance do
not vary much as the frequency and intensity of shocks increase. While this exercise is not
recreating business cycles, the scenarios here closely mimic the case when forecasters fall
behind business cycle turning points, i.e., fail to foresee a large change in the actual value.
So the results here may also shed some light on the behavior of the algorithms when target
variable is cyclical.

3.8. Heteroskedastic forecasts with outliers
In exercise 7, forecast outliers are considered. Each period, there is a small chance for

a forecaster to produce an outlier, i.e., an unusually large forecast error. Except when in-
fluenced by the outliers, forecasts are all unbiased with bjt = 0 ∀j, t and have stable perfor-
mance σ2

jt = σ2
j ∀t. With equal probability, a forecaster can be a good one or a poor one:

with probability 0.5, σ2
j ∼ U(0.1, 3.5), and with probability 0.5, σ2

j ∼ U(3.5, 6.5). Forecast
outliers are introduced by letting εjt follow a mixture distribution. With probability (1 - pj),
εjt ∼ N (0,σ2

jt). With probability pj, εjt ∼ U(2σjt, qσjt). pj controls the frequency of outliers
and q controls their magnitude.

In exercise 7-1, pj = 0.05 ∀j, so that everyone may produce outliers. In exercise 7-2,
pj = 0.05 if σ2

j ∼ U(0.1, 3.5), otherwise, pj = 0 so that only those good forecasters may pro-
duce outliers. In exercise 7-3, the opposite is considered, where only poor forecasters may
produce outliers: pj = 0.05 if σ2

j ∼ U(3.5, 6.5), otherwise, pj = 0. In the last setting, exer-
cise 7-4, a random set of 20% of all forecasters may produce outliers, regardless of whether
they are good forecasters or poor forecasters. So, with probability 0.2, pj = 0.05, and with
probability 0.8, pj = 0.

Results from this exercise is presented in Table 6. First, consider the comparison be-
tween exercise 7-1 and exercise 7-4. Since in exercise 7-4, only 20% of forecasters may pro-
duce outliers, it is expected that combination algorithms perform better in this case. This
turns out to be so for all except BG, which performs slightly better in exercise 7-1 when
there are 30 forecasters, especially when window size is bigger. For the AFTERs, SAN1,
and SAN2, performance in exercise 7-1 is only slightly worse than that in 7-4, regardless of
the size of estimation window. Comparing exercise 7-2 with 7-3, as expected, the result is
clearly that the combination algorithms examined here take a bigger performance hit when
good forecasters produce outliers. Another meaningful comparison is exercise 7-1 versus
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exercise 5-2, where the former considers forecast outliers, and the latter considers within
group performance instabilities. These two scenarios may easily become indistinguishable
in practice in small samples. This comparison shows that, conditioned on the set frequency
andmagnitude of outliers, having outliers seems to affect the performance of combined fore-
casts less than having dynamically changing performance, especially for BG and the AFTER
algorithms.

4. Combining U.S. SPF Forecasts

The simulation exercises in the previous section revealed several characteristics of the
combination algorithms. These findings should help researchers and policy makers to bet-
ter construct forecast combination procedures when faced with real world problems. In
this section, the problem of combining forecasts reported in the U.S. Survey of Professional
Forecasters (SPF) is considered as an example of how the findings in the previous section
may be of practical use.

Before presenting the combination procedure to be used with the SPF data, a brief dis-
cussion of the structure of the data and some pre-processing of the data is in order. The SPF
is a well-respected quarterly survey that collects forecasts made by professional forecasters
on a wide range of important macroeconomic variables, four of which are used here: real
GDP growth rate (RGDP), CPI inflation rate (CPI), GDP deflator inflation rate (PGDP),
and unemployment rate (UNEMP). For each of the four variables, current quarter forecasts
to three-quarter-ahead forecasts (h = 0, 1, 2, 3) are considered9. Partly due to the change in
survey administrator10, there is a large amount of missing values in the survey. As shown in
Lahiri et al. (2015), implementing combination algorithms on unbalanced panel produces
results that are not comparable. Therefore, instead of combining using the full sample, com-
bination is performed using two subsamples separately. The first subsample spans 1968:IV
to 1990:IV, and the second starts from 2000:I and ends at 2014:IV11.

