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Abstract

Effective short-term load forecasting (STLF) plays an important role in power
system operations. In this paper, STLF with three aggregation strategies are de-
veloped, which are information aggregation (IA), model aggregation (MA), and
hierarchy aggregation (HA). The TA, MA, and HA strategies aggregate inputs,
models, and forecasts at the pre-forecasting, model-building, or post-forecasting
stage, respectively. To verify the effectiveness of the three aggregation strate-
gies, a set of 10 models based on 4 machine-learning algorithms are developed
in each aggregation category to predict 1-hour-ahead load. Case studies show
that: (i) STLF-IA presents superior performance than STLF with weather data
and STLF with individual load data consistently, and the performance can be
further enhanced by the RFE feature selection method; (ii) MA improves the
STLF robustness by reducing the risk of unsatisfactory single-algorithm STLF
models; and (iii) STLF-HA produces the most accurate forecasts while keeping

hierarchical aggregate consistency.
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1. Introduction

With the development of smart meter techniques, massive amounts of data
enable load forecasting (LF) to have a more critical impact on power system
operations. In power systems, decision-makings at different time-scales and
various hierarchies heavily rely on accurate load forecasts [I]. According to
time-scales, LF can be classified into short-term LF (STLF, up to 1-week-ahead),
medium-term LF (from 1-week-ahead to 1-year-ahead), and long-term LF (more
than 1-year-ahead) [2]. Specifically, STLF is adopted to assist in a number of
power system operations, such as generation scheduling, load switching, and
energy trading.

With the rapid development of machine learning (ML) algorithms, various
data-driven STLF models have been developed in the literature. Lusis et al. [3]
developed 1-day-ahead LF models by considering calendar effects and found
that regression trees outperformed artificial neural network (ANN) and support
vector regression model (SVR) in the selected cases. Ahmad et al. [4] proposed
an accurate and fast converging 1-day-ahead LF model based on mutual infor-
mation and ANN, which decreased the average execution time while enhancing
the forecasting accuracy compared with benchmark methods. In Ref. [5], ANN
parameters were optimized by an evolutionary algorithm, which improved the
learning capability. Deep recurrent neural network models were reported in
Ref. [6] to outperform conventional multi-layer ANN for residential and com-
mercial buildings’ LF. A more comprehensive review of ML methods for STLF
can be found in recent review papers [2] [7].

In order to achieve better forecasting performance, a number of methodolo-
gietﬂ have been developed in the literature, which could be generally divided into
three categories. Research in the first category focuses on integrating more in-

formative and better-organized data to enhance the forecasting accuracy, which

LFour terms are repeatedly used in this paper, which are methodology, algorithm, method,
and model. A methodology refers to a general solution framework that can be implemented

with different models [8]. Several models can be built based on one method or algorithm.



is defined as information aggregation (IA) in this paper. For example, mete-
orological variables, such as temperature [9] and humidity [10], were commonly
adopted to generate load forecasts. Moreover, residents’ life patterns were used
to improve the customer-level STLF in Ref. [1I]. Jiang et al. [12] developed an
accurate and robust STLF model based on date information. In addition, fea-
ture selection techniques, such as mutual information based filter method [13],
were also used to optimize the inputs to forecasting models.

The second category contains methodologies combining forecasts from mul-
tiple individual models, which is defined as model aggregation (MA). For
example, Zhang et al. [14] ensembled a set of extreme learning machines and
took the median value of their outputs as forecasts, which showed both superior
training efficiency and forecasting accuracy over benchmark models. A STLF
model that integrates individual models using weight-coefficient optimization
was developed in Ref. [I5], which showed better performance than six bench-
mark single-algorithm models. Hassan et al. [16] ensembled 100 ANN models
with simple average, trimmed mean, and Bayesian model averaging, and found
that the Bayesian model averaging approach performed better than other en-
semble models. A collection of ANN models were built based on a two-stage
diversity controlled resampling procedure and then ensembled by a linear com-
biner in Ref. [I7]. The ensemble model was found to improve the reliability of
individual household energy consumption forecasts.

The third category of STLF is called hierarchical forecasting, which we de-
fine as hierarchy aggregation (HA). In this category, individual forecasts are
aggregated to improve the top-level individual forecasts in the power system
hierarchy while keeping the aggregate consistencyﬂ For example, Sevlian and
Rajagopal [18] investigated the relationship between forecasting accuracy and
aggregation size, and found the forecasting accuracy scales with load aggrega-

tion size, which follows the Law of Large Numbers, up to a point of diminishing

2 Aggregate consistency is defined as the equality between the sum of forecasts and the

forecast of the sum.



returns. While the most common HA strategies in STLF is bottom-up (BU)
summation [19, 20} 2], several strategies have been developed in other areas to
reconcile the base forecasts (i.e., forecasts without reconciliations) in multiple
levels so that the aggregate consistency in the hierarchy can be satisfied. For
example, a reconciliation process was performed by solving a linear regression
with an ordinary least squares (OLS) estimator, which improved base forecasts
for Australian tourism forecasting [22]. A minimum trace (MinT) estimator
and its variants were developed in Ref. [23] for the same Australian tourism
forecasting and were applied to solar forecasting by Yang et al. [24].

