
Dynamic Factor Analysis for Cognitive Trajectories∗

Yorghos Tripodis†and Nikolaos Zirogiannis‡

Abstract

We propose a dynamic factor model appropriate for panel datasets and develop

an estimation algorithm which can handle datasets with large number of subjects

and short temporal information. The algorithm uses a two cycle iterative approach

for model estimation in such a large dataset. Each iteration consists of two distinct

cycles, both following an EM algorithm approach. This iterative process will continue

until convergence is achieved. We utilized a dataset from the National Alzheimer

Coordinating Center (NACC) to estimate underlying measures of cognition based on

a battery of observed neuropsychological tests. We assess the goodness of fit and the

precision of the dynamic factor model estimators and compare it with a non-dynamic

version in which temporal information is not used. The dynamic factor model is

superior to a non-dynamic version with respect to fit statistics shown in simulation

experiments. Moreover, it has increased power to detect differences in the rate of

decline for a given sample size.
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1 Introduction

Alzheimers Disease (AD), the most common form of dementia, is a significant cause of disability

and mortality among the elderly. The latest figures show that 5.2 million people in the US,

approximately 14% of the population over age 70, are afflicted by AD (Alzheimer’s-Association

2012). As the population ages over the next several decades, this number is expected to increase

(Brookmeyer et al. 2007). The only definitive way to diagnose AD is post-mortem, but neuro-psychiatrists

reach a pre-mortem diagnosis by reviewing and discussing the subject’s clinical history, as well as

scores from a variety of neuropsychological evaluation tests (Duara et al. 2010). Many observational

and clinical trial studies of cognitive aging use neuropsychological test batteries to assess overall

cognition and its specific domains (Snyder et al. 2011). The results of the neuropsychological tests

which are part of the batteries can exhibit high within-subject variability (Behl et al. 2005) and may

make diagnosis difficult. Moreover, the emphasis in Alzheimers disease clinical research has shifted

to developing interventions before symptoms onset. In order to address this need, researchers are

required to develop cognitive measures which discriminate between cognitively healthy subjects and

individuals with small cognitive changes who will convert to mild cognitive impairment (MCI).

Statistical tools have been developed to extract information from these evaluation tests in order to

estimate a single or multiple cognitive indices. Methods involving estimation of latent variables have

been gaining attention in various fields of research. A common method for the estimation of such

latent variables is confirmatory factor analysis (CFA) (Hayden et al. 2011; Park et al. 2012). The

repeated nature of the tests is often ignored in these models, even though recent studies attempt to

capture the temporal information in order to increase performance of measures for cognitive change

(Proust et al. 2006; Locascio and Atri 2011; Johnson et al. 2012).

This article provides statistical tools which will advance our understanding of the longitudinal

properties of cognitive trajectories in the normal and prodromal phase. Specifically, we develop

an estimation algorithm for a longitudinal/dynamic factor analysis model which can be applied

in studies with panel data. We apply the factor model to a variety of neuropsychological tests
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using data from the National Alzheimers Coordinating Center (NACC) study and estimate a

smooth cognitive measure for each individual’s total cognition as well as measures for specific

cognitive domains, such as memory, attention and language. We hypothesize that by incorporating

longitudinal information into the factor models we increase the accuracy of the estimates of change

over time and consequently increase power to detect differences between groups. We focus on a

case-control sample using data where participants are selected to be cognitively normal. Cases in

this study include participants that will convert to MCI after the period used in the analysis, while

controls will continue having normal cognition for the next two follow-up visits after the end of

the analytic period. In the next section we describe the dynamic factor model and its estimation

method. In §3, we assess its performance in estimating the underlying cognition and its domains

and compare it with a factor model which ignores any longitudinal information. We apply the

dynamic and non-dynamic versions of the factor model to clinical data collected by NACC, and

compare their power of detecting differences in the rate of cognitive change for various sample sizes.

Finally in §4, we conclude with a discussion of the methods and results including limitations and

directions for future studies.