In addition, forecasters with an excessively large amount of missing forecasts are ex-
cluded from the combination and the remainingmissing forecasts are imputed12. The exclu-
sion restriction is that forecasters must have at least 45 non-missing forecasts in subsample
1 or at least 36 in subsample 2. This leaves around 15 forecasters in the first subsample and
about 30 forecasters in the second subsample, depending on specific variable and horizon.
Missing values are then imputed for each subsample period before combination is carried
out. Specifically, a missing forecast fjt is imputed as fjt = f̄t + β̂j[

∑4
s=1(fjt-s - f̄t-s)], where

9Longer horizon forecasts are not considered here because several studies have found that they are often
worse than simple benchmark forecasts. Combining these forecasts is of limited practical use.

10The surveywas initially conducted by theAmerican Statistical Association (ASA) and theNational Bureau
of Economic Research (NBER). Starting from 1990, the survey was taken over by the Federal Reserve Bank of
Philadelphia.

11CPI forecasts before 1981 are not available. Therefore, only subsample 2 of CPI forecasts are considered
here. For the other three variables, both subsamples are considered.

12No evidence is found to suggest that performance of forecasters are systematically related to their level
of participation, as reported in Capistrán & Timmermann (2009), Genre et al. (2013), as well as Lahiri et al.
(2015).
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β̂j is OLS estimate. This is to say that a missing forecast is imputed as the adjusted aver-
age forecast for that time period, where the average is taken over non-missing forecasts for
that period made by other forecasters. The adjustment is forecaster specific, and is based
on the forecaster’s usual amount of deviation from the average forecast in the past year,∑4

s=1(fjt-s - f̄t-s). This imputation method is based on Genre et al. (2013) and is used with
good results in Lahiri et al. (2015).

After dividing the entire data set into two subsamples, removing forecasters with too
many missing forecasts, and imputing the remaining missing forecasts, balanced panels of
forecasts are obtained. These forecasts are combined in real time using the algorithms stud-
ied in the simulation exercises in the previous section. Combined forecasts are then evalu-
ated against the first vintage/release of the actual values. To prevent the possibility of exces-
sive data mining, where multiple sets of parameter values of each combination algorithms
are tried and the set that produces the best combined forecasts is chosen, no parameter se-
lection is attempted here. All the algorithms are implemented using the exact same set of
parameters as used in the simulation exercises.

One of the main observations made in the previous section is that the cost of estimat-
ing many individual weights increases quickly as the number of forecasters increase and
may eventually cancel out any benefit from combing forecasts. The natural solution to this
problem is to combine fewer series of forecasts where each series contains combined fore-
casts from a group of forecasters. This is to say that forecasters in the panel are to be grouped
first, based on their past forecasting performance. Then, a group forecast is set to the average
of all the individual forecasts in the group. As discussed in Aiolfi & Timmermann (2006),
performance of group forecasts is more persistent, especially in the top and bottom group.
As exercise 5 from the previous section shows, this is a case in which performance based
combination algorithms may produce superior forecasts. In implementing this combina-
tion strategy in real time, each period, forecasters are placed in roughly equal-sized groups
based on the latest estimate of their MSEs. In subsample 1, there are 5 groups. In subsample
2, there are 3 groups. So 5 to 6 forecasters are in each group. In the very first period in each
subsample, simple average is used to combine forecasts so that no grouping is necessary. A
window of 20 quarters is imposed when grouping forecasters as well as when implementing
the combination algorithms13.

For each variable, horizon, subsample, and combination algorithm, relative MSE is cal-
culated as the MSE of the combined forecasts produced by the algorithm divided by the
MSE of the combined forecasts produced by simply average. So, a relative MSE smaller than
1 means that the combination algorithm performs better than simple average, which is used
as a benchmark. Table 7 reports these relative MSEs. Whenever a relative MSE is less than
1, the table cell is shaded. Whenever a relativeMSE is significantly less than 1, the number is
reported in bold. Statistical significance is from one-sided modified Diebold-Mariano test
(Harvey et al., 1997) at 10% level.