All the three categories of aggregation forecasting methodologies have been
reported to be able to enhance the forecasting accuracy. However, the supe-
riority (i.e., which methodology has better accuracy) of the three aggregation
forecasting strategies has not been studied in the literature. In an attempt to
comprehensively compare the aggregation strategies at different stages in the
forecasting process, STLF models with TA; MA, and HA are developed in this
paper to aggregate inputs, models, and forecasts, respectively. A set of 10 mod-
els based on 4 ML algorithms are built to ensure the generality of this study.
Performance of models in different groups is compared to show pros and cons
of the three aggregation strategies. The main contributions and innovations of

this paper include:

1) Comparing STLF with different TA strategies, including: STLF with weather
information (STLF-W), with individual load (STLF-L), with integration
of weather and individual load (STLF-I), and with STLF-I combined with
feature selection (STLF-F);

2) Assessing STLF with MA by using different blending methods, including

simple averaging, linear regression, and ML algorithms;

3) Introducing aggregate consistency into hierarchical STLF and comparing

STLF-HA with BU (STLF-B), OLS (STLF-O), and MinT (STLF-T);

4) Comparing STLF with different aggregation strategies, which are STLF-



TA (including the STLF-T and STLF-F groups), STLF-MA (including the
STLF-M groupfl7 and STLF-HA (including the STLF-B, STLF-O, and
STLF-T groups);

5) Ensuring the generality of the assessment by using 10 ML models.

The remainder of this paper is organized as follows. STLF models with
TA, MA, and HA are developed in Section [2} Section [3| describes the data for
case studies, benchmarks, and evaluation metrics. Results of case studies are

analyzed and compared in Section[d Section [f] concludes the paper.

2. Short-term Load Forecasting Methodologies with Different Aggre-

gation Strategies

Three types of aggregation strategy (i.e., IA, MA, and HA) are described
and formularized in this section. The three aggregation strategies aggregate
distinct objects at different stages (enclosed by dashed boxes in Fig. [1]), which

are pre-forecasting stage, model-building stage, and post-forecasting stage.

Model Aggregation (MA)

Forecasts

Information Aggregation (IA)

Forecasts

(a) Information aggrega- (b) Model aggregation (c) Hierarchy aggre-

tion gation

Figure 1: Frameworks of STLF with three different aggregation strategies

3STLF-MA is short for the category of STLF methods with MA, while STLF-M specifically
refers to a group of models built based on the STLF-MA.



2.1. Information Aggregation (IA)

The first generation of STLF only depends on the load time series itself,
which is called time series approach [25]. External information, such as meteo-
rological data and calendar features, is integrated into the second generation of
STLF [26]. With the development of advanced metering infrastructure, smart
meter data provides an opportunity to further improve STLF accuracy. With
increasing data dimension, feature selection methods are also used to optimally
determine the input combination to forecasting models.

In this paper, STLF with four sets of inputs is studied and compared, which
are: (i) weather data (X"), calendar data (X°), and target variable data (i.e.,
load at the top level, which is denoted by «*), (ii) individual load data (i.e., load
data at the bottom level, which is denoted by X l), calendar data (X€), and
x®, (iil) X", X' X¢ and z*, and (iv) inputs selected from X", X! X¢ and
2® using recursive feature elimination (RFE). Please note that only the latest
lagged features are included in the inputs for all the models. The STLF with
IA (STLF-IA) conducts aggregation at the first step in the forecasting process,
as illustrated in Fig. STLF-TA is formularized as follows:

Yira= fi(XP) (1)

D _ _ s w c l
X" =XD= {xnxl nXdy nXde XTLXdl:| D(1+dw+dc+dz)><k (2)

where n is the data length, d,,, d., and d; are dimensions of weather data,
calendar data, and individual load data, respectively, f;(x) is the ith model,
Y4 is a forecasting vector in the IA category, X is a input matrix with all
variables, X P is a selected input matrix, and D is a decision matrix. k is the
decision matrix dimension, which equals to the number of selected inputs. The

matrix D has four forms in terms of two benchmark scenarios (STLF-W and



STLF-L) and two IA scenarios (STLF-I and STLF-F).

