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Introduction 

This is the final report for the eleventh year annual international award for financial support 

of research in the sector of forecasting and business practice, from the IIF, in collaboration 

with SAS®. The proposal was submitted under the title: “Improving judgmental input to 

hurricane forecasts in the insurance and reinsurance sector” and its aim is to investigate 

ways of improving the judgmental forecasting that underlies insurers’ decisions about future 

insurance prices. 

This report comprises a brief summary of the relevant literature and a report of three 

experiments. We focus on a judgmental bias that arises when people make judgmental 

forecasts from real hurricane series and on its amelioration by changing the format in which 

data are graphically displayed. Our work also includes an innovative approach to eliciting 

judgmental probability density functions. 

The findings described here were reported at the 2014 International Symposium on 

Forecasting. A version of this paper will be submitted to the International Journal of 

Forecasting. 

Background 

Hurricane forecasting 

Hurricanes are among the most hazardous of natural disasters, with their occurrence 

unsettling the lives of countless people through devastation of business and homes as well 

as through casualties. When a hurricane arrives on land, it can lead to major power outages, 

intense flooding, long-term displacement as well as economic damage. Many hurricanes, 

with category strengths ranging from the mild to destructive (e.g., Hurricane Katrina, 2005) 

have devastated the North Atlantic coast of the USA in the past and will continue to do so in 

the future. Furthermore, the strength and severity of future storms is predicted to increase 
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as a consequence of global warming and climate change (Inman, 2010). Hurricane 

forecasting is absolutely vital to ensure that sufficient preparations and emergency 

procedures are in place in anticipation of hurricanes. (One such preparation is related to the 

adjustment of pricings in the insurance and reinsurance sector).  

Every year, the United States National Oceanic and Atmospheric Administration (NOAA) 

Climate Prediction Centre provides a formal, model-derived seasonal outlook of the overall 

expected activity for the year’s hurricane season. This information, together with historical 

hurricane time series data, serves as the basis for the judgmental forecasts of the number of 

hurricanes in future years that are made by lay people and by practitioners, such as those 

working in the insurance industry. Research on the judgment processes underlying these 

forecasts has not previously been examined. Our experiments represent an initial attempt to 

remedy this situation.  

Biases in judgmental forecasts 

Despite their proven efficiency (Lawrence, Edmundson, and O’Connor, 1985), judgmental 

forecasts and judgmental adjustments to model-based forecasts are affected by a number of 

biases: forecasters appear to overestimate the degree of autocorrelation in the series 

(Reimers & Harvey, 2011), underestimate trends in the series (Harvey & Reimers, 2013), 

include noise in their sequence of forecasts (Harvey, 1995), and make forecasts that are 

higher for desirable variables, such as sales and profits, than for undesirable ones, such as 

losses (Harvey & Reimers, 2013). Hurricane time series do not possess a significant degree of 

autocorrelation and so we expect that judgmental forecasts made from them will be 

influenced by the first of these biases. They are not trended and so will not be subject to the 

second bias. (They may be affected though by the third and fourth bias). 

Most of the research that has identified these biases has been carried out on simulated 

series. The statistical characteristics of such series are known with some certainty and so 
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optimal forecasts can be identified and used as a basis for extracting forecast error 

measures. However, it is important to validate findings from studies using simulated series 

on real series to ensure their ecological validity.  

This is an important issue because Lawrence & O’Connor (1995) failed to find evidence of 

trend damping in a set of real series drawn from the M-competition (Makridakis et al, 1982). 

Reimers and Harvey (2011) argued that their findings do not conflict with those derived from 

studies using simulated series.  They suggested that people are adapted to the features of 

their environment and that, as a result, there should be no biases when people forecast 

from series with features (trend, autocorrelation) that are representative of those naturally 

present in their environment. Of course, not all natural series will be representative of the 

environment in this way. Some will contain trends and autocorrelations that are greater 

than the average trend and autocorrelation in the environment and some will contain trends 

and autocorrelations that are less than the average of those in the environment. The 

judgmental biases in these two cases will be in opposite directions. As a result, when people 

are tested on series randomly (or quasi-randomly) drawn from the environment (e.g., the M-

competition), biases in one direction will cancel out those in the other direction and there 

will be no overall bias when measures are taken across the set of series as a whole. This is 

what Lawrence and O’Connor (1995) found. If Reimers & Harvey’s (2011) interpretation is 

correct, the autocorrelation bias should be found in natural series (e.g., hurricane series) in 

which the autocorrelation is close to zero and, hence, less than the positive autocorrelation 

that is typical of such natural series. 