As Table 7 shows, the combination algorithms considered in this study often outperform
the simple average benchmark, especially when combining PGDP in subsample 1, UNEMP

13Alternativewindow sizes and combining individual forecasts directlywithout grouping are also attempted.
Results are omitted from the paper but are available from the author.
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in subsample 2, as well higher horizon forecasts of PGDP, RGDP and UNEMP in both sub-
samples. In addition, significant performance gains are observed when combining current-
quarter CPI forecasts. In several cases, such as current-quarter forecasts of CPI subsample
2 and PGDP subsample 1, performance gains are substantial, up to 30% reduction in MSE
compared with simple average benchmark. In cases where the combination algorithms do
not deliver better performance than simple average, the loss is very limited: In the majority
of such cases, MSE of combined forecasts is not more than 5% to 10% higher than that of
simple average combined forecasts.

These results contrast what reported in Lahiri et al. (2015), where in most cases, perfor-
mance based combination algorithms deliver very modest improvement. Here, after impos-
ing a short estimation window and grouping individual forecasts before combining, statisti-
cally significant and practically meaningful performance gains are achieved, without exten-
sive search of the optimum parameter values for each combination algorithm. It should be
expected that in a real life forecast combination scenario, when parameter values of combi-
nation algorithms can be more appropriately selected, one may obtain even better results.

5. Concluding Remarks

In this study, performance of several recently developed sophisticated forecast combina-
tion algorithms in unstable environment is examined in a series of simulation exercises. The
first exercise reveals the cost of estimating weights for individual forecasters as the number
of forecasters increases. The second exercise creates a stable environment in which individ-
ual forecasts are biased but homoskedastic. The third exercise introduces a one time break
in bias. The fourth exercise turns to multiple breaks in the performance of heteroskedastic
but unbiased forecasts. Next, forecast performance is allowed to dynamically evolve, such
that performance may gradually become better (or worse). The first of the two remain-
ing exercises considers the role of aggregate shocks and the second considers the effect of
forecaster-specific outliers. Each of these exercises are carried out using four different set-
tings, allowing comprehensive and in-depth analysis of the performance of different com-
bination algorithms.

The simulation exercises lead to several observations. First of all, there is a significant
amount of cost associated with estimating weights for individual forecasters. The higher the
number of forecasters or the more variable the performance of individual forecasters, the
more difficult it is to obtain significant performance gains when combining forecasts using
performance-based algorithms. The second observation is that, the length of estimation
windowhave little effect on the overall performance over a long sample period. However, for
certain algorithms, such as Sancetta’s algorithm (Sancetta, 2010), having a shorter estimation
window helps to reduce the effect of breaks on forecast performance. Another observation is
that higher degree of heteroskedasticity helps the algorithms to differentiate good forecasters
from poor ones, but at the same time makes estimating weights more difficult. This may be
good for less aggressive algorithms such as BG, but may present a challenge for algorithms
that are more sensitive to small changes in forecasters’ performance, such as the AFTERs.
Yet another important observation is that it takes a number of periods for the performance
of a combination algorithm to stabilize after the first period or after a break. For algorithms
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that takes a long time to stabilize in environments with frequent breaks, performance may
never reach the optimum (stable) level.

These observations lead to a simple but effective combination strategy which is demon-
strated in combining U.S. SPF forecasts of real GDP growth, CPI and GDP defaltor inflation
rate, and unemployment rate. The strategy involves two improvements in two stages. In the
first stage, apart from filtering out infrequent forecasters and imputing missing forecasts,
forecasters are grouped into a few groups based on their past performance. In each group,
individual forecasts are averaged to obtain a group forecast. In the second stage, the small
number of series of group forecasts are combined, with a short estimation window. This
strategy reduces cost of estimating individual weights by reducing the number of forecast se-
ries to be combined. It induces different and persistent forecast performance, which makes
it easier for combination algorithms to identify good forecasts. In addition, it limits the
amount of historical information used in estimating performance through the imposition
of a short window, allowing the algorithms to more quickly adapt to instabilities in the data.
While not implemented here, additional strategies for selecting parameters of combination
algorithms to induce good performance may be of use in real world applications of forecast
combination algorithms.
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Figure 1: Comparing Loss Functions of s-AFTER, L1-AFTER, and h-AFTER

This figure compares the absolute error loss (L1-AFTER), Huber loss with s = 1.5 (h-
AFTER) and squared error loss (s-AFTER). This is a reproduction of Figure 1 in Wei
and Yang (2012).

