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Trend Time—Series Modeling and Forecasting
With Neural Networks

Min Qi and G. Peter Zhang

Abstract—Despite its great importance, there has been no gen-
eral consensus on how to model the trends in time-series data.
Compared to traditional approaches, neural networks (NNs) have
shown some promise in time-series forecasting. This paper investi-
gates how to best model trend time series using NNs. Four different
strategies (raw data, raw data with time index, detrending, and dif-
ferencing) are used to model various trend patterns (linear, non-
linear, deterministic, stochastic, and breaking trend). We find that
with NNs differencing often gives meritorious results regardless of
the underlying data generating processes (DGPs). This finding is
also confirmed by the real gross national product (GNP) series.

Index Terms—Difference-stationary (DS) series, forecasting,
neural networks (NNs), trend-stationary (TS) series, trend time
series.

1. INTRODUCTION

RADITIONAL analyses of time series were mainly con-
Tcerned with modeling the autocorrelation structure in a
time series, and they typically require that the data under study
be stationary. Trends in time series clearly violate the condi-
tion of stationarity. Thus, the removal of the trend is often de-
sirable in the time—series analysis and forecasting. For example,
the well-known Box—Jenkins [4] approach to time—series mod-
eling relies entirely on the stationarity assumption. The classic
decomposition technique decomposes a time series into trend,
cycle, and irregular components. The trend is often estimated
and removed from the data first before other components are
estimated.

A trend-stationary (TS) series can be made stationary by re-
moving its deterministic trend, whereas difference-stationary
(DS) series or series with stochastic trend can be made sta-
tionary by differencing (TS, DS, and detrending related issues
will be discussed in detail in Section II) These two detrending
approaches are not equivalent and should not be used inter-
changeably. Spurious autocorrelations can be induced in a trend
time series by either mistakenly removing a deterministic trend
from DS data, or differencing TS data (see, e.g., [6], [14], [24],
and [35]). In addition, the distinction between T'S and DS is also
critical from the economic forecasting perspective because these
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models imply very different dynamics and hence different point
forecasts [5], [13], [35]. Using the incorrect detrending form can
have markedly different implications for forecasting [8], [13],
[15].

It is, however, often difficult to determine whether a given
series is TS or DS. Examples can be easily constructed to il-
lustrate the arbitrary closeness of TS and DS models [7]. Al-
though statistical tests such as the Dickey—Fuller test and the
Phillips—Perron test, among others, have been developed in the
time—series econometrics literature, these tests suffer from very
low power in distinguishing between a unit-root and a near-
unit-root process. In addition, the testing procedure can be con-
founded by the presence of the deterministic regressors (i.e., the
intercept and deterministic trend), which may further reduce the
power of the test.

This practical difficulty is perhaps the reason that more than
20 years after the seminal work of Nelson and Plosser [25]
who find that a large number of macroeconomic aggregates
follow the DS process, the issue of deterministic versus sto-
chastic trends in the U.S. gross national product (GNP) series
remains controversial [23], [26], [33]. For example, Franses
and Kleibergen [15] find that the DS processes can adequately
describe a large number of macroeconomic aggregates, whereas
in [9], [10], [14], [28], and [29], it was found that the case for
TS is stronger. Despite these conflicting findings on unit roots,
Diebold and Kilian [11] find that pretesting for unit root can
improve forecasting accuracy for linear models compared to
routinely differencing or never differencing. Thus, it remains
unclear what is the best approach to model and forecast trending
time series.

Because “data generating processes are unknown and inher-
ently unknowable” [30], it might be beneficial to use robust
models that are able to capture the often unidentifiable under-
lying structure of a time series with few assumptions about
the mechanisms of the trend [7]. One such model is the neural
networks (NNs). Compared to most traditional forecasting
approaches, NN are nonlinear nonparametric adaptive models.
They are able to approximate complex relationships without
a prespecified model form. During the last decade, NNs have
received attention from both practitioners and academics across
a wide range of disciplines. They are found to be a viable
contender among various time—series models [3], [19], [37]
and have been successfully applied to different areas (see [16],
[21], and [34], for recent examples). Research efforts in NN
forecasting are considerable and the literature has been steadily
growing. Several recent studies have attempted to model time
series with trend. However, most of them are application spe-
cific (e.g., [17], [18], and [27]), and are limited to a particular
trend pattern or trend modeling approach (e.g., [18] and [36]).
No systematic effort has been devoted to studying the general
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issue of how to use NNs to best model and forecast time series
of various trend patterns.