D(1yd,+d)x(14+d,+de) = [I(1+dw+dc) | ﬁ)(1+dw+dc)Xdz]T (3a)
1 —

Data,+a)x(i+di+de) = ﬁdwxl O (tdu)xade (3b)
T ‘ L, ta.)

D (1 4d,+di+do)x (1+de+di+de) = L(14dy+di+de) x (14dw-+di+d.) (3¢)

Duyqy+di+dyxk = F (3d)

where I and 3) are an identity matrix and a zero matrix, respectively, F' is a
decision matrix constructed by feature selection. RFE is adopted as the feature
selection method in this paper, since it has been widely used in renewable energy
or load data analyses [27, 28] 29]. RFE is a wrapper feature selection method
that selects features by recursively evaluating the forecasting behaviour with
smaller and smaller sets of features. The least important features are pruned
from the current set of features in each iteration, and the set of features that
generates the best forecasting is determined as the selected optimal feature
set. More details about the RFE method can be found in Refs. [27, 28, 29].
After determining the selected inputs using RFE, the F' matrix is constructed
by replacing the element in the ith row and jth column with 1 in the initial
?(Hduﬁdﬁdc)xk matrix, where 7 is the index of the selected feature in the X
space and j is the index of the same feature in the newly constructed X2 space.

An example of the decision matrix construction after RFE feature selection



process is expressed as:

=1
N2
[0 0] [0 0]
i1=2-00 0 0
Do RFE, |0 (4)
io=2+dy,+d.—={ 0 [0 0
L0 0] L0 0d (itaytditde)x2
T
J2 =2

where two elements in the initial 0 (144, +d,+d.)x2 matrix are replaced by 1.

Therefore, two features are selected, which are £} and x} as boxed in Eq.

i1 =2 io =2+ dy +d. /1:1]2:2

x5, |2l zt xt xt w l
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2.2. Model Aggregation (MA)

MA carries out aggregation at the model-building stage, which is expected to
take advantage of the learning power from different models. In the literature, av-
eraging forecasts generated by multiple models is the first MA strategy, followed
and advanced by a linear combination of models (i.e., weighted averaging). The
latest MA strategies seek to combine individual models with dynamic weights.
In this paper, the ML-based Multi-Model forecasting framework (as shown in
Fig. [L(b)) is adopted to aggregate individual forecasting models [30} [3T]. The
used forecating framework contains two layers (different from NN layers), the
first of which consists multiple ML models while the second of which has another

blending model. The forecasting process of this method is expressed as [29]:

y; = Li([ X", X5 2%)) (6)



Yrra=2(Y) (7)

where g, is a forecast vector provided by the first-layer model f;, Y is a com-
bination of the first-layer forecast vectors, and 9,4 is the final forecast vector
by a blending model ®(%) in the second layer. Four ML algorithms with mul-
tiple training strategies, kernels, or distribution functions are adopted, which
are ANN, SVR, gradient boosting machine (GBM), and random forest (RF).
Please note that all the models are used to construct the first layer. To compare
STLF-M with different blending algorithms, simple averaging, linear regression,
or one of the ML methods is adopted in the second-layer as a blending model

in the MA framework.

2.3. Hierarchy Aggregation (HA)

Load data is hierarchically aggregated based on the power grid network
and geographical distributions. STLF-HA forecasts entries at one or multiple
hierarchical level(s), which ensures the accuracy of every entry and the aggregate
consistency between different levels. Aggregate consistency is defined as the
equality between the sum of forecasts and the forecast of the sum. For example,
in a three-level hierarchy shown in Fig. [2| the aggregate consistency requires
Yima = 2 Yisjma and Yy = > ¥; ga, where i indicates the upper-level
entry to WﬁiCh the lower-level indiviziuals belong and j is used to identify entries
within the same aggregation group. To improve the forecasting accuracy of
the top-level entry (g4 in Fig. while keeping the aggregate consistency,
the most commonly used STLF-HA approach is BU. Other methods, such as
reconciliation forecasting [22] 23], are widely used in other areas. In this paper,
STLF-HA with BU (STLF-B) and reconciled STLF-HA with OLS (STLF-O)
and MinT (STLF-T) estimators are developed and compared.