The format in which time series are presented to forecasters influences the degree to which 

their forecasts are biased. For example, Harvey and Bolger (1996) showed that trend 

damping is lower when data are presented graphically than when they are presented in 

tabular format. More recently, Harvey & Reimers (2012) have shown that the size of biases 
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is affected by the particular graphical format that is used to present the time series data: 

they found that trend damping is greater when time series data are presented to forecasters 

as lines or points than when they are presented as bars. Earlier, Lawrence and O’Connor 

(1992) found that forecasting performance is affected by the scale of graphs used to present 

data to forecasters. Thus it should be possible to reduce the size of biases in hurricane 

forecasting by judicious selection of the graphical format used to represent the data. This, in 

turn, should increase forecast accuracy. What type of graphical format is most likely to have 

this beneficial effect? To answer this question, we must turn to research on graphical 

perception. 

Graphical perception 

Apart from the research cited above, there has been no work on the effect of different types 

of graphical format on judgmental forecasting. However, there has been some investigation 

of graphical format effects in other contexts. For example, Zacks and Tversky (1999) 

presented participants with the same set of data in either bar graph (i.e. discrete) or line 

(continuous) displays. They found that participants were more likely to describe a 

relationship between x and y variables as being continuous when a line graph was shown 

than when a bar chart was used. This could apply even to dichotomous variables. For 

example, some participants, who were presented with line graphs showing gender on the x-

axis against height, described the relationship as “The more male a person is, the taller 

he/she is”. In contrast, bar graphs merely led to the observation that, on average, men are 

taller than women. These findings suggest that people are more likely to group data 

together and to see patterns in them when those data are presented in a continuous than in 

a discrete format. Conversely, the discrete format emphasises the frequency and range of 

each data category rather than the relation between those categories. 
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People over-emphasise the relation between successive data points in a time series: they 

anchor their forecasts too strongly on the last data point. Zacks and Tversky’s (1999) findings 

show that use of a discrete graphical format serves to de-emphasise the relation between 

successive points. As a result, forecasts should be less strongly anchored on the last data 

point. When there was no autocorrelation in a data series, this, in turn, should lead to 

forecasts being more accurate with the discrete format than with the continuous format.  

Summary 

We test the hypothesis that people make forecasts closer to the last data point with 

continuous than with discrete graphical format (H1). Furthermore, we test the hypothesis 

that, with hurricane series that have no significant autocorrelation, this will result in more 

accurate forecasts with the discrete graphical format (H2). We test these hypotheses with 

three different types of forecasting task: point, probability density and prediction interval 

forecasting. 

Experiment 1:  Point Forecasting  

In this experiment, participants were presented with 13 time series exemplars of 30 years’ 

historical hurricane occurrences drawn from NOAA’s database and they were asked to make 

judgmental point forecasts for the next five years. (Forecasts for five years are officially used 

in practice). Hurricane time series were presented either in continuous line graphs or as 

discrete, unconnected point graphs in a between participants design. We compared 

forecasting performance and the degree to which forecasts were anchored on the last data 

point (a measure of the autocorrelation bias) in these two conditions. 

Method 

Participants In total, 60 students (46 females, 14 males) at University College London acted 

as participants. Their mean age was 20 years. They were not paid for their participation.  
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Design Participants were divided into two groups. The first group (continuous 

representation) produced point forecasts from continuous line graphs while the second 

group made their predictions from unconnected point graphs. Thirty participants were 

randomly assigned to each condition. 

Stimulus materials The stimuli used here comprised 13 hurricane time series (see Table 1 for 

information displayed and requested for each exemplar and Figure 1 for an example of the 

discrete and continuous representation conditions) showing the annual number of 

hurricanes hitting the Atlantic coast area from 1966 to 2012. Each time series depicted 30 

years’ historical data (from 1966 onwards) of the annual numbers of hurricanes hitting the 

north Atlantic coast in the U.S. Thus, the y-axis showed the number of hurricane occurrences 

while the x-axis represented time in years. All data were drawn from official sources (NOAA, 

2013). In the current work, only a subset of this hurricane occurrences database was used 

(1966 to 2012) because this was the only period where satellite technology was available to 

accurately monitor hurricane activity. In this subset, hurricane time series showed no 

autocorrelation or global trends. The first 30-point time series presented to participants 

corresponded to hurricane data for the period 1966 to 1995. The next one rolled forward by 

one time-step ahead, thereby presenting data from 1967 to 1996. The same rolling 

procedure produced the rest of the exemplars up until the 13th exemplar, where data 

presented corresponded to the period 1978-2007. In this last exemplar, participants had to 

produce forecasts for the period 2008-2012. The experiment was coded in Javascript. 
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Figure 1. Screenshot of hurricane series presented in the discrete and continuous conditions. 