The main purpose of this paper is to explicitly investigate the
issue of how to best use NNs to model trend time series. Three
research questions are of interest. First, are NNs able to directly
model trend time series? Up to now, there has been no theo-
retical answer to this question. The currently available asymp-
totic result of NN estimator relies on the assumption of weak
stationarity, which does not cover the trend time series. Due to
this lack of theoretical rigor plus many practical factors such
as data limitation, noise level in the data, complexity of the pat-
terns, and suboptimal training of NN, it is not clear whether NN
models can provide a mistake-proof direct modeling of the trend
time series. Second, is inclusion of time index helpful in im-
proving forecasting performance? Traditional regression-based
forecasting techniques rely on the inclusion of the time index
for trend time—series forecasting. Therefore, it is natural to see
if the inclusion of the time index is able to improve forecasting
accuracy with NN-based models. Finally and perhaps most im-
portantly, what is the effect of incorrect and correct detrending
on NN forecasting performance? More specifically, we would
like to know what happens when a detrending method does not
match the underlying trend mechanism.

The remainder of this paper is organized as follows. In
Section II, we provide a brief discussion on the theoretical
issues of trend time series. Section III gives details on research
design and methodology. Results are discussed in Section IV.
Finally, concluding remarks are offered in Section V.

II. DS AND TS PROCESSES IN TIME—-SERIES MODELING

For illustrative purposes, consider the simple cases of deter-
ministic and stochastic trend models often seen in economic and
finance literature

Yy = a + bt + &4 €))
Y+ =Yr-1+b+e (2)

where &; ~ iidN(0,0?) and a and b are constant parameters.
Model (1) is a TS process as the trend-eliminated series &;, the
least squares residuals, are stationary. Model (2) represents a
unit-root process which is DS as first differencing of y;, y: —
yi—1 = b+ &4, is a stationary process.

We can express model (2) via recursively replacing lagged y;

as
t

ye=yo+bt+ Y e 3)
k=1

where ¥ is the starting point of . Comparing (1) and (3), one
can see that both DS and TS series can be written as a linear
function of time (a deterministic trend component) plus a sto-
chastic term. In a TS process (1), however, the intercept a is
a constant parameter while in a DS process (3), it is a random
starting point. The impact of shocks ¢, is temporary for the TS
process, but permanent for the DS process as they accumulate
over time. Because of this key difference, forecasts as well as
forecast errors can be quite different from the theoretical per-
spective. For example, for TS processes, forecasts are indepen-
dent of past shocks while forecasts of the DS process depend
on the past shocks. Forecast errors in a TS process are constant
over forecasting horizons, but are increasing for a DS process.

As discussed in the introduction, the controversy around trend
time—series analysis is mainly about whether economic particu-
larly macroeconomic time series should be modeled as a DS or a
TS process. In their seminal work, Nelson and Plosser [25] con-
clude that most macroeconomic time series can be adequately
modeled as DS processes. DeJong and Whiteman [9], [10], how-
ever, conclude just the opposite. Mixed findings can be found in
many places including [13], [22], and [32].

Although theoretically DS and TS processes have strikingly
different properties thus should have potentially very different
implications for forecasting [6], [8] [[35], empirical studies
give mixed findings regarding the effect of model misspeci-
fication. For example, reexamining the Nelson—Plosser data
from the out-of-sample forecasting perspective, Franses and
Kleibergen [15] find that DS models are regularly preferred to
the TS models even if a DS process is not necessarily the true
data generating process (DGP). On the other hand, based on a
Monte Carlo simulation study, Clements and Hendry [8] find
in almost all practical conditions that these two models are “in-
distinguishable in terms of their implications for predictability”
regardless which one is the true DGP.

III. RESEARCH METHODOLOGY

In practice, NNs are used even when the DGP is nonstationary
in which case the asymptotic results for universal approximation
are not established in the literature. In order to address research
questions expressed previously and provide empirical evidence
on the issue of trend time—series modeling with NNs, we per-
form a Monte Carlo simulation experiment. We investigate a
variety of different scenarios in order to represent real-world sit-
uations where NNs may be used. We examine relatively simple
processes in order to provide manageable and interpretable anal-
ysis and insights.