STLF-B forecasts load of the bottom-level individuals (level 3 in Fig. [2)),
i.e., bi/j ma, by using weather data, calendar data, and specific individual load
data (i.e., '), which are aggregated to the upper-level (level 2) until reaching

the top-level (level 1). This process can be expressed by using matrix notation



Level 1

Level 2

Figure 2: A three-layer hierarchical structure

YA = 8b;;; 4, which is further expanded as [23]:

T
YHA:[@HA Yi.,04A @2,HA .@1/1,HA .@1/2,HA .@2/1,HA @2/2,HA}

11 1 1| |byima
11 0 0f |Biama (8)
o 0 1 1| |byaa

1, ba/2,ma

where Y 4 is a forecasting matrix containing all entries in the hierarchy. S is
a summing matrix, which is determined by the hierarchical structure in Fig.
bi/j.ma are base forecasts at the bottom level, shown in Fig. El Ijisadx4
identity matrix. Please note that the objective of this paper is to forecast the
load at the top-level, ¥ 4, which might sacrifice the accuracy of forecasts at
lower levels.

STLF-O and STLF-T leverage correlations and interactions between entries
at different levels, which are different from STLF-B. Therefore, instead of using
only the base forecasts at bottom-level (b;/; z4), base forecasts of all entries
in the hierarchy are optimally combined to generate the reconciled final fore-
casts, Y ma. The base forecasting reconciliation is achieved by solving a linear
regression problem [22]:

B, =S508,+¢ (9)

where By is base forecasts of entries at all levels at time ¢. 3, is the unknown
mean matrix of the bottom-level entries. € is an error vector with zero mean

and unknown variance ¥. The minimum variance unbiased estimate of 3, can
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be obtained by using generalized least squares (GLS) estimation as [32] [33]:
GLS — (8'n18)"18'sB, (10)

where 2 is the Moore-Penrose generalized inverse of ¥. And the reconciled

unbiased final forecasts are expressed as:
Y, =5p7"" (11)

To deal with the unknown X, two simplified estimators are adopted in this
paper, which are OLS and MinT. The reasons to select these two estimators
are that OLS is the most popular reconciliation method and MinT is the best
reconciliation method as reported in the literature [23] [24]. The two estimators

are described as follows [23]:

OLS _ (8'8)"1s'B, (12a)
MznT (S/ S)_ls/W_lBt (12b)

where 3 equals kI and kW in OLS and MinT, respectively. kj, is a positive
scaling factor and W is a historical sample covariance matrix of base forecasting
errors based on the validation dataset. Assumptions and proofs of the two
simplification processes can be found in Ref. [23]. Finally, the unbiased final

forecasts with the two reconciliation methods are expressed as:

Vo' — s80Ls — §(5'5)"'S'B, (13a)

YM’"T = §pMnT _ §(§'W18)"1s'W !B, (13b)

3. Experimental Setup

In this section, experimental setups for case studies are described, including
data description and pre-analysis, benchmarks and comparison settings, and

evaluation metrics.
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3.1. Data Description and Pre-analysis

In this paper, hourly load data of 13 buildings (selected based on the data
availability) at The University of Texas at Dallas (UTD) is used for case stud-
ies [34]. The whole campus data is assumed to be the sum of 13 buildings’
load. The reasons to research with university campus load are threefold: (i) the
demand-side LF is more challenging than the upper-level LF in power system
hierarchy [35], (ii) large electricity consumers, such as universities, are more crit-
ical in demand-side management, (iii) a university campus has buildings with
diverse load patterns that are interesting to explore. In addition to campus
load, hourly weather information is retrieved from the National Solar Radia-
tion Database (NSRDB)H The weather features in NSRDB dataset include air
temperature, relative humidity, air pressure, wind speed, wind direction, direct
normal irradiance, global horizontal irradiance, and diffuse horizontal irradi-
ance. Calendar features, i.e., the holiday indicator, hour of the day, day of the
week, and month of the year, are extracted and included in all the case studies.
Please note that only the latest lagged features are included as the inputs for
all the models. Both UTD load and NSRDB weather data span from January
15¢ 2014 to December 31°° 2015. The training data and validation data are
randomly selected from each month, and the remaining data is used for testing.
The ratio of training samples, validation samples, and testing samples is 3:1:1.
We assume that by randomly partitioning days into training or testing datasets,
the model generality can be better assessed. This data partitioning strategy has
been widely used in power system time series forecasting, such as Global Energy
Forecasting Competition (GEFCom) 2012 [36] and GEFCom 2014 [37].

Figureshows load profiles of the total 13 buildings (i.e., the top-level entry
in HA) and individual buildings (i.e., the bottom-level individuals in HA). Tt
is observed that the load profiles have evident diurnal patterns. This is also
proved by a time series analysis [31] B8], showing that all the load time series

have a periodicity of 24 (1 day). Moreover, load patterns of the 13 buildings

4https:/ /nsrdb.nrel.gov
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Figure 3: UTD campus and building load profiles for seven days in spring

(B1-B13) are different, which could be further validated by load statistics as
shown in Fig. [l Among the 13 buildings, Bl is a parking structure equipped
with photovoltaic panels, which may have negative netload during the daytime,
as shown in Fig. [ B2 is an administration building that has load with larger
variance from 8am to 5pm. B3 is a library that has the largest and most sta-
ble load among all buildings. B4 is a lecture hall, which has relatively small
but chaotic load. B5-B9 are five classroom/lab buildings with similar patterns.
B10-B13 are four student residence halls that have diverse load patterns in con-
trast to other buildings. Compared to individual buildings, the whole campus
load (UTD) is relatively smoother.