Figure 2: L̃0(·) Loss Function

This figure, a reproduction of Figure 1 in Cheng and Yang(2015), shows the L̃0(·) loss
function.
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Figure 3: Exercise 1 Results: Cost of Estimation
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Figure 4: 12-Month Moving Average of Relative MSE: Exercise 2-3
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Figure 5: 12-Month Moving Average of Relative MSE: Exercise 3-3
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Figure 6: 12-Month Moving Average of Relative MSE: Exercise 4-4
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Table 1: Exercise 2 Results: Biased Forecasts in Stable Environment

Window E x e r c i s e and Number o f F o r e c a s t e r s
S i z e and E21 E22 E23 E24
Algor i thm 5 30 5 30 5 30 5 30

24
BG 0 . 9 9 1 0 . 9 7 7 1 . 0 2 2 0 . 9 9 8 0 . 9 6 4 0 . 9 4 9 0 . 9 9 4 0 . 9 7 4

L210A 1 . 3 4 8 1 . 4 0 2 2 . 2 1 2 2 . 9 3 1 0 . 9 6 8 0 . 8 9 8 1 . 5 0 4 1 . 5 9 2
RB 1 . 5 7 4 1 . 7 8 8 2 . 5 7 9 3 . 8 4 4 1 . 1 9 2 1 . 2 2 9 1 . 7 8 7 2 . 1 4 1

SAFTER 1 . 3 6 6 1 . 4 4 0 2 . 2 8 8 3 . 1 2 4 0 . 9 7 4 0 . 9 1 3 1 . 5 3 5 1 . 6 6 3
SAN1 0 . 9 7 8 0 . 9 3 0 1 . 0 4 9 1 . 0 0 0 0 . 9 2 2 0 . 8 5 8 1 . 0 1 0 0 . 9 4 0
SAN2 0 . 9 9 3 0 . 9 4 4 1 . 0 9 3 1 . 0 3 4 0 . 9 3 8 0 . 8 7 5 1 . 0 4 2 0 . 9 7 6

60
BG 0 . 9 8 6 0 . 9 7 6 1 . 0 0 5 0 . 9 9 3 0 . 9 6 3 0 . 9 4 9 0 . 9 8 7 0 . 9 7 2

L210A 1 . 3 4 7 1 . 4 0 0 2 . 2 0 9 2 . 9 2 3 0 . 9 6 7 0 . 8 9 7 1 . 5 0 3 1 . 5 9 0
RB 1 . 5 7 4 1 . 7 8 8 2 . 5 7 9 3 . 8 4 4 1 . 1 9 2 1 . 2 2 9 1 . 7 8 7 2 . 1 4 1

SAFTER 1 . 3 6 5 1 . 4 3 8 2 . 2 8 6 3 . 1 1 9 0 . 9 7 4 0 . 9 1 2 1 . 5 3 4 1 . 6 6 1
SAN1 0 . 9 7 8 0 . 9 3 0 1 . 0 4 9 1 . 0 0 0 0 . 9 2 2 0 . 8 5 8 1 . 0 1 0 0 . 9 4 0
SAN2 0 . 9 9 3 0 . 9 4 4 1 . 0 9 3 1 . 0 3 4 0 . 9 3 8 0 . 8 7 5 1 . 0 4 2 0 . 9 7 6

Table 2: Exercise 3 Results: Biased Forecasts with Breaks in Performance

Window E x e r c i s e and Number o f F o r e c a s t e r s
S i z e and E31 E32 E33 E34
Algor i thm 5 30 5 30 5 30 5 30