 

Table 1 Information displayed and requested for each exemplar (experimental trial) 

 

Plot Thirty years displayed Five years to be forecast 

1 1966-1995 1996-2000 

2 1967-1996 1997-2001 

3 1968-1997 1998-2002 

4 1969-1998 1999-2003 
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5 1970-1999 2000-2004 

6 1971-2000 2001-2005 

7 1972-2001 2002-2006 

8 1973-2002 2003-2007 

9 1974-2003 2004-2008 

10 1975-2004 2005-2009 

11 1976-2005 2006-2010 

12 1977-2006 2007-2011 

13 1978-2007 2008-2012 

 

Procedure Each participant performed the task individually on a computer. They read a short 

introduction and then entered their demographic details (age, sex). Instructions were as 

follows: 

“In this experiment, you will take the role of an advisor to a top-level insurance company 

that specialises in home insurance pricing based on hurricane time-series data. As part of the 

induction process, you will be shown 13 hurricane time series, corresponding to real data from the 

Atlantic coast area. The time series represent annual numbers of hurricanes hitting the specific 

regions. Each time series contains 30 years of historical data for you to gain some knowledge of the 

time series' characteristics. Your task is to produce forecasts for the next 5 years. To indicate your 

forecasts of hurricane numbers click at the punctuated lines at the end of the graph. A dot will appear 

where you forecast. Further instructions will be provided at the top of the screen at each stage to 

prompt you for any actions required.” 
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The experiment was performed as an online task. Each of the time series was displayed 

individually. The participants’ task was to indicate their judgmental forecasts on the 

hurricane occurrences for the next 5 years on the 5 dotted lines presented at the end of 

each series. Once the five judgments had been made, participants clicked the “continue” 

button to proceed to the next trial. Each participant made predictions for 13 different time 

series and hence produced a total of 65 forecasts. After completing all 13 trials, a question 

was displayed that asked participants about the strategy that they used to make their 

predictions; they typed their answers in a textbox.  

For participants in the continuous “Lines” group, time series were presented as line graphs 

and, as forecasts were made, a blue line linked each new forecast with the last data point 

(forecast for horizon 1) or with the immediately preceding forecast (remaining forecasts). 

For participants in the discrete “Points” group, time series were presented as disconnected 

points and, as forecasts were made, no connection linked forecasts with the previous points.  

Results   

To test H1, we extracted the Mean Absolute Distance (MAD) of forecasts from the last 

displayed point and then compared the size of this measure in Group 1 (continuous format) 

and in Group 2 (discrete format). For the first horizon forecast, we took the difference 

between the forecast and the last data point. For later horizons, we took the difference 

between the forecast for step t + 1 and the forecast for step t (i.e. the anchor).  

Optimal forecasts from the hurricane time series lie on the mean value of the data series 

because it contained no trend or autocorrelation. Hence, to measure accuracy in order to 

test H2, we extracted the Absolute Difference from the Mean (ADFM) and compared the 

value of this measure in the two conditions to determine whether it was smaller in the 

group that saw the discrete graphical format  
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Mean absolute difference scores Graphs of MAD in the two conditions are shown in Figure 2. 

One-way repeated-measures ANOVAs showed effects of forecast horizon for both the 

continuous (line) format (F (4, 1556) = 9.08, p < .001) and the discrete (point) one (F (4, 

1556) = 39.52, p < .001). Post-hoc tests then showed that the MAD score for the first horizon 

was significantly higher than the MAD score for the second horizon (Lines: F (1, 389) = 18.40, 

p < .001, η2 = 4.5%,; Points: F (1, 389) = 85.01, p < .001, η2  = 17.9%). There were no other 

significant differences between the pairs 2-3, 3-4 and 4-5. 

The mean MAD score for the first horizon was greater in the group that saw data in the 

discrete format than in the group that saw them in the continuous format (t (778) = 3.49, p < 

.001). This indicates that anchoring was greater with the continuous format and is consistent 

with H1. 

 

Figure 2. Mean MAD scores for five forecasts in two conditions with standard error bars. 

Absolute difference from the mean Graphs of the mean ADFMs in two conditions are shown 

in Figure 3. Forecasting performance was better when participants saw data in the discrete 

data format. The difference between formats was significant for the first horizon (t (778) = 

3.40, p < .001, d = .247), second horizon (t (778) = 3.35, p < .001, d = .235), fourth horizon (t 
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(778) = 2.02, p = .022, d = .145), and fifth horizon (t (778) = 2.16, p = .016, d = .247). These 

results are consistent with H2. 

 

Figure 3. Mean ADFM scores for five forecasts in two conditions with standard error bars. 

Discussion 

Graphical presentation of the time series did have an impact on the forecasters’ 

performance: forecasts for all horizons (except horizon three) were inferior when data were 

presented in the continuous format. In line with Zacks and Tversky (1999), the discrete 

format served to de-emphasise the relation between successive points. As overall 

autocorrelation was close to zero in the hurricane series, this de-emphasis was beneficial. 