While the methods can be applied to different forecasting horizons, the fore-
casting time horizon in this paper is 1-hour-ahead. 1-hour-ahead LF plays an
important role in power system operations, such as helping decision-making of
real-time dispatch and energy storage charging/discharging. 1-hour-ahead LF
is also flexible and scalable to generate longer-term forecasts in a recursive or
a parallel manner. The experiments are carried out on a laptop with 2.6 GHz

Intel Core i7 processor and 16 GB 1600 MHz DDR3 SDRAM.

8.2. Benchmarks and Comparison Settings

In this paper, forecasting methods with three categories of aggregation strate-
gies are investigated and compared, which are IA; MA, and HA. The details of

each category are summarized as follows and listed in Table

13
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e Category 1: In the IA category, STLF using weather data (STLF-W),
individual buildings’ load data (STLF-L), STLF-I, and STLF-F are com-
pared. Note that the historical whole campus load data and calendar data

are included in all the four groups as an input.

e Category 2: The second comparison is made between STLF-M and
STLF with a single-algorithm ML model (STLF-S), both of which use
weather data and calendar data (so STLF-S is the same as STLF-W).
Please note that the historical whole campus load data is also a predic-
tor in the two groups. Both simple methods (simple average and linear
regression) and ML methods are adopted as blending algorithms in the

second layer of the ML-based Multi-Model forecasting framework.

e Category 3: The third category contains three HA strategies, which
are BU, OLS reconciliation, and MinT reconciliation. All the three HA
strategies are tested by the two-level UTD load hierarchy that contains a
top-level entry and 13 bottom-level entries. The inputs to the individual
building load forecasting models are weather data, calendar data, and the

corresponding historical individual building load.

After investigating the effectiveness of the three aggregation strategies, mod-
els in the 6 aggregation groups (i.e., STLF-I, STLF-F, STLF-M, STLF-B, STLF-
O, and STLF-T) are further compared to show their superiority in STLF.

Ten state-of-the-art ML models are included in this paper for aggregation
strategy implementations, which diversified by different training algorithms, ker-
nel functions, or distribution functions. Specifically, three ANN models with
standard back-propagation (BP), momentum-enhanced BP, and resilient BP
training algorithms are selected based on their fast convergence and satisfac-
tory performance [39]. The most popular kernels in SVR are used, which are
linear, polynomial, and radial base function kernels. GBM models with squared,
Laplace, and T-distribution loss functions are empirically selected. The last
model is an RF model. The model hyperparameters are emperically determined

by the validation dataset and summarized in Table[2] including the learning rate
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Table 1: Different aggregate forecasting categories and groups

Category Group Group index Input

STLF-W W (XY X° x°]
STLF-L L (X! X€, %]

1A STLF-I I (X", X X! x|
STLF-F F (X", X° X' x°]

MA STLF-S S (XY X€ x®]
STLF-M M (X, X x®]
STLF-B B (X", X° x|

HA STLF-O @) (X", X x|
STLF-T T (X", X x|

(1r) and the maximum number of epochs (max_epoch) in M1-M3; the minimum
update value (min_delta) and the maximum update value (max_delta) in M1,
the momentum (momentum) in M2; the penalty weight (C4) and insentive param-
eter (g4) in M4-MG6; the free parameter (d4) in M5 and M6; the degree of the
polynomial (degree) in M5; the number of boosting iterations (ntrees), maxi-
mum tree depth (max_depth), learning rate (1r), out-of-bag fraction (bag_frac)
in M7-M9; the degree of freedom (DF) in M9; and the number of trees (ntrees)
and the number of variables randomly sampled as candidates at each split (mtry)
in M10. It is important to note that all these models are used in the first-layer

and only one of them is used in the second-layer in MA.

8.8. Forecasting Accuracy Assessment

To assess the forecasting accuracy, four evaluation metrics are used, which
are normalized mean absolute error (nM AF), mean absolute percentage error
(MAPE), nMAE improvement (Imp?), and M APE improvement (Imp”).