24
BG 0 . 9 9 2 0 . 9 7 8 1 . 0 2 2 0 . 9 9 9 0 . 9 6 6 0 . 9 5 2 0 . 9 9 5 0 . 9 7 6

L210A 1 . 3 9 8 1 . 4 5 7 2 . 2 3 3 2 . 9 7 5 1 . 0 5 9 0 . 9 8 6 1 . 5 6 7 1 . 6 8 2
RB 1 . 5 7 3 1 . 7 8 8 2 . 5 7 8 3 . 8 4 2 1 . 1 9 2 1 . 2 3 0 1 . 7 8 6 2 . 1 4 1

SAFTER 1 . 4 1 7 1 . 4 9 4 2 . 3 1 0 3 . 1 7 0 1 . 0 6 5 1 . 0 0 2 1 . 6 0 0 1 . 7 5 4
SAN1 0 . 9 8 7 0 . 9 5 4 1 . 0 5 0 1 . 0 0 7 0 . 9 3 4 0 . 8 8 5 1 . 0 1 2 0 . 9 4 9
SAN2 0 . 9 9 5 0 . 9 5 4 1 . 0 9 3 1 . 0 3 6 0 . 9 4 2 0 . 8 8 6 1 . 0 4 2 0 . 9 7 9

60
BG 0 . 9 8 8 0 . 9 7 9 1 . 0 0 6 0 . 9 9 4 0 . 9 6 8 0 . 9 5 6 0 . 9 8 9 0 . 9 7 6

L210A 1 . 3 9 7 1 . 4 5 3 2 . 2 3 1 2 . 9 6 7 1 . 0 5 8 0 . 9 8 4 1 . 5 6 6 1 . 6 7 9
RB 1 . 5 7 3 1 . 7 8 8 2 . 5 7 8 3 . 8 4 2 1 . 1 9 2 1 . 2 3 0 1 . 7 8 6 2 . 1 4 1

SAFTER 1 . 4 1 5 1 . 4 9 2 2 . 3 0 9 3 . 1 6 5 1 . 0 6 4 0 . 9 9 9 1 . 5 9 9 1 . 7 5 1
SAN1 0 . 9 8 7 0 . 9 5 4 1 . 0 5 0 1 . 0 0 7 0 . 9 3 4 0 . 8 8 5 1 . 0 1 2 0 . 9 4 9
SAN2 0 . 9 9 5 0 . 9 5 4 1 . 0 9 3 1 . 0 3 6 0 . 9 4 2 0 . 8 8 6 1 . 0 4 2 0 . 9 7 9
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Table 3: Exercise 4 Results: Heteroskedastic Forecasts with Breaks in Performance

Window E x e r c i s e and Number o f F o r e c a s t e r s
S i z e and E41 E42 E43 E44
Algor i thm 5 30 5 30 5 30 5 30

24
BG 0 . 9 7 1 0 . 9 9 3 0 . 9 1 2 0 . 9 7 1 0 . 9 7 6 0 . 9 9 4 0 . 9 3 0 0 . 9 7 6

L210A 1 . 4 0 6 1 . 3 7 3 1 . 7 6 6 1 . 8 9 1 1 . 5 4 8 1 . 6 2 0 2 . 0 6 8 2 . 5 3 2
RB 1 . 7 6 2 2 . 1 7 5 2 . 3 4 8 3 . 5 4 2 1 . 7 6 8 2 . 1 7 9 2 . 3 6 1 3 . 5 5 2

SAFTER 1 . 4 1 2 1 . 3 7 7 1 . 7 7 6 1 . 8 8 4 1 . 5 6 1 1 . 6 3 8 2 . 0 8 8 2 . 5 5 7
SAN1 0 . 9 8 3 1 . 0 1 7 0 . 9 4 2 1 . 0 3 8 0 . 9 9 8 1 . 0 1 5 0 . 9 6 8 1 . 0 3 5
SAN2 0 . 9 9 3 1 . 0 3 0 0 . 9 8 6 1 . 0 8 6 1 . 0 0 3 1 . 0 2 6 0 . 9 9 9 1 . 0 8 0