A. Data

We consider six broad types of time-series DGPs: linear
deterministic trend (LDT), linear stochastic trend (LST), non-
linear deterministic trend (NDT), nonlinear stochastic trend
(NST), deterministic trend with structure break (SBD), and
stochastic trend with structure break (SBS). To see the effect of
near unit root, we also consider two near-unit-root processes
NURI and NUR2 with autoregressive coefficient of 0.99 and
0.97, respectively. Specifically, data are generated according to
the following DGPs:

* process 1 (LDT)

ye = bt + e¢; “)

e process 2 (LST)

Yt =b+yi1+ey Q)

» process 3 (NDT)

yr = bt* + ey (6)

e process 4 (NST)
Yt = b+ Y1+ cyr—16t-1 + €43 @)

* process 5 (SBD)
yr = [b1 - I(t <TB) 4+ by - I(t > TB)]t + e4; 8)

* process 6 (SBS)

ye = [br - I(t <TB) +bo- I(t > TB)| + pyi—1 + 15 (9)
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e process 7 (NUR1)

Ye = b+ 0.99y,_1 + &4; (10)
e process 8 (NUR2)
Y = b+ 0.97Ty,—1 +&4; (11)

where €; ~ iidN (0, 0%); TB is the time period in which a struc-
tural break has happened; [ is a logic operator, I (true) = 1, and
I(false) = 0. We set b = 0.0083,0 = 0.0435,¢ = 0.40,b; =
0.0051, b2 = 0.0115, and TB = 100. Some of these parameter
values are calibrated from fitting a linear deterministic model
to the natural logarithm of the quarterly U.S. GNP (billions of
chained 1996 dollars, seasonally adjusted). The data run from
the first quarter of 1947 to the third quarter in 2001.

For each DGP, we generate a total of 250 observations for
model building and testing. The starting point is randomly gen-
erated from a uniform distribution within [0, 1]. Using different
random seeds for the random shock &;, the previous process is
replicated 100 times, generating 100 different time series for the
same DGP. For consistency and comparison purposes, the same
starting point for all series as well as common random errors &;
is used across models.

The natural logarithm of the real U.S. GNP is also used to test
the findings from the simulation study. The entire sample con-
sists of seasonally adjusted quarterly data from the first quarter
of 1947 to the third quarter in 2001, a total of 219 observa-
tions (billions of chained 1996 dollars; source: St. Louis Federal
Reserve Bank). The whole sample is divided into three parts:
training (the first 169 observations), validation (the next 25 ob-
servations), and testing (the last 25 observations).

B. Neural Networks

The NN models used in this study are the standard three-layer
feedforward NNs with only one output node and with nodes in
adjacent layers fully connected. The transfer function for hidden
nodes is the logistic function and for the output node, the identity
function. Bias (or intercept) terms are used in both hidden and
output layers. Our NN model can be written as

n k
Ye = g + Z a;g <Z Bijri + ﬂoj) +& (12)

j=1 i=1

where k is the number of input nodes, n is the number of
hidden nodes, and ¢ is a sigmoid transfer function such as
the logistic: g(z) = 1/(1 + exp(—=z)). {a;,5 = 0,1,...,n}
is a vector of weights from the hidden to output nodes and
{Bij,i = 0,1,...,m;5 = 1,2,...,n} are weights from the
input to hidden nodes. g and (3y; are weights of arcs leading
from the bias terms which have values always equal to 1.
Equation (12) can also be written as

yr = fla1, ..., 0k, 0) + &4 (13)

where f(-) represents the NN model and 6 is a vector that con-
tains all the parameters in (12).

The Levenberg and Marquardt algorithm (LMA) provided by
the MATLAB NN toolbox is employed in training. LMA inter-
polates between the Gauss—Newton algorithm (GNA) and the
steepest descent method. Like GNA, it does not require calcula-
tion of the second-order derivatives thus offers fast convergence.
It converges to the steepest descent in case the Jacobian has de-
ficient rank thus reduces the conditioning problem of the GNA
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[20]. The LMA is one of the most popular curve-fitting algo-
rithms, and is especially powerful for the nonlinear least square
problem.

To determine the best NN structure for each time series, we
use the common practice of cross validation in NN modeling.
Each time series is divided into three portions of training, vali-
dation, and testing. The training sample is used to estimate the
parameters for any specific model architecture. The validation
set is then used to select the best model among all models con-
sidered. Finally, the selected model is tested with the testing data
set.

There is no specific rule governing the splitting of the data
in the literature. However, it is generally agreed that most data
points should be used for model building. In the simulation
study, we use the first 200 observations for training, the next 25
points for validation, and the last 25 points for out-of-sample
testing, the same as the validation and testing sample sizes
chosen for our real GNP data. Because most macroeconomic
time series are quarterly, 25 observations cover more than six
years. In addition, the average length of expansion for the U.S.
real GDP is 20 quarters and the average length of recession is
around three quarters. On average, 25 quarters are long enough
to cover an entire U.S. business cycle thus should be enough
for out-of-sample testing. Furthermore, with 100 replications,
there is ample amount of data points for out-of-sample testing.