However, with series with high autocorrelation, the autocorrelation that people perceive (as 

implied by their forecasts) is less than it should be (Reimers & Harvey, 2011). For such series, 

continuous graphical formats that emphasise the relation between successive points are 

likely to produce better performance than discrete ones. 

The first hypothesis was partially supported: format influenced forecasting only for the first 

horizon. This implies that the effect of format identified by Zacks and Tversky (1999) serves 

to emphasize the relation between successive points in the data series but not the relation 
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between the last data point and the first forecast or the relations between successive 

forecasts. Thus the discrete format reduced anchoring but this beneficial effect was specific 

to the first forecast (Figure 2). As a result, its effect on performance was maintained but did 

not increase over the remaining horizons (Figure 3). (Had there been a beneficial effect of 

format on degree of anchoring for every forecast horizon, the relative performance 

advantage of that format over the continuous one would have accumulated over horizons).  

Zacks and Tversky (1999) suggest that only continuous formats encourage people to impose 

patterns on the data, even where none exist. This proposal is in line with previous findings 

indicating that forecasters are prone to see non-existent patterns in noisy (line display) 

series and emulate them in their forecast sequence (O’Connor, Remus & Griggs, 1993). If 

such pattern imposition accounts for the difference between formats that we obtained, it is 

reasonable to expect that participants would mention it in response to the final question 

about their forecasting strategy. Indeed, 18 out of 30 participants in the continuous 

condition mentioned they followed the last segment pattern while only 8 out of 30 

participants mentioned following a pattern from the last segment in the discrete condition 

(χ2 = 7.69; p < .01).  

Experiment 2:  Forecasting Probability Density Functions 

Participants were shown hurricane time series and were asked to place bets over the range 

of hurricane count values for the next year. This procedure enabled participants to generate 

probability density functions for one-step-ahead forecasts.  

Based on Zacks and Tversky’s (1999) findings, we expected that participants would anchor 

more on the last point when they saw the data series in continuous format. Hence, their 

PDFs and CDFs would show a greater shift away from the empirically derived functions than 

when participants saw data in the discrete format. We expect these shifts to be greater 

when the last data point is an outlier (distant from the series mean) than when it is not (H3).   
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Method 

Participants Eighty university students, (21 males and 59 females), aged 18 to 26 (M = 21.27, 

SD = 1.77), participated in the experiment. They were randomly assigned to the continuous 

or discrete format conditions, with the constraint that there were 40 participants in each 

condition. They were not paid for their participation.  

Design A 2x2 factorial design was adopted with the presentation format (continuous versus 

discrete) as a between-participants variable and the proximity of the last data point to the 

series mean as a within-participants variable. (A last data point within one standard 

deviation of the mean was classified as close whereas one outside that range was 

categorized as distant.)   The dependent variable was participants’ one-step-ahead density 

forecasts measured by bets’ spreading into the twenty bins available.  

Stimulus materials The experiment was a pen-and-paper task with stimuli presented in a 

booklet. Stimuli consisted of two hurricane time series graphs. Graphs are similar to plot 10 

and plot 11 in experiment 1 (see Table 1) but with two differences. First, the years on x-axis 

were replaced with numbers 1-30. Second, the five vertical, punctuated lines at the end of 

the x-axis were replaced by a line of 20 bins, with the bin range corresponding to hurricane 

counts (e.g., bin 10 from bottom corresponded to 10 hurricane occurrences).  

These two data sets corresponding to the pre- and post-2005 exemplars (e.g. periods 1975-

2004 and 1976-2005) shared similar characteristics: 29 out of 30 hurricane events were 

common. They only differed in one value: the number of hurricanes in year 2005, which was 

substituted for the number of hurricanes in 1975. Thus, any differences in bets between 

these two exemplars should be attributed to the value of the last data point in the series, 

namely, nine hurricanes in 2004 (close to the series mean) and 15 hurricanes in 2005 

(distant from the series mean). 
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Data were presented as continuous line graphs in one condition and as discrete points 

graphs in the other. These two different displays are shown in Figure 4. Upper panels 

represent the pre-2005 series (close proximity) while lower panels represent the post-2005 

series (distant proximity).  

-

 

 

Figure 4. Hurricane series presented to the participants: continuous (left) and discrete (right) 

presentation formats with last data point close to (upper) and distant from (lower) the series 

mean. 

Procedure The purpose of this experiment was to elicit density forecasts, generate 

probability distribution functions (PDFs), and thence cumulative distribution functions 

(CDFs), of judgmental forecasts.  
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Each participant performed the task individually in a quiet location. Participants were first 

given the experimental booklet and asked to write their age and gender on the first sheet of 

the booklet. They then turned the first sheet over and saw the first hurricane time series. 

Instructions for the experiment were provided as follows:  

“In this experiment, you will take the role of an advisor to a top level insurance company that 

specialises in home insurance pricing based on hurricane time-series data. As part of the induction 

process, you will be shown two hurricane time series, corresponding to real data from the Atlantic and 

Pacific coast areas. The time series represent annual hurricane counts hitting the specified regions. 