2 Methods

In this section we describe the dynamic version of the factor model and its estimation process. The

difference of the dynamic factor model for panel data from the non-dynamic version is that the

former captures not only correlations between input variables but also autocorrelations and cross

correlations of these variables of interest. We develop an iterative two-cycle estimation process,

which is an extension of the ECME algorithm (Liu and Rubin 1998). This model is flexible enough

to be applicable in studies with multiple individuals, short unequally spaced temporal information.
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2.1 Model

We let Ut denote the n × 1 vector containing the unobserved cognitive indices of n subjects at

time t, with t = 1, ..., T . We assume that the dynamic properties of Ut can be captured by a

Markov process. For illustration purposes, and without loss of generality, we first present the case

where we have equally spaced observations and equal number of neuropsychological tests for each

subject. We subsequently present the model for the general case with unequally spaced or missing

observations. Hence, we form the following linear Gaussian state space model:

yt = BUt + et, et ∼ N(0,D), (2.1)

Ut+1 = TUt + ηt, ηt ∼ N(0, In), (2.2)

where B is the matrix of factor loadings with dimensions np × n, with p denoting the number of

observed variables, yt is a np × 1 vector of observed neuropsychological measures per individual,

T is n × n transition matrix and In is a n × n identity matrix and et and ηt are error terms

(Koopman 1993; Durbin and Koopman 2001). The state space formulation described in (2.1) and

(2.2), models the behavior of the unobserved state vector Ut over time using the observed values

y1, ...,yn. The state vector Ut is assumed to be independent of the error terms et and ηt for all

t. In addition, the error terms et and ηt are assumed to be independent, identically distributed

(i.i.d.) (Kohn and Ansley 1989; deJong 1991). In general, the model defined by equations (2.1)

and (2.2) is not identifiable. Zirogiannis and Tripodis (2014) state the conditions for identifiability

for a general dynamic factor model. In order for the model in (2.1) and (2.2) to be identifiable

we must impose a certain structure. We first assume that the unobserved cognitive indices follow

a multivariate random walk, so that T = In. This is a reasonable assumption when modeling

cognition for an aging population where the spacing of the observation period is roughly annual.

Similar non-stationary models for psychological constructs have been suggested by Molenaar and

Campbell (2009) and used among others by Hekler et al. (2013) and Gu et al. (2014). We also

impose a structure on the factor loading matrix B and the variance of the idiosyncratic errors D.
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We assume that the factor loadings for each observed variable are the same for each individual in

the study. This assumption is necessary in order to have comparable estimated cognitive indices

across individuals. We also assume that participants in the study are conditionally independent

and that the variance of the idiosyncratic errors is the same for all individuals. These assumptions

result in a block diagonal structure for D. The imposed structure results to a model that is fully

identifiable.

Unequally spaced and missing observations

It is very common in longitudinal observational studies to have unequally spaced or missing

observations. Let τit be the distance between observations t and t + τit of the ith subject, and

τ t the vector with the distances between two subsequent observations at time t. Then we can

re-write the state-space form of the multivariate random walks as:

yt = BUt + et, eit ∼ N(0,D)

Ut+τ = Ut + ηt, ηt ∼ N(0, τ t)

This time-varying model can be used for unequally spaced and missing observations, as well as for

forecasting for any τn steps ahead.

2.2 2-step modified ECME Algorithm

The high dimensionality of the data vector yt makes estimation of our model rather problematic.

Usual Newton-type gradient methods do not work in this situation creating the need for a novel

estimation approach. We introduce a modified ECME algorithm that makes estimation of the

model specified in (2.1) and (2.2), feasible through an iterative two-cycle process. The 2-cycle

modified ECME algorithm is an extension of the ECME algorithm developed by Liu and Rubin

(1998), which itself is an extension of the widely known EM algorithm (Dempster, Laird, and Rubin
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1977). The modified ECME algorithm starts by partitioning the vector of unknown parameters Ψ

into (Ψ1,Ψ2) where Ψ1 contains the elements of D that need to be estimated, while Ψ2 contains

the relevant elements of B. We use the term “cycle” as an intermediary between a “step” and

an “iteration” as in Meng and Dyk (1997). In the case of our modified ECME algorithm, every

iteration is comprised of two cycles. Each cycle includes one E-step and one M-step, where the

first cycle estimates Ψ1 and Ψ2 given the estimates of Ψ of the previous iteration, while the second

cycle estimates Ψ2 given the estimates of Ψ of the previous cycle.