C. Research Design

We apply four methods to model each trend time series:

1) modeling with raw original data (denoted as “original”),
Yo = f(Ye-1,- - Ye—k) + €45

2) modeling original data with time index (denoted as “time
index™), g = f(t) + es;

3) modeling with detrended data (denoted as “detrending”),
yi = fyi_1, - yi_p) + €6, ye = a4 bt + i, where y}
is detrended from a linear regression model;

4) modeling with differenced data (denoted as “differ-
encing”), Ayy = f(Ayi—1,...,Ayi—k) + &+, where
Ay = Y — Yp—1.-

The first two methods are direct modeling approaches in that
raw data are used in both input and output layers. The differ-
ence between methods (1) and (2) is that the latter is similar
to a time—series regression model and we use the time index
t associated with each observation as the sole input variable
while in the former we try to model directly the relationship
between the future time—series value and the past lagged obser-
vations. Methods (3) and (4) are indirect approaches as data are
detrended either with linear detrending method or with differ-
encing. Therefore, for each data set, we build four models cor-
responding to the previous four methods.

All NN models are built with the usual cross-validation ap-
proach. For time—series methods (1), (3), and (4), we experiment
for each time series with 1-5 input nodes and 1-5 hidden nodes,
a total of 25 candidate models. On the other hand, for method
(2) with time index, only a number of hidden nodes need to be
varied and we experiment with 1-5 hidden layer nodes. The per-
formance of in-sample fit and out-of-sample forecast is judged
by two commonly used error measures: the root mean squared
error (RMSE) and the mean absolute error (MAE). The best
model based on the validation set results is retained for fore-
casting performance evaluation. We convert the forecasts from
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TABLE I
SUMMARY RESULTS FOR LINEAR DETERMINISTIC AND STOCHASTIC TREND SERIES
This table reports the mean and standard deviation of the RMSE and MAE from the Monte Carlo
simulation of 100 replications for the linear deterministic trend (LDT) and linear stochastic trend (LST)
time series, respectively, for the training, validation, and testing sub-samples, and for each modeling
strategy: raw original data, original data with time index, detrending, and differencing.

Method
Original Data Time Index Detrending Differencing
Series  Sample Measure  Mean Std Mean Std Mean Std Mean Std
Training  RMSE  0.0486 0.0031 0.0430 0.0020 0.0412 0.0025 0.0472 0.0038
MAE 0.0387 0.0025 0.0344 0.0017 0.0327 0.0021 0.0376 0.0032
LDT Validation RMSE  0.0487 0.0076 0.0447 0.0071 0.0412 0.0070 0.0455 0.0074
MAE 0.0393  0.0066 0.0358 0.0060 0.0327 0.0058 0.0362 0.0061
Testing RMSE  0.0549 0.0084 0.0516 0.0128 0.0457 0.0083 0.0496 0.0083
MAE 0.0445 0.0070 0.0423 0.0118 0.0366 0.0064 0.0403 0.0070
Training RMSE  0.0420 0.0023 0.0816 0.0253 0.0414 0.0023 0.0411 0.0025
MAE 0.0335 0.0019 0.0652 0.0210 0.0329 0.0019 0.0326 0.0021
LST  Validation RMSE  0.0463 0.0126 0.1360 0.0958 0.0454 0.0109 0.0413 0.0070
MAE 0.0373 0.0108 0.1171 0.0908 0.0369 0.0098 0.0331 0.0059
Testing RMSE  0.0630 0.0351 0.2930 0.1831 0.0623 0.0335 0.0464 0.0096
MAE 0.0541 0.0339 0.2747 0.1812 0.0516 0.0301 0.0367 0.0065

the indirect methods (detrending and differencing) back to the
original scale, thus, the model fitting and forecasting perfor-
mance are directly comparable to those of the direct methods
(raw data and raw data with time index).

As each type of time series has 100 replications, we repeat
the previous modeling process for each replication yielding
100 RMSE and MAE for each type. Analysis of variance
(ANOVA) test procedures are employed to determine if the
mean performance measures are statistically different among
the four methods. Tukey’s honesty significant difference (HSD)
tests [31] are then used to identify the significantly different
methods in multiple pairwise comparisons.