Each time series contains 30 years of historical data.  

In this task you are given £100 and you should allocate those to the 20 bins appearing at the 

right hand side of the given time series. Money allocation will be higher in the bins where you believe 

there is a greater probability for the next data point to occur and lower in bins where there is little 

chance for the next point to appear. To allocate your money, please enter your bets to each of the 

specified bins. You should allocate all £100. (If we played this for real, you would receive the money in 

the bin corresponding to the actual outcome).” 

Thus, participants were endowed with a virtual sum of $100 and asked to allocate the whole 

amount to the 20 bins at the end of the time series. Both time series were presented either 

as continuous lines or as discrete unconnected points. To the right of historical data, a scale 

of 20 bins, ranging from 0 to 20 hurricanes, enabled participants to allocate their bets for 

the next year. Money allocations (i.e. bets) should be higher for bins where there is 

perceived higher probability for the next data point to occur, and lower for bins where there 

is less chance for next point to occur. After completing the task for one time series, 

participants proceeded to the second one. Upon completion of both graphs, they were 

debriefed and thanked. The experiment took approximately 10 minutes to complete. 
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Results   

For both the 1975-2004 (pre-2005) and the 1976-2005 (post-2005) series, bets were 

aggregated across participants to obtain the average bets assigned to each of the 20 bins. 

The probability distribution functions (PDF), and the cumulative distribution functions (CDF) 

of the aggregated bets across the 20 bins were then constructed for each of the two 

exemplars in each condition.  

Empirical distribution functions of bets were also created based on the time series of the 

hurricane occurrences given to participants. This was achieved by simply counting the 

number of hurricane occurrences over the two periods (i.e. 1975-2004 and 1976-2005) and 

then assigning the corresponding proportion of the endowed sum to bets to each of the 20 

bins. For example, if six hurricanes occurred on three of the 30 years, there was a 10% 

chance of six hurricanes and so 10% of the £100 was assigned to the bin corresponding to six 

hurricanes.  These empirical curves represented the bets that participants should have 

placed based on the hurricane frequencies they were given for the past 30 years. The two 

curves for the pre-2005 and post-2005 series were very similar because they contained 29 

out of 30 hurricane events in common.  

Figure 5. PDFs of the aggregated results (continuous format), together with empirical data. 
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Figure 6. CDFs of aggregated results (continuous format), together with empirical data. 

Continuous presentation format The PDF and CDF of the aggregated results, together with 

the corresponding empirical data, are shown in Figures 5 and 6, respectively. The shift of the 

pre-2005 functions to the right of the empirical ones indicates that the mean of the 

participants’ bets was somewhat too high. This was expected on the basis of the anchoring 

account because the last data point in the pre-2005 series was somewhat above the series 

mean. The shift of the post-2005 functions even further to the right reinforces this 

interpretation because the last data point for that series was an outlier that was well above 

the series mean.  

Discrete presentation format PDFs and CDFs of the aggregated results, together with the 

empirically derived functions, are shown in Figures 7 and 8, respectively. The curves for both 

pre-2005 and post-2005 series are shifted to the right of the empirically derived functions. 

However, the degree of shift is the same for the two series. This implies that the shift away 

from the empirically derived curves does not reflect an anchoring phenomenon (anchoring 
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would produce a greater shift for the post-2005 series). This implies that the rightward shift 

of both experimental curves arises for another reason.  

 

Figure 7. PDFs of the aggregated results (discrete format), together with empirical data. 

 

Figure 8. CDFs of aggregated results (discrete format), together with empirical data. 
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told that they were to assume that they were working for an insurance company: as a result, 

they may have assumed that that under-forecasting would cause the firm to lose money 

whereas over-forecasting would provide the firm with excess profits at the expense of 

householders who would have to pay higher premiums. 

The absence of a difference between the pre-2005 series and the post-2005 series with the 

discrete format but the presence of such a difference with the continuous format is 

consistent with H3. It indicates that presenting the data series using a discrete graphical 

format serves to de-emphasise the relation between successive points and, hence, reduces 

anchoring effects that are found when a continuous graphical format is used to present the 

data series.    

To confirm these results, we averaged the bets participants allocated in bins for hurricane 

occurrences 5 to 9 (i.e. average hurricane activity range of one standard deviation) and 

those for bins with hurricane occurrences 10-14 (i.e. extreme hurricane activity range, 

greater than one standard deviation). Bets were summed separately for the pre-2005 series 

(1975-2004) and post-2005 series (1976-2005) in both continuous and discrete displays 

conditions. Four independent samples t-tests were conducted to compare the amount of 

bets placed in average hurricane activity bins for the pre-2005 series between the two 

displays, in extreme hurricane activity bins for the pre-2005 series between the two displays, 

in average hurricane activity bins for the post-2005 series between the two displays, and, 

finally, in extreme hurricane activity bins for the post-2005 series between the two displays.  