The functional form of the complete-data log-likelihood at time period t is (McLachlan and Peel

2000):

log`t(Ψ) =
1

2
log{|D−1|} − 1

2
{(yt −But)

′D−1(yt −But)

−(ut+1 − ut)′(ut+1 − ut)

Since ut is unobserved, we can consider it missing and use the EM algorithm framework. In order

to find the MLE, we need to calculate the distribution of the latent variable ut conditional on the

observed values of yt. There is a long literature describing the EM procedure for factor analysis

in cross-sectional data starting with Rubin and Thayer (1982). Applying the EM framework for

longitudinal data we need to condition not only on the concurrent observed value of yt but on all

the previous observed history y1, . . . ,yt. As we will see in the following two subsections, we use

the first cycle to obtain estimates for ut by conditioning on the concurrent observed variables, yt,

and the second to update these estimates by conditioning on the history of the observed variable,

y1, . . . ,yt using the Kalman filter (Kalman 1960). This iterative process will continue until the

likelihood function stops increasing and convergence is achieved.
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2.2.1 First cycle

During the kth iteration of the first cycle, the E-step of the 2-cycle ECME algorithm is:

ZΨ(Ψ1,Ψ2; Ψ
(k−1)
1 , Ψ

(k−1)
2 ) = EΨ

{
T∑
t=1

log`t

[
(Ψ1,Ψ2) |yt, Ψ

(k−1)
1 , Ψ

(k−1)
2

]}
. (2.3)

Following the notation presented in McLachlan and Peel (2000, p.242), the sufficient statistics are

calculated in the (k − 1) iteration by the following equations:

γ(k−1) =
(
B(k−1)B(k−1)′ + D(k−1)

)−1
B(k−1) (2.4)

ω(k−1) = I− γ(k−1)′B(k−1)

The first M-step involves differentiating ZΨ(Ψ1,Ψ2; Ψ
(k−1)
1 , Ψ

(k−1)
2 ) with respect to Ψ1 and Ψ2

in order to obtain Ψ
(k)
1 and Ψ

(k/2)
2 :

ZΨ(Ψ
(k)
1 ,Ψ

(k/2)
2 ; Ψ

(k−1)
1 , Ψ

(k−1)
2 ) ≥ ZΨ(Ψ1,Ψ2; Ψ

(k−1)
1 , Ψ

(k−1)
2 ), (2.5)

The first-cycle M-step is identical to the M-step of the traditional EM algorithm for factor analysis

models (McLachlan and Krishnan 2008):

B(k/2) = Cyyγ
(k−1)

{
γ(k−1)′Cyyγ

(k−1) + nω(k−1)
}
−1, (2.6)

D(k) = n−1diag
{

Cyy −Cyyγ
(k−1)B′

}
, (2.7)

where Cyy is the sample unconditional covariance matrix of YT = (y′1, ...,y
′
T )′ =, i.e. E(YTYT

′
) =

Cyy. At the end of the first cycle we have updated estimates for all the elements of the variance-covariance

matrix of the idiosyncratic errors, D, and intermediate estimates for the matrix of factor loadings,

B. We use these estimates in the second cycle to get updated estimates for the factor loadings.
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2.2.2 Second cycle

In the E-step of the second cycle we estimate Ψ
(k)
2 . We proceed by calculating:

ZΨ2
(Ψ2; Ψ

(k)
1 , Ψ

(k/2)
2 ) = EΨ2

{
T∑
t=1

`t

[
Ψ2|Yt−1, Ψ

(k−1)
1 , Ψ

(k/2)
2

]}
. (2.8)

The second E-step involves forming the expected complete-data log likelihood conditional on Yt−1,

which is the set of past observations y1, ...,yt−1. The subsequent M-step involves differentiating

ZΨ2
(Ψ2; Ψ

(k)
1 , Ψ

(k/2)
2 ) with respect to Ψ2. We choose Ψ

(k)
2 such that:

ZΨ2
(Ψ

(k)
2 ; Ψ

(k)
1 , Ψ

(k/2)
2 ) ≥ ZΨ2

(Ψ2; Ψ
(k)
1 , Ψ

(k/2)
2 ). (2.9)

Upon maximization of ZΨ2
, the estimate Ψ

(k)
2 is used in the E-step of the first cycle of the

next iteration. We calculate and maximize ZΨ2
(Ψ2; Ψ

(k)
1 , Ψ

(k/2)
2 ) by using the prediction error

decomposition of the conditional likelihood (Harvey 1990):

log `t(Ψ2) = log
1

2π
− 1

2

[
log |Ft|+ υ′tF−1t υ

]
, (2.10)

where υt is the prediction error conditional on past history and Ft is its variance. Quantities, υt

and Ft can be estimated with the use of the Kalman filter, which is a set of recursions which allow

information about the system to be updated every time an additional observation Yt is introduced

(Durbin and Koopman 2001, p.11). Once υt and Ft are calculated, (2.10) is maximized with respect

to Ψ2 , as illustrated in (2.9).

3 Results

In the next section, we assess and apply the model and the estimation process described in §2.

We first assess the performance of the 2-cycle ECME estimator using a simulation study. We then
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apply the model in data from the NACC study. We also compare the dynamic factor model with

a non-dynamic version in which temporal information is not used.

3.1 Simulation

The model from which we simulate is a variant used by Doz et al. (2011) which is based on a

simulation scheme used by Stock and Watson (2002). We define:

B =



f 0 · · · 0

0 f · · · 0

... · · · . . .
...

0 · · · · · · f


, D =



d 0 · · · 0

0 d · · · 0

... · · · . . .
...

0 · · · · · · d


, (3.1)

with

1. f a p× 1 vector of factor loadings with f[k] ∼ U(0, 1) subject to
p∑

k=1

f[k] = 1,

2. d a p × p diagonal matrix of variances for the idiosyncratic elements, with d[k][k] = f[k]
βk

1−βk

with βk ∼ U(0.1, 0.9)

where k = 1, . . . , p. We generate 1000 replicates from the model defined by (2.1), (2.2) and (3.1)

with U0 ∼ N(0, In), for different combination of sizes for observed tests, p, number of subjects n,

and time points, T . Specifically, we use p = 5, 10, 15, n = 10, 50, 100, 200, 300 and T = 3, 5, 7, 10, 15.

The choice of these values corresponds to our specific application. We specify factor loadings which

are the same across individuals who do not share any familial or other relationship. The coefficient

βk is the ratio between the variance of the idiosyncratic component, et , and the total variance

of the corresponding observed variable, Yt. In the simulation, this ratio is drawn from a uniform

distribution drawn from the interval (0.1, 0.9). This interval was chosen in order to avoid parameters

at the boundary of the parameter space.
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Estimation was done using the 2-cycle modified ECME and we obtained estimates of the factor

Û = (Û1, Û2, . . . , ÛT )′. Performance was measured by the trace statistic:

tr(U′Û(Û′Û)−1Û′U)

tr(U′U)
.

The trace statistic is a multivariate version of the R2 of the regression of the true factors on the

estimated factors (Doz et al. 2011). A number close to 1 implies a good approximation of the

estimated latent variable to the true factor. We used the trace statistic, TRDFA, as a performance

measure for the dynamic factor model. We also obtained estimates of the latent factor using a

non-dynamic factor model defined only by equation (2.1). In order to have comparable results, we

also used the 2-cycle modified ECME for the non-dynamic version of the factor model. We then

calculated the equivalent trace statistic, TRCFA for the non-dynamic model. We use the ratio of

the two trace statistics, TRDFA
TRCFA

, as a comparison measure of the two models. Values above 1 imply

that the dynamic model has superior performance to the non-dynamic version, with respect to how

well the estimated are close to the true factors.