IV. RESULTS

Tables I-IV report the summary statistics from the Monte
Carlo simulation for linear, near unit roots, nonlinear, and
breaking trend time series, respectively. Each table gives the
mean and standard deviation of the RMSE and MAE of 100
replications for the training, validation, and testing subsamples
and for each modeling strategy. Following [1], we report results
for training, validation, and testing to reveal the effective-
ness of model implementation. It is not surprising that across
Tables I-IV, model fitting and forecasting performance gener-
ally gets worse from training to validation to testing subsamples
for each of the four methods. However, the degradation in error
measures is generally within a reasonable range, indicating our
model implementation is adequate.

Table I shows that for LDT series, modeling with detrended
data is the best approach overall judging by both RMSE and
MAE in all three samples of training, validation, and testing.
On the contrary, for LST series, modeling with differenced data
consistently outperforms other modeling approaches. These re-
sults are expected given the different properties of trend sta-
tionary and difference stationary time series.

Considering the underlying DGP, it is not surprising to ob-
serve that using time index ¢ for modeling and predicting LST
is much worse than for LDT as reflected by both error measures
in all three samples. In addition, the variation measured by the
standard deviation is also much higher for LST than for LDT.
What is important to note is that using a time—series regression
structure with time index ¢ as the sole input is not the best way
to model an NN forecaster even for LDT series. Our results sug-
gest that differencing or detrending helps improve modeling and
forecasting accuracy.

Theoretically, with the autoregressive coefficients of 0.99 and
0.97, the two near-unit-root time series are stationary, however,
in practice, it is often difficult to distinguish near-unit-root time
series from those with unit root. Table II presents summary sta-
tistics from the simulation study for these two near-unit-root sit-
uations. It is interesting to find that results for both situations are
remarkably similar in terms of both average performance mea-
sures and standard deviations in all three subsamples across four
different modeling strategies. Similar to the unit-root case, using
time index is not helpful at all in both modeling and forecasting
these stochastic processes. It generates considerably larger er-
rors in all three samples, particularly in the testing sample. The
performances of the other three methods (i.e., differencing, de-
trending, and original) are close, especially for the training and
validation subsamples. The best performer across all subsam-
ples, though, is modeling with the differenced data, the same
finding as in the unit-root situation. Therefore, for stochastic
linear trending time series, even though the process is near unit
root, differencing can still be used.

The practical significance of this finding is clear as unit-root
tests often have low power in distinguishing between the unit-
root and the near-unit-root processes, yet, from the NN mod-
eling and forecasting perspective, it does not really matter. The
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TABLE 1I

SUMMARY RESULTS FOR NEAR-UNIT-ROOT PROCESSES
This table reports the mean and standard deviation of the RMSE and MAE from the Monte Carlo
simulation of 100 replications for near unit root 1 (NURI) and near unit root 2 (NUR2) time series,
respectively, for the training, validation, and testing sub-samples, and for each modeling strategy: raw
original data, original data with time index, detrending, and differencing.
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Method
Original Data Time Index Detrending Differencing
Series Sample Measure  Mean Std Mean Std Mean Std Mean Std
Training RMSE  0.0414 0.0025 0.0756 0.0194 0.0416 0.0025 0.0413 0.0023
MAE 0.0331 0.0022 0.0597 0.0156 0.0332 0.0022 0.0326 0.0019
NURI Validation RMSE  0.0440 0.0094 0.1210 0.0682 0.0465 0.0139 0.0415 0.0071
MAE 0.0351 0.0080 0.1040 0.0640 0.0375 0.0121 0.0331 0.0060
Testing RMSE  0.0555 0.0302 0.2034 0.1216 0.0705 0.0540 0.0461 0.0082
MAE 0.0456  0.0278 0.1875 0.1209 0.0600 0.0510 0.0367 0.0063
Training  RMSE  0.0414 0.0025 0.0707 0.0180 0.0416 0.0024 0.0410 0.0025
MAE 0.0330 0.0022 0.0558 0.0147 0.0332 0.0021 0.0326 0.0022
NUR2 Validation RMSE  0.0445 0.0106 0.1208 0.0688 0.0464 0.0142 0.0415 0.0070
MAE 0.0356 0.0094 0.1039 0.0644 0.0375 0.0126 0.0333 0.0058
Testing RMSE  0.0546 0.0254 0.2023 0.1300 0.0713 0.0554 0.0461 0.0079
MAE 0.0448 0.0229 0.1870 0.1297 0.0609 0.0527 0.0371 0.0064

TABLE III

SUMMARY RESULTS FOR NONLINEAR DETERMINISTIC AND STOCHASTIC TREND SERIES
This table reports the mean and standard deviation of the RMSE and MAE from the Monte Carlo
simulation of 100 replications for the nonlinear deterministic trend (NDT) and nonlinear stochastic trend
(NST) time series, respectively, for the training, validation, and testing sub-samples, and for each modeling
strategy: raw original data, original data with time index, detrending, and differencing.