Results revealed significant differences in bets placed in extreme activity bins during the 

post-2005 period such that higher bets were observed for the continuous presentation (t 

(398) = 4.17, p < .001). Additionally, bets placed in the average activity bins during the post-

2005 period were significantly higher for the discrete display (t (398) = -5.72, p < .001). No 

differences were found between the amount of bets distributed to the extreme activity bins 
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and average activity bins in two conditions for pre-2005 series (t (398) = 2.20, p = .826, for 

extreme activity bins; t (398) = 1.37, p = .173, for average activity bins). 

These results reinforce the interpretation that we provided above. Consistent with H3, 

anchoring effects are reduced by using a discrete presentation format for data series.   

Discussion 

Participants showed significantly greater anchoring on extreme values of the last data point 

when series were presented using a continuous graphical format than when they were 

presented using a discrete graphical format. This result serves to validate the conclusions of 

the first experiment within the context of a completely different forecasting task.  

The fact that density forecasts are strongly affected by display format, especially when 

recent data points are more than one standard deviation from the series mean, has 

implications for hurricane forecasting where density forecasting is the norm.  

Experiment 3: Forecasting using prediction intervals  

Every year, the United States NOAA’s Climate Prediction Centre provides a formal, model-

derived seasonal outlook of overall expected activity for the year’s hurricane season. 

Expected activity is provided in the form of prediction intervals. These comprise prediction 

bounds that specify upper and lower forecast boundaries within which the future value of 

the predicted variable is expected to lie with specific probability (Lawrence et al., 2006). This 

probability is typically set to 70%.  

Statistical input from such formal models, along with the historic time-series data that serve 

as a basis for forecasting the number of hurricanes in future years, are reviewed annually by 

insurers. They use their judgment to integrate all available information to set insurance 

prices.  To date, there has been no research on their judgment processes: relative 
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contributions of different pieces of information to the final forecasts and decisions are 

unknown. This experiment provides an initial study of the contribution provided by their 

judgmental prediction intervals. 

Prediction intervals are known to be too narrow (Lawrence & Makridakis, 1989; Lawrence & 

O’Connor, 1993; O’Connor & Lawrence, 1989, 1992), suggesting overconfidence. It is likely 

that this phenomenon arises because participants anchor on the last data point and then 

adjust away from it in each direction to produce the required interval (Harvey, 1997). 

Because adjustment is typically insufficient (Tversky & Kahneman, 1974), intervals are too 

narrow.  

Participants were presented with the same historical hurricane time series data that we 

used in Experiment 1 but were now requested to provide 70% prediction interval forecasts 

for the next five years. Based on Zacks and Tversky’s (1999) findings and following the 

results obtained in Experiments 1 and 2, we expected participants will be more 

overconfident in the continuous display condition (H4). This is because, in that condition, 

greater anchoring on the last data point to produce prediction intervals would produce less 

adjustment away from that point and hence result in narrower intervals.  

Method 

Participants Sixty students (40 females, 20 males) at University College London acted as 

participants. Their mean age was 19.9 years. They were not paid for their participation.  

Design Participants were divided into two groups. The first group (continuous 

representation) produced prediction intervals from continuous line graphs while the second 

group made their predictions from unconnected point graphs (discrete representation). 

Thirty participants were randomly assigned to each condition. 
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Stimulus materials The same time series that were used in Experiment 1 were employed 

here. At the end of the x-axis of each one were five vertical, punctuated lines that 

represented the next five years in the series. These allowed participants to mark their 70% 

prediction interval forecasts. 

Procedure Participants performed the task individually on computers. They read a short 

introduction and then entered their demographic details (age, sex). Instructions were the 

same as in Experiment 1 except that, this time, instead of point forecasts, 70% prediction 

intervals were required. Thus, acting as insurance advisors, participants were requested to 

provide 70% prediction intervals of hurricane counts for the next five years based on 30 

years of historical data. It was explained to them that 70% prediction intervals meant that 

each future observation would fall into the corresponding forecasted interval with 70% 

probability. The prediction intervals were marked by clicking twice on each of the five 

punctuated lines at the end of the graph to indicate the interval’s upper and lower 

boundaries. After completing the forecasts for all 13 data series, participants were debriefed 

and thanked. 

Results   

We compared the mean width of prediction intervals between the two conditions, with the 

size of the intervals calculated by taking the difference between the upper and lower values 

of participants’ responses.  

According to H4, participants show more overconfidence (i.e. narrower prediction intervals) 

in the continuous display than in the discrete one. The data were consistent with this for all 

horizons (Figure 9).  
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Figure 9. Mean prediction intervals for five forecasts in two conditions with standard error 

bars. 