60
BG 0 . 9 6 8 0 . 9 9 2 0 . 9 1 1 0 . 9 7 1 0 . 9 8 1 0 . 9 9 5 0 . 9 5 0 0 . 9 8 4

L210A 1 . 4 0 3 1 . 3 6 5 1 . 7 6 1 1 . 8 5 2 1 . 5 4 6 1 . 6 1 5 2 . 0 6 0 2 . 5 0 2
RB 1 . 7 6 2 2 . 1 7 5 2 . 3 4 8 3 . 5 4 2 1 . 7 6 8 2 . 1 7 9 2 . 3 6 1 3 . 5 5 2

SAFTER 1 . 4 0 9 1 . 3 6 7 1 . 7 6 9 1 . 8 3 6 1 . 5 5 8 1 . 6 3 1 2 . 0 7 9 2 . 5 2 0
SAN1 0 . 9 8 3 1 . 0 1 7 0 . 9 4 2 1 . 0 3 8 0 . 9 9 8 1 . 0 1 5 0 . 9 6 8 1 . 0 3 5
SAN2 0 . 9 9 3 1 . 0 3 0 0 . 9 8 6 1 . 0 8 6 1 . 0 0 3 1 . 0 2 6 0 . 9 9 9 1 . 0 8 0

Table 4: Exercise 5 Results: Dynamically Heteroskedastic Forecasts

Window E x e r c i s e and Number o f F o r e c a s t e r s
S i z e and E51 E52 E53 E54
Algor i thm 5 30 5 30 5 30 5 30

24
BG 0 . 9 5 7 0 . 9 8 5 1 . 0 0 6 1 . 0 0 2 1 . 0 1 1 1 . 0 0 4 0 . 9 3 1 0 . 9 7 7

L210A 1 . 7 2 2 1 . 7 0 4 2 . 0 5 3 2 . 5 5 7 2 . 1 0 8 2 . 6 9 1 1 . 5 1 0 1 . 4 4 1
RB 2 . 4 5 3 3 . 6 6 5 2 . 5 5 7 3 . 8 4 1 2 . 5 8 8 3 . 9 1 0 2 . 3 9 3 3 . 6 0 3

SAFTER 1 . 7 3 8 1 . 7 1 8 2 . 0 9 8 2 . 6 6 1 2 . 1 4 6 2 . 7 7 9 1 . 5 2 2 1 . 4 5 0
SAN1 0 . 9 7 7 1 . 0 3 6 1 . 0 3 1 1 . 0 3 6 1 . 0 3 5 1 . 0 3 6 0 . 9 5 1 1 . 0 3 8
SAN2 1 . 0 2 7 1 . 0 7 4 1 . 0 7 5 1 . 0 6 4 1 . 0 7 8 1 . 0 6 2 1 . 0 0 3 1 . 0 8 2

60
BG 0 . 9 4 4 0 . 9 8 1 0 . 9 9 0 0 . 9 9 7 0 . 9 9 5 0 . 9 9 8 0 . 9 1 9 0 . 9 7 3

L210A 1 . 7 2 1 1 . 7 0 0 2 . 0 5 1 2 . 5 5 3 2 . 1 0 6 2 . 6 8 6 1 . 5 0 9 1 . 4 3 9
RB 2 . 4 5 3 3 . 6 6 5 2 . 5 5 7 3 . 8 4 1 2 . 5 8 8 3 . 9 1 0 2 . 3 9 3 3 . 6 0 3

SAFTER 1 . 7 3 6 1 . 7 1 5 2 . 0 9 6 2 . 6 5 8 2 . 1 4 4 2 . 7 7 6 1 . 5 2 1 1 . 4 4 8
SAN1 0 . 9 7 7 1 . 0 3 6 1 . 0 3 1 1 . 0 3 6 1 . 0 3 5 1 . 0 3 6 0 . 9 5 1 1 . 0 3 8
SAN2 1 . 0 2 7 1 . 0 7 4 1 . 0 7 5 1 . 0 6 4 1 . 0 7 8 1 . 0 6 2 1 . 0 0 3 1 . 0 8 2
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Table 5: Exercise 6 Results: Heteroskedastic Forecasts with Unexpected Aggregate Shock