Method
Original Data Time Index Detrending Differencing
Series Sample Measure  Mean Std Mean Std Mean Std Mean Std
Training RMSE  0.0750 0.0188 0.0445 0.0030 0.0899 0.0183 0.0624 0.0050
MAE 0.0596 0.0150 0.0355 0.0024 0.0716 0.0144 0.0497 0.0040
NDT  Validation RMSE  0.5316 0.1810 0.4055 0.2005 0.3298 0.0473 0.0620 0.0100
MAE 0.4496 0.1631 0.3352 0.1613 0.2735 0.0403 0.0501 0.0086
Testing RMSE  2.6098 09617 22360 14709 1.6797 02104 0.0691 0.0137
MAE 24087 0.8730 2.0592 1.3221 1.5446 0.1973 0.0561 0.0118
Training RMSE  0.0429 0.0032 0.0979 0.0294 0.0435 0.0040 0.0430 0.0032
MAE 0.0341  0.0026 0.0769 0.0232 0.0344 0.0031 0.0341 0.0026
NST  Validation RMSE  0.0542 0.0183 0.2261 0.1333 0.0561 0.0179 0.0488 0.0115
MAE 0.0436  0.0155 0.1963 0.1228 0.0453 0.0159 0.0395 0.0094
Testing RMSE  0.0814 0.0498 0.4298 0.2725 0.0938 0.0665 0.0560 0.0153
MAE 0.0685 0.0461 0.3990 0.2693 0.0776 0.0583 0.0447 0.0122

best modeling strategy for both unit-root and near-unit-root pro-
cesses is the same: first differencing.

Table III summarizes the results for two nonlinear trend
series. It is clear that using time index is not able to model
and forecast the nonlinear time series well. For both de-
terministic trend case (NDT) and stochastic trend process
(NST), differencing is the best approach in all three samples
judged by both mean and standard deviation of the two error
measures. In addition, differencing is particularly effective
for predicting the NDT process as the testing sample per-

formance of differencing is considerably better than that of
other methods. The reason that detrending does not do well
for this deterministic nonlinear trend series may be that the
linear detrending method is used while the underlying DGP
is a nonlinear trend. Given the practical difficulty in identi-
fying correct nonlinear form and the very good performance
of the differencing method, it is reasonable to recommend
differencing for nonlinear trend time series.

For breaking trend processes, Table IV shows that time index
method again is the worst among all methods in both model fit-
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differencing.

TABLE IV

SUMMARY RESULTS FOR DETERMINISTIC AND STOCHASTIC BREAKING TREND SERIES
This table reports the mean and standard deviation of the RMSE and MAE from the Monte Carlo
simulation of 100 replications for the deterministic trend with structural break (SBD) and stochastic trend
with structural break (SBS) time series, respectively, for the training, validation, and testing sub-samples,
and for each modeling strategy: raw original data, original data with time index, detrending, and

Method
Original Data Time Index Detrending Differencing
Series  Sample Measure  Mean Std Mean Std Mean Std Mean Std
Training RMSE 0.0599 0.0111  0.0444 0.0031 0.0514 0.0082 0.0643  0.0069
MAE 0.0416  0.0048 0.0353  0.0025 0.0388 0.0041 0.0418 0.0034
SBD  Validation RMSE 0.0506  0.0080 0.0703  0.0352  0.0449  0.0067 0.0464  0.0075
MAE 0.0408 0.0070  0.0588 0.0329 0.0361 0.0057 0.0370  0.0061
Testing RMSE 0.0601  0.0108 0.1488 0.0687 0.0504 0.0072 0.0521  0.0096
MAE 0.0491  0.0095 0.1368 0.0683 0.0410 0.0063 0.0421  0.0073
Training RMSE 0.0656  0.0095 0.0594 0.0042 0.0560 0.0088 0.0657 0.0073
MAE 0.0451  0.0045 0.0474 0.0034 0.0419 0.0045 0.0434  0.0037
SBS  Validation RMSE 0.0542  0.0084 0.0945 0.0394 0.0485 0.0076 0.0486 0.0088
MAE 0.0435  0.0072 0.0787 0.0351 0.0385 0.0065 0.0388 0.0076
Testing RMSE 0.0635 0.0123  0.1799 0.0892  0.0537 0.0100 0.0532  0.0090
MAE 0.0512  0.0096 0.1643  0.0884 0.0434  0.0085 0.0430  0.0074
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ting and forecasting. The two detrended methods are very close
in performance along all comparison dimensions, though de-
trending is slightly better than differencing for the SBD process
while differencing is slightly better than detrending for the SBS
series. (The Tukey’s HSD tests show that these two strategies are
not statistically significantly different from each other.) Relative
to preprocessing strategies (differencing or detrending), direct
modeling with the raw data generates average error measures
that are almost 20% larger.