The mathematical expressions of the four metrics are respectively shown as [40)],
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17]:

n

1 Ji — Yi
nMAE = =S | L Y 5 100% (14)
n i=1 y’max
1 n ~ )
MAPE =~ %" % x 100% (15)
i=1 i

nMAEMb — nMAEMa

Imp? = 16
MPab nMAEyy, (16)
MAPE,;, — MAPE,,
I P — b a 1
MPap MAPEy,, (17)

where ¢, y, and Yma, are the forecasting value, actual value, and maximum
actual value, respectively; ¢ is a sample index and n is the number of samples;
M is the model name; a and b are group indices to which a model belongs.
Specifically, a and b could be selected from L, W, S, I, F, M, B, O, and T, which
represent the groups of STLF-L, STLF-W, STLF-S, STLF-I, STLF-F, STLF-M,
STLF-B, STLF-O, and STLF-T, respectively. For example, I mp?w means the
improvement of STLF-I over STLF-W based on nM AFE. It is important to note
that both Imp? and Imp® are calculated based on the same model M, because
the focus of this paper is to compare STLF with different aggregation strategies,
instead of comparing STLF using different ML models. Quantifying the overall
performance of forecasting models from different perspectives, however, the four
metrics are not able to detail the local accuracy of forecasts (e.g., all the bias
are positive since the absolute value calculation). Therefore, two other error
metrics used for visualization in Section {| are bias error (BE, which is also
known as the forecasting residual) and normalized bias error (nBE), which are
expressed as:

BE; =4 — y; (18)

nBE; = 7Y s 100% (19)

Yi
4. Results and Discussion

4.1. Effectiveness of IA
Four groups of STLF models in the TA category are tested and their fore-

casting errors and comparison results are summarized in Tables [3] and [d] It is
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Table 3: Forecasting nMAE [%] and MAPE [%)] in the IA category

STLF-W STLF-L STLF-I STLF-F
Model nMAE MAPE nMAE MAPE nMAE MAPE nMAE MAPE
M1 1.68 2.67 1.69 2.76 1.38 2.22 1.29 2.10
M2 1.34 2.20 1.58 2.56 1.26 2.10 1.35 2.24
M3 1.36 2.20 1.70 2.76 1.36 2.22 1.32 2.13
M4 1.83 3.01 1.72 2.81 1.53 2.50 1.57 2.55
M5 1.46 2.35 1.57 2.53 1.31 2.12 1.37 2.21
M6 1.43 2.32 1.44 2.36 1.26 2.07 1.16 1.90
M7 1.67 2.71 1.83 2.95 1.67 2.70 1.67 2.69
M8 1.08 1.74 1.36 2.23 1.00 1.64 1.03 1.68
M9 1.28 2.14 1.29 2.13 1.16 1.91 1.06 1.73
M10 1.05 1.72 1.32 2.17 0.99 1.61 1.00 1.63
Average 1.42 2.31 1.55 2.53 1.29 2.11 1.28 2.09

Note: Italic values indicate the best results within the same group and bold values

indicate the smallest forecasting errors among all models.

observed from Table [3] that different ML models perform distinctively. For in-
stance, the forecasting nM AE of STLF-W models ranges from 1.05% to 1.83%.
In general, the last three models (two GBM models and one RF model), i.e.,
MS8-M10, forecast more accurately than other models in all the four groups.
This is due to the stronger learning power of the three models. In addition,
the weather information has larger impacts on forecasting model performance
than individual building load data, since all the models in STLF-W group have
smaller forecasting errors than those in the STLF-L group, except for M4 and
M9. However, the influence of the inputs on models is varying. For example,
the forecasting results could be competitive (e.g., M9) or even worse (e.g., M4)
by using individual building load compared to those using weather data.

It is found from Table[]that STLF-I models reduce forecasting errors notably
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Table 4: Forecasting improvements in the IA category according to Imp? [%] and Imp® [%)]

ImhW ImhW Impr Impr ImpﬁI Impl{fl

M1 17.86 16.85 18.34 19.57 6.52 5.41
M2 5.97 4.55 20.25 17.97 -7.14 -6.67
M3 0.00 -0.91 20.00 19.57 2.94 4.05
M4 16.39 16.94 11.05 11.03 -2.61 -2.00
Mb 10.27 9.79 16.56 16.21 -4.58 -4.25
M6 11.89 10.78 12.50 12.29 7.94 8.21
Mt 0.00 0.37 8.74 8.47 0.00 0.37
M8 7.41 5.75 26.47  26.46 -3.00 -2.44
M9 9.38 10.75 10.08 10.33 8.62 9.42
M10 5.71 6.40 25.00 25.81 -1.01 -1.24
Average 8.49 8.13 16.90 16.77 0.79 1.09

Note: Itaic values indicate the most improvements within the same comparison while

bold values identify the most improvements in all comparisons.

and consistently, compared with STLF-W and STLF-L models. The accuracy
improvements are more evident by aggregating weather information data into
forecasting models. Regarding to different models, M1 (an ANN model) and M8
(a GBM model) are enhanced the most by TA. A further comparison is made
between STLF-I and STLF-F models, where the RFE feature selection further
improves some of the models, such as M9. It is concluded that IA improves

STLF forecasting accuracy notably and consistently.