To examine the significance of these effects, we carried out a two-way analysis of variance 

(ANOVA) on the prediction interval widths, using horizon as a within-participants variable 

(five levels) and condition (continuous display, discrete display) as a between-participants 

variable.  Here and later, Huynh-Feldt corrections were applied to address violations of 

sphericity. There was a significant main effect of condition (F (1, 58) = 5.84; p < .05). The 

main effect of horizon and the interaction between the two variables were not significant.  

We calculated the magnitude of actual prediction intervals for each series. These were then 

compared to the average forecast prediction intervals in the two conditions. Participants 

were expected to be overconfident in their forecasts. In other words, participants’ 70% 

prediction intervals were expected to be narrower than the actual 70% prediction intervals. 

This was found to be true for the continuous display condition (t (389) = 15.6, p < .001) but 

not for the discrete display condition (t (389) = 1.11, p = .267). Thus, prediction intervals in 

the continuous format condition (M = 5.10) but not in the discrete format condition (M= 

6.24) were narrower than the actual prediction intervals (M = 6.36): overconfidence 

appeared only with the continuous display. 
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According to the anchoring account (Harvey, 1997), the upper and lower bounds of 

prediction intervals are produced by adjusting away from the last displayed point and 

intervals are too narrow because adjustment is insufficient (Tversky & Kahneman, 1974).  

The above analysis is consistent with this account when displays were continuous. However, 

when they were discrete, intervals were not too narrow: adjustment appears to have been 

appropriate.  

Figure 10. Mean MAD scores for upper prediction interval forecasts for the five horizons in 

the two conditions with standard error bars. 

Figure 11. Mean MAD scores for lower prediction interval forecasts for the five horizons in 
the two conditions with standard error bars. 
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This analysis implies that adjustment from the last displayed point for both upper and lower 

bounds of the interval was greater in the discrete format condition than in the continuous 

display condition. Thus, we extracted MAD scores for both upper and lower bounds of the 

intervals (Figure 10 and Figure 11) and used two one-way ANOVAs to compare them across 

conditions. For the first horizon, these analyses showed that MAD scores were greater in the 

discrete display condition both for the upper bound of the interval (t (389) = 2.11, p < .05) 

and for the lower one (t (389) = 10.84, p < .001). These results are consistent with the 

anchoring account. 

There were differences in upper and lower prediction interval MADs between the pairs 2-3, 

3-4 and 4-5 but in the opposite direction. All of these differences were significant. However, 

it is important to emphasize again that the MAD scores for later horizons are relative to the 

previous forecast (i.e. upper or lower bound of the previous prediction interval) rather than 

relative to the last point of the data series. Thus, these findings for horizons beyond the first 

one indicate that people made less change to the size of the interval as horizon increased 

when intervals were already wide (discrete format) than when they were not (continuous 

format). They are not inconsistent with the anchoring account. 

Discussion 

Forecasting using prediction intervals was suboptimal with the continuous format but not 

with the discrete one. The difference in performance with different display formats can 

again be explained in terms excessive anchoring and insufficient adjustment in the 

continuous format condition (Harvey, 1997) and amelioration of these problems by use of 

the discrete display.   

Our findings replicate previous results obtained with continuous display formats (Lawrence 

& Makridakis, 1989; Lawrence & O’Connor, 1993; O’Connor & Lawrence, 1989, 1992). 

Prediction intervals were too narrow. In the past, this has been taken as evidence that 
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people are overconfident in their forecasts. However, simply by presenting data series in a 

discrete format, we can ensure that forecasters’ intervals are well-calibrated. It seems 

unlikely that this change in format acts to reduce people’s confidence in their forecasts. It is 

more likely that, consistent with Zacks and Tversky (1999), it acts to de-emphasise the 

relation between successive points in the series and so reduces excessive anchoring.  

General Discussion 

Human judgments contribute immensely to the accuracy of forecasting, but they are 

sometimes subject to certain errors. Using uncorrelated and un-trended real hurricane time 

series, the main objective of the present study was to investigate judgmental biases in point 

forecasts (Experiment 1), density functions (Experiment 2) and prediction intervals 

(Experiment 3), and to study whether these biases can be ameliorated by changing the  

graphical format used to present the data series.  

Biases in judgmental forecasting  

Lawrence and O’Connor (1995) found that the sort of under-adjustment to be expected if 

judges use anchoring was not evident when judgmental forecasts were made for a widely 

varying set of real series (Makridakis et al, 1982). However, Reimers and Harvey (2011) 

argued that this does not mean that forecasts from real series are not subject to biases. 

Instead it indicates that people are well-adapted to series that are representative of their 

environment as a whole. Moderate degrees of positive autocorrelation are typical of our 

environment (Gilden, 2009) and when people forecast from such series, they are unbiased. 