Table 1 reports the results of the trace statistics from the simulation experiment. The numbers in

the table refer to the average across 1000 replicates. As an example, we use the case of T = 3,

n = 300, and p = 5; 86% of the variability of the true, simulated factor is explained by the factor

estimated by DFA. The explained variability using DFA is 1% higher than the explained variability

using CFA. The goodness of fit of the estimated factors, as measured with TRDFA, increases with

the size of individuals n in the sample, and the number of repeated observations per individual T .

TRDFA varies from 0.77 for a small n-small T sample to 0.97 for a moderate n-moderate T . The

goodness of fit of the estimators does not improve as the number of observed tests p per individual

increases for a given size n and T . Moreover, the dynamic factor model always performs at least as

good as the non-dynamic version. The relative performance of the dynamic factor model increases

with T . Based on TRDFA
TRCFA

, the relative performance of the dynamic model ranges from 1% better

goodness of fit compared to the non-dynamic version when n = 10, p = 5 and T = 3 to 9% when
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n = 300, p = 15 and T = 15.

3.2 Application

We used the NACC dataset with visits from September 2005 to June 2013 for testing and evaluation.

NACC serves as a repository for data collected at 34 past and present Alzheimer’s Disease Centers

(ADCs) throughout the United States. The ADCs conduct clinical and biomedical research on

Alzheimer’s disease and related disorders. Centers enroll their study subjects in various ways,

including referral from clinicians, self-referral by patients themselves or concerned family members,

active recruitment through community organizations, and volunteers who wish to contribute to

research. Most centers also enroll volunteer control subjects. Study subjects at each center are best

regarded as a case series, not necessarily representing all cases of disease in a defined population.

For more information on the study see Morris et al. (2006).

We focus on a study sub-sample which includes cognitively healthy participants at initial visit.

For all subjects we only considered their neuropsychological test results while cognitively healthy,

even though some converted to mild cognitive impairment (MCI) state at a later visit. For those

participants who did not convert to MCI during our observation period, we only considered those

with at least 4 visits. To avoid the risk of healthy participants converting to MCI at a future

visit beyond our observation period, we excluded the last two measurement occasions for that

group. For those participants converted to MCI we considered those with at least 1 follow-up with

normal cognition. We also excluded non-English speakers as well as subjects with a number of

comorbidities such as stroke, Parkinson’s disease, depression etc. We then created two balanced

groups, with n = 149 each, matched by age, sex and education which differ only in their future

cognitive state: one group will convert to MCI at the next visit (converters), while the other group

will remain cognitively normal for at least the next two subsequent visits (non-converters). The

description of the sample is given in figure 1. The mean (SD) age at initial visit is 75.7 (7.5) with

15.4 (2.5) average years of education. There are 170 (57.1%) women in the sample with 3.0 (1.2)
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visits on average, and 2.3 (1.3) years of follow-up since the initial visit.

We considered four factor models using different neuropsychological measures according to their

relation to a specific domain: i) memory, ii) attention-psychomotor speed, iii) language and iv)

general cognition. For each factor model, we run both a dynamic and a non-dynamic version.

For both versions of the model, the one step-ahead prediction errors were tested for normality

and residual autocorrelation. Even though both the dynamic and the non-dynamic version of

all four factor models indicated non-normal errors(e.g. for general cognition, p-value<0.0001

for Bowman-Shenton test for normality and for Box-Ljung portmanteau test for autocorrelation

at lag 1), further investigation showed that this is caused by outliers from seven participants.

These participants have significantly lower estimated factors at the last visit, which may indicate

misdiagnosis or untimely diagnosis of MCI. For each neuropsychological test, we run a mixed effects

regressions using PROC MIXED in SAS 9.3 with random intercepts and random slopes for time to

test the hypothesis that there are significant differences in the rate of change by group (converters vs

non-converters). We also used mixed effects regression on the factors estimated by the dynamic as

well as the non-dynamic factor models. Table 2 shows the estimated annual rate of change for each

of the neuropsychological tests and for the simple and dynamic factors. For ease of comparison,

all outcomes have been standardized, using the mean and standard deviation of all cognitively

healthy NACC participants. We note that there is no significant annual change for the group of

non-converters for all neuropsychological measures, with the exception of logical memory: delayed,