Window E x e r c i s e and Number o f F o r e c a s t e r s
S i z e and E61 E62 E63 E64
Algor i thm 5 30 5 30 5 30 5 30

24
BG 0 . 9 3 8 0 . 9 8 2 0 . 9 7 4 0 . 9 9 4 0 . 9 5 2 0 . 9 8 7 0 . 9 8 6 0 . 9 9 7

L210A 1 . 2 1 7 1 . 1 0 9 1 . 1 2 1 1 . 0 5 2 1 . 1 8 0 1 . 0 8 5 1 . 0 8 2 1 . 0 3 3
RB 2 . 0 2 8 2 . 7 1 5 1 . 6 0 9 1 . 9 1 0 1 . 8 5 7 2 . 3 5 7 1 . 4 2 0 1 . 6 0 2

SAFTER 1 . 2 2 5 1 . 1 1 3 1 . 1 2 8 1 . 0 5 9 1 . 1 8 7 1 . 0 9 0 1 . 0 8 8 1 . 0 4 1
SAN1 0 . 9 5 6 1 . 0 4 0 0 . 9 9 5 1 . 0 3 3 0 . 9 7 0 1 . 0 3 7 1 . 0 0 7 1 . 0 2 8
SAN2 1 . 0 0 8 1 . 0 7 8 1 . 0 3 4 1 . 0 5 8 1 . 0 1 4 1 . 0 6 8 1 . 0 3 2 1 . 0 4 5

60
BG 0 . 9 2 9 0 . 9 7 9 0 . 9 6 9 0 . 9 9 2 0 . 9 4 5 0 . 9 8 5 0 . 9 8 3 0 . 9 9 6

L210A 1 . 2 1 7 1 . 1 0 8 1 . 1 2 1 1 . 0 5 1 1 . 1 8 0 1 . 0 8 4 1 . 0 8 2 1 . 0 3 3
RB 2 . 0 2 8 2 . 7 1 5 1 . 6 0 9 1 . 9 1 0 1 . 8 5 7 2 . 3 5 7 1 . 4 2 0 1 . 6 0 2

SAFTER 1 . 2 2 5 1 . 1 1 3 1 . 1 2 7 1 . 0 5 9 1 . 1 8 7 1 . 0 9 0 1 . 0 8 8 1 . 0 4 0
SAN1 0 . 9 5 6 1 . 0 4 0 0 . 9 9 5 1 . 0 3 3 0 . 9 7 0 1 . 0 3 7 1 . 0 0 7 1 . 0 2 8
SAN2 1 . 0 0 8 1 . 0 7 8 1 . 0 3 4 1 . 0 5 8 1 . 0 1 4 1 . 0 6 8 1 . 0 3 2 1 . 0 4 5

Table 6: Exercise 7 Results: Heteroskedastic Forecasts with Outliers

Window E x e r c i s e and Number o f F o r e c a s t e r s
S i z e and E71 E72 E73 E74
Algor i thm 5 30 5 30 5 30 5 30

24
BG 0 . 8 9 1 0 . 9 2 1 0 . 9 5 3 0 . 9 8 2 0 . 8 0 1 0 . 8 9 8 0 . 8 9 0 0 . 9 5 8

L210A 1 . 4 1 3 1 . 1 8 6 1 . 6 1 7 1 . 3 6 8 1 . 0 9 5 1 . 0 6 8 1 . 3 0 8 1 . 1 8 0
RB 2 . 7 7 7 4 . 9 0 1 2 . 6 2 2 4 . 1 9 0 2 . 6 2 3 4 . 5 6 2 2 . 5 0 2 3 . 9 6 6