4.2. Effectiveness of MA

MA forecasting evaluation results are summarized in the first 4 columns of
Table |5l The comparisons of MA with STLF-S are shown in the 5th and 6th
columns of the same table. It is found that the performance of the relatively
less-accurate STLF-S models is improved more notably by MA, such as M4 and
MT7. However, the best two models in STLF-S, i.e., M8 and M10, deteriorate in
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Table 5: Forecasting nMAE (%], MAPE (%], Impy;s (%], and Impt, o [%] in the MA

category

STLF-S STLF-M mpd . Tmpt
nMAE MAPE nMAE MAPE
Mof NA NA 1.38 2.26 NA NA
5P MO* NA NA 1.10 1.77 NA NA
M1 1.68 2.67 1.32 2.16 27.27 19.10
M2 1.34 2.20 1.36 2.24 -1.47 -1.82
M3 1.36 2.20 1.45 2.35 -6.21 -6.82
M4 1.83 3.01 1.35 2.22 35.56 26.25
M5 1.46 2.35 1.20 1.98 21.67 15.74
ML M6 1.43 2.32 1.76 2.85 -18.75 -22.84
M7 1.67 2.71 1.39 2.32 20.14 14.39
M8 1.08 1.74 1.24 2.06 -12.9 -18.39
M9 1.28 2.14 1.15 1.89 11.30 11.68
M10 1.05 1.72 1.16 1.91 -9.48 -11.05
Average 1.42 2.31 1.34 2.20 6.71 2.62

Note: Itaic values indicate the best results within the same group, while bold values
indicate the smallest forecasting errors or the most significant improvements among all
models. MO" and M0* are ML-based Multi-Model forecasting frameworks with simple

averaging and linear regression in the second layer.

STLF-M, which is partially due to the unsatisfactory forecasts (Y) from part
of the first-layer models. Regarding to second-layer blending models, two lin-
ear models, M0* and M4, outperform other models, possibly due to the linear
relationship between the first-layer forecasts (Yij) and the load observations.
By comparing blending models with ML algorithms, all the ANN models (i.e.,
M1-M3) and SVR with linear and polynomial kernels (i.e., M4 and M5) per-
form relatively better in STLF-M. Among the four different ensemble learning

algorithm models (M7-M10), two of them (i.e., M7 and M9) have increasing ac-
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curacies while the other two (i.e., M8 and M10) have decreasing accuracies using
the MA strategy. Though three models (i.e., M6, M8, and M10) produce worse
forecasts, their forecasting accuracies are still competitive. Therefore, it is con-
cluded that MA enhances STLF robustness by reducing the risk of unsatisfactory
single-algorithm ML models.

4.3. Effectiveness of HA

The forecasting nM AE and M APFE using STLF-HA models with three dif-
ferent HA methods are illustrated by barplots in Fig. [l By comparing entries
in different levels of the hierarchy, it is found that the bottom-level forecasting
errors are canceled out by aggregating bottom-level forecasts (B1-B13) to top-
level forecasts (UTD). Taking the M1 model in STLF-B as an example, most
of the individual load (B1-B13) forecasting nM AEs are obviously larger than
1.10%, while its forecasting error of UTD is only 1.10%. Regarding to forecast-
ing models, though no single model always outperforms others, three ensemble
learning models (M8-M10) perform more accurately, especially for buildings B2,
B4, and BS.

The comparisons (only the top level) between STLF-HA models with STLF-
S models (denoted as Mg, Mo, and Mrp) are shown in Fig. @ It is observed
that all the three HA strategies improve the top-level entry’s forecasting accu-
racy using all 10 models, as indicated by the positive bars of Mgy, Mo, and
Mysr. As opposed to STLF-S, HA methods improve STLF by up to 24.63%
and 26.59% based on Imp? and I'mp”, respectively. By comparing three HA
strategies (indicated by Mpp and Mrp in Fig. @, it is found that only SVR
models (M4-M6) are enhanced by OLS and MinT strategies, which means the
more advanced OLS and MinT methods do not outperform BU consistently
as expected in the selected case studies. Qwerall, it is concluded that HA is
able to provide more accurate forecasts while keeping aggregate consistency in

the hierarchy.
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Figure 5: Forecasting errors in the HA category. Mp, Mo, and Mp are models in STLF-B,
STLF-0O, and STLF-T groups, respectively