However, not all real series are typical. Some show higher levels of autocorrelation: they are 

forecast in a biased way that suggests that people perceive their autocorrelation as lower 

than it is. Other real series, such as the hurricane series used here, show very little 

autocorrelation: they are forecast in a biased way that implies that people perceive their 

autocorrelation as higher than it really is.  However, when we average over a whole set of 
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real series with many different levels of autocorrelation, biases in different directions cancel 

each other out.  

Thus, the anchoring effects that we have demonstrated with real series (e.g., Experiment 2) 

are important. They show that the previous research with simulated series that has been 

used to argue that judgmental forecasts are biased is indeed relevant to forecasting from 

real series. Biases appear with real series when those series are not typical of the series that 

people encounter in their environment. For example, some real series may contain atypically 

high or atypically low levels of autocorrelation: we can expect judgmental forecasting from 

those series to be biased. In other words, it is possible to be broadly well-adapted to series 

encountered in the environment as a whole but to still show some systematic biases when 

dealing with particular series.  

Why do biases occur with series that have atypical levels of autocorrelation? People exposed 

to many series in the environment will gain some impression of the overall level of 

autocorrelation that they contain. When they encounter a new series, this average 

environmental autocorrelation can be regarded as an initial estimate for the autocorrelation 

in the new series. By processing the patterns in that series, they make an adjustment away 

from their initial estimate. However, because the data series is limited in length and noisy, 

their adjustment is only partial. Because it is only partial, the residual influence of the 

environmental autocorrelation still has some effect and this effect is what we label as a bias. 

Consistent with this account, biases are larger in noisier data (Harvey and Reimers, 2013; 

Reimers and Harvey, 2013). However, as this account makes clear, biases are not to be 

regarded as signs that judgment is irrational: they can be produced by a process that can be 

characterised as close to a Bayesian one. 
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Reducing forecasting biases 

We know that various factors can influence the degree of bias that people exhibit. For 

example, Reimers and Harvey (2011) argued that people are constantly updating their 

estimates of the level of autocorrelation that is typical of their environment. They first 

presented people either with many series with low levels of autocorrelation or many series 

with high levels of autocorrelation. Then they required people to make forecasts from target 

series with moderate levels of autocorrelation. People who had previously seen many series 

with low levels of autocorrelation produced forecasts that indicated that they perceived a 

lower autocorrelation in the target series than people who had previously seen many series 

with high levels of autocorrelation.    

Thus, the degree of autocorrelation that people perceive in a given series is labile. It can be 

influenced by previous experience. The three experiments reported here demonstrate that 

it is also influenced by the manner in which series are presented. Lines linking successive 

points serve to imply that there is a relation between those points that is inconsistent with 

their independence. To improve judgmental forecasting from independent points, we should 

present data series as unconnected points. Conversely, we would expect (though we have 

not shown it) that forecasting from points that are strongly sequentially dependent would 

be improved by presenting data series as line graphs rather than as unconnected points. 

Many studies have shown that judgmental prediction intervals are too narrow. This can be 

explained in terms of anchoring: people anchor on the last data point and adjust away from 

it in both directions to produce the upper and lower bounds of the interval. Again, it appears 

that the degree to which they are ‘attracted’ to the last data point is influenced by the 

graphical format in which the data series are presented. Line graphs emphasise connections 

(even when they are not logically or statistically present) between successive points, 

between the last data point and the first forecast (Experiment 1), and, apparently, between 



29 

 
the last data point and the bounds of a prediction interval (Experiment 3). Simply by 

changing the data presentation format from continuous to discrete, it is possible to 

eliminate this effect and thereby enable people to produce well-calibrated intervals. 

Limitations and future work 

First, it remains unclear whether the advantage of discrete graphs for forecasting purposes 

extends to other domains where series show higher autocorrelation. As mentioned above, 

we have reasons to suspect that they will not. Hence, future experiments should test real 

times series that have high levels of autocorrelation.  

We also suspect that series with trends may not show the same advantage of discrete over 

continuous presentation format. Trends also depend on a relation between successive 

points and continuous presentation formats may serve to emphasise that relation. Harvey 

and Bolger (1996) have already shown that graphical presentation (via line graphs) reduces 

trend damping relative to tabular presentation (where, presumably, the relation between 

successive points is less salient). 

We have studied only one element of the hurricane forecasting process. In future work, it 

would be useful to study how model based forecasts are integrated with judgmental 

forecasts. In particular, is the weighting given to model based forecasts influenced by the 

data format? Also, how is the integration process influenced by presenting model-based 

forecasts not just for the future horizons that require forecasts but also for past time points 

for which the outcomes are known and displayed? With such a display, is the integration 

affected not just by the format in which the data are presented but also by the format in 

which past model forecasts are presented?   
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