and for the estimated factors. For the converters, only MMSE, Trails B and Verbal Fluency Test:

vegetables show significant decrease at the 5% level, while the factors from the simple (non-dynamic)

factor model for attention and language show significant decrease over time. For the dynamic

factor model estimates, all three domains and total cognition estimates show significant decreases

over time for the group which progressed to MCI at the next follow-up period. Given that an

important feature that leads to an MCI diagnosis is manifestation of significant cognitive decline,

it is important to note that the the dynamic factor model estimates show evidence of decline even

before conversion to MCI. We also note that both the dynamic and the non-dynamic version of
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factor models show significant differences in the annual rate of change between groups. In general,

the estimates of difference of the factor models are larger and have lower p-values than the estimates

of input variables. Furthermore, the estimates of difference from the dynamic factor model are at

least as high with larger p-values than the equivalent estimates of the simple factor models. This

difference is due to the fact that DFM incorporates the longitudinal aspect of the psychometric

results of every patient. This may be an indication of increased power for the dynamic factor model,

which we explore in the next sub-section.

Power analysis

We also investigated the performance of the observed indicators and the estimated factors with

respect to power. Our main aim remains to detect differences by group in the rate of change.

In order to assess the power of each outcome, we follow a bootstrapping scheme using the data

described in the previous section. We first assume that there is a difference in the annual rate

of change between normal controls and MCI while they are both cognitively normal. For a given

sample size n, we perform the following steps:

Simulation scheme

1. Select n/2 matched pairs with replacement.

2. Estimate factors for all domains and for total cognition using simple and dynamic factor

models.

3. Run a mixed effect regression on the estimated factor using time since first visit, group

(converters vs non-converters) and time×group interaction, along with age at initial visit as

covariates.

4. Is the estimate of time×group interaction significant at the 5% error level?

5. Repeat for 1000 times.
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Table 3 shows the power of detecting significant differences for different sample sizes for all outcomes.

We note that power of the dynamic factor model estimates is higher than the power of the

non-dynamic version. For the total summary index, the power for the dynamic version varies

from 49.9% for n = 120 to 96.7% for n = 240. The power for the non-dynamic version is much

lower and goes up to 76.9% for n = 240. These results indicate that a smaller sample size is required

for a given power in order to find significant differences in the rate of change by groups. Using

the results from table 3, we can calculate the required sample size for both the dynamic and the

non-dynamic factor models for an 80% power at α = 5%. For the total cognition index, the DFA

model requires a sample size of 187 while the non-dynamic version (CFA) requires a sample size of

252. We get similar results for the other domains: memory (nDFA = 370, nCFA = 485), attention

(nDFA = 334, nCFA = 546), language (nDFA = 414, nCFA = 1419).

We also note that the power of the factor models is always higher than the power of the individual

neuropsychological tests. This indicates that using factor models increases the power of detecting

significant differences in the rate of change. One notable exception is the Boston Naming Test

(BNT) in the language domain. BNT has a higher power for all sample sizes considered compared

to the non-dynamic factor estimates. It also has a higher power than the dynamic factor model

when n = 120. For larger sample sizes, the dynamic factor model estimates have higher power than

BNT.

4 Conclusion

In this article, we developed an algorithm to estimate a dynamic factor model for latent cognitive

variables. We compared it with equivalent factor models which do not use temporal information

in the estimation, and showed that the dynamic factor model estimates are more accurate as

reflected by comparison of fit statistics in simulation experiments. They are also more precise

than the non-dynamic version estimates as shown by improved power to detect differences in the

rate of decline. Since the estimated latent index is a weighted average of the concurrent observed
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values, the reason for the improved performance of the dynamic factor model is due to the fact

that the weighting scheme of DFA takes into account any within-subject variability over time

and any cross-correlation of tests. In the non-dynamic version, weights depend on the correlation

between tests as well as on between-subject variability. Measures that are highly correlated or

have increased between-subject variability will receive higher weight. The main limitation with the

non-dynamic approach is that we do not use any information from the within-subject variability

over time. If we do not account for variability over time we may over(under)inflate the weights. In

the dynamic factor model, the estimated latent variable is a weighted average of observed values

from all time points. Concurrent values are weighted higher than observations further back into

the past which will be discounted exponentially. The rate of discount will depend on the variability

of each observed measure over time. For example, in the dynamic factor model, past observations

of measures that are stable over time will be discounted less. Koopman and Harvey (2003) provide

a general description of the weighting schemes for the model defined by equations (2.1) and (2.2).