4.4. Superiority of Different Aggregation Strategies

The outperformance and advantages of the three aggregation strategies over
STLF-L and STLF-W have been validated in Sections In this subsec-
tion, further comparisons are conducted among the different aggregation strate-
gies. Results of STLF with three aggregation strategies are visualized in Fig. [7]
Most STLF-B and STLF-T models outperform their counterparts in STLF-I,
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groups, respectively
STLF-F, and STLF-M groups, such as ANN, GBM, and RF models. How-

ever, SVR models in STLF-B group (M4-M6) are beaten by the same models
in STLF-T and STLF-F groups. Furthermore, two models (i.e., M4 and MT)
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with HA strategies produce worse forecasts than those with MA strategy. The
forecasting accuracy deterioration of the STLF-HA models is due to the indi-
vidual forecasting error accumulation effect, which is illustrated in Fig. 8| Two
contrasts shown in Fig. [8f are STLF-O with M7 (M70) and STLF-B with M10
(M10g), which are the worst and the best STLF-HA models, respectively. It
is observed from Fig. that M10p generates forecasts with smaller bias for
each individual building than M7, such as B2 and B4. Moreover, the individual

buildings’ LF errors of M7o accumulate to larger values in contrast with those

25



Error Metric [%)]

0 IM10, M9, IM10, M0}, IM10s|
Jan. Feb. Mar. Apr. May Jul\l}le Jtuhly Aug. Sept Oct Nov Dec

(a) Forecasting errors by month

Error Metric [%)]

S| ) N »
[M1oufM9 IM10 Moy IM10s [
) Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
Day of Week

(b) Forecasting errors by day of the week

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, AIM10,AM10,EM10g|

JVINU

| 1 I Fi Y . m

00 00 03 00 06 00 09: OO H12 :00 15 00 18: 00 21 00

(c) Forecasting errors by hour of the day
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of M10pg, which is illustrated by the darker colors of the whole campus’ forecast-
ing errors in Fig. Though there are some unsatisfactory models compared
with other two aggregation strategies, the overall improvement of STLF-HA is
obvious. Additionally, STLF-HA produces the most accurate forecasts (0.83%
nMAE and 1.35% MAPE) among all models.

The best model in each group is picked out to make further comparisons,
which are M10 in the STLF-W/STLF-S group (M10yw ), M9 in the STLF-L
group (M9.), M10 in the STLF-I group (M10g), M0* in the STLF-M group
(MO03), and M10 in the STLF-B group (M10p). Figure [J]shows 1-weck actual,
forecasting, and bias error time series of the selected five models. It is observed
that M10p has smaller errors than other four models, especially during load
ramps (enclosed by red boxes in Fig. E[) To characterize forecasting performance
of the five models, forecasting errors with respect to calendar units (i.e., month
of the year, day of the week, and hour of the day) are shown in Figs.[10(a)H{10(c)|
One interesting finding is that the calendar effect has considerable impacts on
forecasting errors. For example, errors in January, August, and September are
much larger than those in other months. This is possibly due to the load pattern
variation by university holidays. The calendar effect on forecasting errors is even
more evident by hour of the day, as shown in Fig. Forecasts deviate the
most from 6am to 8am, during which load patterns change more considerably.
However, no evident calendar effect is found on forecasting errors by day of the
week, as shown in Fig. [10(b)l This is possibly due to the diverse building load
of the university, for example, classroom and library buildings have higher load
during weekdays and residential halls have higher load during weekends. Even
though the load pattern varies a lot, it is observed that M10p presents superior
performance in every month, every day of the week, and at every hour of the

day than the best models in other groups.
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5. Conclusion

This paper developed and compared short-term load forecasting (STLF)
with different aggregation strategies, including information aggregation (IA),
model aggregation (MA), and hierarchy aggregation (HA). The three aggrega-
tion strategies integrated distinct objectives at different stages in the forecast-
ing process. STLF-TA aggregates more informative and better-organized data.
STLF-MA aggregates forecasts of different ML models and takes advantage of
their learning abilities. STLF-HA aggregates lower-level forecasts into higher
level forecasts in the hierarchical structure. Case studies based on 2-year of

hierarchical smart meter data showed that:

(i) STLF with the three aggregation strategies improved forecasting accuracy,

compared with benchmarks without aggregation.

(ii) STLF-I presented superior performance than STLF with weather data and
STLF with individual load data consistently.

(iii) MA improved the STLF robustness by reducing the risk of unsatisfactory
single-algorithm STLF models.

(iv) HA produced the most accurate forecasts while keeping hierarchical aggre-
gate consistency in distinctive load pattern scenarios caused by calendar

effects.
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