For each combination of DGP and performance measure,
we perform an ANOVA procedure to determine if there exists
statistically significant difference among the four approaches
in out-of-sample forecasting. The results are omitted to save
space. All ANOVA results are highly significant (p-value
< 0.001), suggesting that there are significant differences
among the methods for trend time—series forecasting.

To identify the significant difference between any two
methods, we use Tukey’s HSD tests to compare all pairwise
differences simultaneously. Results of these multiple compar-
ison tests are reported in Table V. To facilitate presentation,
for each type of series, we rank order the methods from 1 (the
best) to 4 (the worst), with the best method (with the lowest
overall error measure) ranked as 1, and the next one as 2, and so
on. Several observations can be made from Table V. First, for
each DGP, based on either RMSE or MAE, the ranking of each
modeling strategy stays the same, thus our findings are robust
to the choice of error measures. Second, the time index method
ranks the fourth for all DGPs except for LDT and NDT where it
ranks the third. Third, methods based on the preprocessed data
by either detrending or differencing outperform methods based
on raw data (original and time index). Finally, for stochastic
processes such as LST (including the near-unit-root cases),
NST, and SBS, the best method is differencing, although in

most cases, the differences among differencing, detrending,
and original are not significant at the 0.05 level. To our surprise,
differencing is also the best approach for the NDT process and
it is significantly different from the other three methods. On the
other hand, detrending is the best method for two deterministic
processes of LDT and SBD. In the LDT process, detrending
significantly outperforms differencing. However, the difference
between them is not significant in the other case.

Real GNP time series is used to examine if the results from
our experimental investigation match with those from the
real-world application. Table VI gives RMSE and MAE for
the training, validation, and testing samples. In addition to the
entire testing sample, we also report results for forecasting
horizons of two years and four years. It is clear that differ-
encing is the best method in all three subsamples judged by
both performance measures of RMSE and MAE. From the
out-of-sample forecasting performance, we find that time index
and detrending methods are much worse than differencing.
In addition, although the difference between differencing and
original appears not large, differencing still achieves 22-25%
and 10-21% reductions in RMSE and MAE, respectively, over
the method that relies on the original data at various forecasting
horizons. Given the dominant traditional view of the stochastic
rather than deterministic nature of GNP data, the results in
Table VI reinforce our earlier findings on the effectiveness of
differencing for the stochastic processes.

We also apply Diebold and Mariano [12] test with Andrews
[2] optimal fixed bandwidth parameters to check the signifi-
cance of the difference between two adjacent methods. Results
of the pairwise comparison tests are reported in Table VII. Just
as in Table V, we rank order the methods from 1 (the best) to
4 (the worst), with the best method (with the lowest overall
error measure) ranked as 1, and the next one as 2, and so on.



814

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 5, MAY 2008

TABLE V
MULTIPLE COMPARISON RESULTS WITH RANKED METHOD FOR OUT-OF-SAMPLE FORECASTING
This table reports the results of the Tukey’s HSD test to identify the significant difference between any two
methods, with all pair-wise differences compared simultaneously. For each type of series, we rank order the
methods from 1 (the best) to 4 (the worst), with the best method (with the lowest overall error measure)
ranked as 1, and the next one as 2, and so on. * indicates the mean difference between the two adjacent

methods is significant at the 0.05 level.

Rank of Methods
Series Measure 1 2 3 4
LDT RMSE Detrending <* Differencing <*  Time Index < Original Data
MAE Detrending <* Differencing <*  Time Index < Original Data
LST RMSE Differencing < Detrending < Original Data  <* Time Index
MAE Differencing < Detrending < Original Data  <* Time Index
NURI RMSE Differencing <  Original Data < Detrending <* Time Index
MAE Differencing <  Original Data < Detrending <* Time Index
NUR2 RMSE Differencing <  Original Data < Detrending <* Time Index
MAE Differencing <  Original Data < Detrending <k Time Index
NDT RMSE Differencing <* Detrending ~ <*  Time Index <*  Original Data
MAE Differencing <* Detrending ~ <*  Time Index <*  Original Data
NST RMSE Differencing <  Original Data < Detrending <% Time Index
MAE Differencing <  Original Data < Detrending <* Time Index
SBD RMSE Detrending <  Differencing <  Original Data  <* Time Index
MAE Detrending <  Differencing <  Original Data  <* Time Index
SBS RMSE Differencing < Detrending < Original Data  <* Time Index
MAE Differencing < Detrending < Original Data  <* Time Index

TABLE VI
RESULTS FOR THE U.S. REAL GNP SERIES
This table gives RMSE and MAE for the training, validation, and testing samples of the real GNP time
series for each of the four modeling strategies: raw original data, original data with time index, detrending,

and differencing.