The dynamic factor model can be extended to allow for observed variables loading to multiple factors

or for studies where participants may be clustered due to familial or other relationship. The current

model is applicable to data with short temporal component with unequally spaced observations.

This is a particular strength of the estimation algorithm, since most of the observational studies

on cognition have these specific characteristics. A limitation of the current study is that the

estimated factor is not validated with changes in biomarkers, such as volumetric data from MRI

scans. Additionally, even though NACC battery is well validated and we consider the tests which

load to specific domains as known, this may not be true in other applications. Another limitation of

this current study is the use of aggregate scores for each test rather than the scores of each specific

item used in each test. Crane et al. (2008) show that it is advantageous to use the item scores

to derive latent factors in longitudinal studies. Unfortunately, in the NACC study, as in many

large studies, the data for items are not readily available for all participants. The methodology

presented in this paper can be easily applied in most large studies where only the aggregate scores

for each test are available. The dynamic factor model is particularly useful when we are interested
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in finding differences in the rate of cognitive change between groups. This advantage can be used

in future observational studies researching the heterogeneity in rates of progression of MCI and

AD patients, or in future clinical trials that need to identify healthy participants at high risk of

significant decline in cognition.
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Figure 1: Description of analytic sample
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Table 1: Performance of factor estimators from 1000 simulations (using latest code)
T=3 T=5 T=7 T=10 T=15

TRDFA
TRDFA

TRCFA
TRDFA

TRDFA

TRCFA
TRDFA

TRDFA

TRCFA
TRDFA

TRDFA

TRCFA
TRDFA

TRDFA

TRCFA

p=5 0.77 1.00 0.80 1.02 0.83 1.02 0.86 1.02 0.88 1.01
n=10 p=10 0.77 1.00 0.78 1.02 0.81 1.03 0.83 1.03 0.86 1.02

p=15 0.77 1.00 0.77 1.02 0.78 1.03 0.81 1.03 0.84 1.02
p=5 0.85 1.01 0.87 1.02 0.90 1.02 0.92 1.02 0.93 1.01

n=50 p=10 0.85 1.01 0.86 1.02 0.87 1.03 0.90 1.03 0.92 1.02
p=15 0.85 1.01 0.85 1.02 0.86 1.03 0.88 1.03 0.91 1.02
p=5 0.86 1.01 0.89 1.02 0.91 1.02 0.93 1.02 0.95 1.01

n=100 p=10 0.86 1.01 0.86 1.02 0.89 1.03 0.92 1.03 0.94 1.02
p=15 0.87 1.01 0.86 1.02 0.88 1.03 0.90 1.03 0.93 1.03
p=5 0.88 1.01 0.90 1.02 0.92 1.02 0.94 1.02 0.96 1.02

n=200 p=10 0.87 1.01 0.89 1.02 0.91 1.03 0.93 1.03 0.95 1.02
p=15 0.89 1.01 0.88 1.02 0.89 1.03 0.92 1.04 0.93 1.03
p=5 0.86 1.01 0.91 1.02 0.93 1.03 0.95 1.05 0.96 1.03

n=300 p=10 0.87 1.01 0.90 1.02 0.91 1.03 0.94 1.03 0.97 1.07
p=15 0.90 1.01 0.89 1.02 0.91 1.03 0.93 1.04 0.96 1.09

20



Table 2: Parameter estimates for annual rate of change for all neuropsychological tests

Did not progress
to MCI

Progress to MCI Difference

Domain Test Estimate
(SE)

p-value Estimate
(SE)

p-value Estimate
(SE)

p-value

M
e
m

o
ry

MMSE -0.02
(0.03)

0.390 -0.06
(0.03)