SAFTER 1 . 4 2 9 1 . 1 9 4 1 . 6 3 4 1 . 3 7 8 1 . 1 0 3 1 . 0 7 1 1 . 3 1 5 1 . 1 8 3
SAN1 0 . 9 3 0 1 . 0 5 2 0 . 9 7 1 1 . 0 4 8 0 . 8 4 9 1 . 0 3 7 0 . 9 1 5 1 . 0 4 5
SAN2 1 . 0 2 4 1 . 1 7 3 1 . 0 3 3 1 . 0 9 9 0 . 9 5 0 1 . 1 7 6 0 . 9 8 5 1 . 1 1 4

60
BG 0 . 8 5 6 0 . 9 0 8 0 . 9 3 0 0 . 9 7 4 0 . 7 7 6 0 . 8 9 0 0 . 8 7 2 0 . 9 5 3

L210A 1 . 4 1 3 1 . 1 8 5 1 . 6 1 6 1 . 3 6 8 1 . 0 9 5 1 . 0 6 7 1 . 3 0 7 1 . 1 7 9
RB 2 . 7 7 7 4 . 9 0 1 2 . 6 2 2 4 . 1 9 0 2 . 6 2 3 4 . 5 6 2 2 . 5 0 2 3 . 9 6 6

SAFTER 1 . 4 3 0 1 . 1 9 4 1 . 6 3 4 1 . 3 7 8 1 . 1 0 3 1 . 0 7 1 1 . 3 1 5 1 . 1 8 3
SAN1 0 . 9 3 0 1 . 0 5 2 0 . 9 7 1 1 . 0 4 8 0 . 8 4 9 1 . 0 3 7 0 . 9 1 5 1 . 0 4 5
SAN2 1 . 0 2 4 1 . 1 7 3 1 . 0 3 3 1 . 0 9 9 0 . 9 5 0 1 . 1 7 6 0 . 9 8 5 1 . 1 1 4
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Table 7: Combining SPF Forecasts: Relative MSEs and DM Test Results

Variable
and Method

BG 0.947 1.002 1.002 1.004
L210A 0.734 1.011 1.026 1.015

RB 0.797 1.046 1.012 1.073
SAFTER 0.697 1.028 1.028 1.017

SAN1 0.870 1.016 1.007 1.015
SAN2 0.829 1.032 1.014 1.024

BG 0.734 0.994 0.987 0.989 1.012 1.004 1.003 0.998
L210A 0.715 0.977 0.922 0.939 1.066 1.031 1.020 1.010

RB 0.831 1.024 0.917 0.896 1.067 1.011 1.122 1.069
SAFTER 0.717 0.963 0.911 0.930 1.053 1.035 1.032 1.007

SAN1 0.825 0.980 0.946 0.954 1.009 1.004 1.005 0.996
SAN2 0.869 0.989 0.950 0.951 1.017 1.009 1.011 0.995

BG 1.004 1.007 0.996 0.994 1.001 1.005 0.999 0.991
L210A 1.042 1.044 1.001 1.016 1.015 1.021 1.010 0.956

RB 0.947 0.986 1.001 1.040 1.075 1.062 1.037 0.938
SAFTER 1.071 1.048 0.998 1.012 1.016 1.037 1.011 0.945

SAN1 1.023 1.012 1.003 0.989 1.004 1.013 1.003 0.965
SAN2 1.012 1.011 0.995 0.983 1.003 1.032 1.013 0.967

BG 1.002 1.002 0.982 0.984 0.960 0.984 0.973 0.975
L210A 0.996 1.001 0.902 0.912 0.886 0.932 0.829 0.830

RB 1.082 1.013 0.946 0.923 1.094 0.867 0.828 0.770
SAFTER 0.992 1.004 0.898 0.909 0.893 0.933 0.822 0.820

SAN1 1.000 1.000 0.977 0.963 0.999 0.997 0.985 0.965
SAN2 0.999 0.999 0.959 0.947 0.997 0.992 0.967 0.934

PGDPPGDP

CPICPI

CPI data available 
for subsample 2 only

Subsample 1: 1968:IV to 1990:IV Subsample 2: 2000:I to 2014:IV

UNEMP UNEMP

RGDPRGDP

 h=0         h=1        h=2       h=3          h=0        h=1       h=2         h=3
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