Sample Measure  Original Data Time Index Detrending  Differencing
Training RMSE 0.0104 0.0201 0.0111 0.0097
MAE 0.0079 0.0152 0.0085 0.0071
Validation RMSE 0.0047 0.0286 0.0219 0.0046
MAE 0.0038 0.0271 0.0203 0.0037
Testing RMSE 0.0068 0.0315 0.0411 0.0051
(2-yrhorizon)  MAE 0.0061 0.0310 0.0409 0.0048
Testing RMSE 0.0073 0.0243 0.0513 0.0057
(4-yrhorizon)  MAE 0.0059 0.0220 0.0501 0.0052
Testing RMSE 0.0080 0.0203 0.0665 0.0062
(25-qtr horizon) MAE 0.0062 0.0167 0.0630 0.0056

It is apparent from Table VII that regardless of the forecasting
horizons and the squared or absolute differences, the ranking of
each modeling strategy stays the same—differencing is the best
method, followed by original data, then time index, and finally
detrending.

V. CONCLUDING REMARKS

Trend time—series modeling and forecasting is an important
topic in many business and economic settings. Although nu-
merous studies find that DS and TS models can imply very dif-
ferent predictions, research findings regarding whether a par-
ticular time series is DS or TS process are often inconsistent.

Because of the controversy around the nature of the trend in eco-
nomic and business time series, it is often difficult for applied
forecasters to build an effective model for forecasting.

In this paper, we conducted a Monte Carlo study to address
the question: what is the most effective way to model and
forecast trend time series with NNs, a recent popular nonlinear
modeling tool? We examined a variety of different underlying
DGPs that have different trend mechanisms (linear, nonlinear,
deterministic, stochastic, and breaking trends). Four strategies
of direct modeling with the raw data, using raw data and
the time index, modeling with linearly detrended data, and
modeling with differenced data were considered. While the
results do not give a clear-cut universal answer to the previous
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TABLE VII
SIGNIFICANCE OF DIFFERENCE IN OUT-OF-SAMPLE FORECASTING ACCURACY BETWEEN TWO ALTERNATIVE METHODS

This table reports the results of the Diebold and Mariano (1995) test for the significant difference between
two forecasting methods. For each forecasting horizon, we rank order the methods from 1 (the best) to 4
(the worst), with the best method (with the lowest overall error measure) ranked as 1, and the next one as 2,
and so on. * indicates the mean difference between the two adjacent methods is significant at the 0.05 level,

and ** indicates significance at the 0.01 level.

Rank of Methods
Series  Measure 1 3 4
2-yr Squared Error Differencing <* Original Data <**  Time Index <*  Detrending
Horizon Absolute Error Differencing <** Original Data <**  Time Index <** Detrending
4-yr Squared Error Differencing <** Original Data <**  Time Index <** Detrending
Horizon Absolute Error Differencing <** Original Data <**  Time Index <** Detrending
25-qtr ~ Squared Error Differencing <** Original Data <* Time Index  <** Detrending
Horizon Absolute Error Differencing <** Original Data <**  Time Index <** Detrending
question, they do provide insights on the modeling issues for REFERENCES

trend time—series forecasting.

Our results show that only for the LDT case, linear detrending
is the most effective way for NNs to significantly outperform
other methods in out-of-sample forecasting performance. Ex-
cept for the deterministic structure break process for which de-
trending and differencing are not significantly different, in all
other situations including both nonlinear trend and stochastic
trend cases, differencing is the most effective. As most real-
world time series are nonlinear and/or stochastic, we may be
able to conclude that differencing data first is the best prac-
tical approach to building an effective NN forecasting model.
This is an important suggestion for applied forecasters as one of
the most significant but controversial practical issues to them is
whether a time series under study contains unit root and whether
a specific unit-root test has sufficient power to detect it. The find-
ings in our study imply that from the NN forecasting perspec-
tive, the power of unit-root tests should not be a concern because
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