0.027 0.04
(0.04)

0.343

Logical Memory:
Immediate

0.04
(0.03)

0.202 -0.04
(0.03)

0.140 0.08
(0.04)

0.052

Logical Memory:
Delayed

0.06
(0.03)

0.035 -0.02
(0.03)

0.404 0.08
(0.04)

0.038

Factor CFA 0.04
(0.03)

0.133 -0.04
(0.03)

0.148 0.08
(0.04)

0.037

Factor DFA 0.05
(0.04)

0.253 -0.09
(0.04)

0.026 0.14
(0.06)

0.020

A
tt

e
n
ti

o
n
-P

sy
ch

o
m

o
to

r
S
p

e
e
d

Digits Forward -0.04
(0.02)

0.127 -0.03
(0.02)

0.268 -0.01
(0.03)

0.770

Digits Backward 0.01
(0.03)

0.680 -0.03
(0.03)

0.201 0.04
(0.04)

0.231

WAIS -0.03
(0.02)

0.073 -0.03
(0.02)

0.124 0.01
(0.02)

0.839

TRAILS A 0.03
(0.03)

0.196 -0.01
(0.03)

0.599 0.05
(0.04)

0.199

TRAILS B 0.01
(0.02)

0.742 -0.05
(0.02)

0.039 0.03
(0.03)

0.089

Factor CFA 0.00
(0.02)

0.852 -0.04
(0.02)

0.001 0.04
(0.02)

0.048

Factor DFA -0.00
(0.03)

0.914 -0.08
(0.03)

0.003 0.04
(0.04)

0.046

L
a
n
g
u
a
g
e

Animals -0.00
(0.02)

0.847 -0.04
(0.02)

0.056 0.04
(0.03)

0.222

Vegetables -0.02
(0.02)

0.493 -0.05
(0.03)

0.029 0.04
(0.04)

0.285

Boston Naming
Test

0.04
(0.03)

0.100 -0.02
(0.03)

0.285 0.06 0.076

Factor CFA -0.00
(0.02)

0.916 -0.04
(0.02)

0.014 0.04
(0.03)

0.094

Factor DFA -0.02
(0.03)

0.515 -0.09
(0.03)

0.001 0.07
(0.04)

0.069

T
o
ta

l

Factor CFA 0.05
(0.02)

0.058 -0.04
(0.02)

0.098 0.09
(0.03)

0.012

Factor DFA 0.01
(0.03)

0.654 -0.12
(0.03)

<.001 0.13
(0.05)

0.004
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Table 3: Power analysis for group differences

Domain Test n = 120 n = 150 n = 180 n = 210 n = 240

M
e
m

o
ry

MMSE 4.9 3.00 3.10 1.30 0.90
Logical Memory:
Immediate

15.0 20.3 23.1 25.2 29.8

Logical Memory:
Delayed

14.4 20.2 24.9 28.4 34.3

Factor-CFA 17.2 22.2 26.8 32.2 38.1
Factor-DFA 21.9 28.7 33.7 40.1 51.0

A
tt

e
n
ti

o
n
-S

p
e
e
d Digits Forward 2.3 0.9 1.00 0.40 0.00

Digits Backward 4.4 4.1 3.9 1.80 1.90
WAIS 1.7 0.7 0.2 0.00 0.00
TRAILS A 12.6 14.8 16.1 18.8 16.6
TRAILS B 12.5 13.4 17.1 15.8 16.6

Factor-CFA 15.2 17.7 23.7 28.3 32.8
Factor-DFA 21.5 24.4 30.6 45.9 52.4

L
a
n
g
u
a
g
e

Animals 5.6 5.4 5.7 5.60 2.70
Vegetables 5.8 4.0 4.4 3.00 1.40
Boston Naming
Test

19.1 20.8 24.5 23.4 22.1

Factor-CFA 10.3 13.2 12.6 15.9 15.7
Factor-DFA 14.8 20.8 31.7 37.0 37.1

T
o
ta

l

Factor CFA 39.3 49.2 59.0 65.5 76.9
Factord DFA 49.9 66.0 81.1 92.8 96.7
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