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NHR-TFNet: Forecasting Hierarchical Time Series using

Non-linear Mappings

Abstract

Forecast reconciliation is a procedure of forecasting multivariate time series with linear ag-
gregation constraints to ensure that forecasts satisfy the same set of constraints. Most state-
of-the-art reconciliation methods reconcile the forecasts using linear mappings to project the
base forecasts onto a coherent subspace. They also use assumptions such as the forecasts
are unbiased and residuals are jointly covariance stationary. In this study, we propose a
non-linear forecast reconciliation approach, NHR-TFNet, using machine learning methods,
relaxing the assumptions of traditional linear reconciliation approaches. We introduce a
novel loss function incorporating non-linear mappings to obtain a set of coherent forecasts
from the individual base forecasts. To obtain the weights of the non-linear mapping between
the base forecasts, we train a feed-forward neural network with the proposed loss function
using transformed fitted values of the base models as inputs to the network. We evaluate the
proposed methodology against state-of-the-art linear reconciliation approaches on multiple
benchmark datasets. The results indicate that the proposed method works well when there
is a reasonable number of observations in comparison to the number of bottom-level and
non-bottom level series.

Keywords: Hierarchical time series, Coherent forecasts, Reconciliation, Non-linear
mappings, Feed forward neural networks

1. Introduction

Nowadays, many operational forecasting tasks are associated with huge collections of
time series spanning across several operational dimensions such as product categories, geo-
graphical areas, etc., which form a hierarchical structure. Often, the forecasts are collated at
multiple levels for better decision-making and strategic planning from a business perspective.
For instance, the product assortment structure in a retail business often follows a hierarchi-
cal structure, where it is required to produce sales forecasts at the product, store, state and
country levels [4]. Also, in the electricity domain, generating energy demand forecasts at the
smart-meter, grid, and regional levels is important for better demand planning and efficient
resource management [27]. The prevalence of hierarchical forecasting problems is further
demonstrated by recently held M5 forecasting competition [20] and Wikipedia Web Traffic
forecasting competition [26], which were based on hierarchically structured time series data.

Hierarchical time series are often organised with several layers of granularity, where
each level of the hierarchy can exhibit diverse patterns such as linear or nonlinear trends,
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different seasonal shapes, level shifts, etc. For example, time series at the bottom level of
the hierarchy are generally noisy and sparse, whereas time series at the higher aggregation
levels of the hierarchy can show strong time series patterns (high signal-to-noise ratio) that
are relatively easier to forecast. In a hierarchical forecasting setting, it is also required to
generate forecasts that are coherent across the entire aggregation structure, which means the
sum of the forecasts must be consistent with the aggregation structure of the hierarchy [30].
Therefore, generating accurate, but also coherent forecasts across the whole time series
hierarchy is a challenging task.

The traditional approaches to forecasting hierarchical time series are mostly involved in
generating forecasts for one level of aggregation and then either aggregated for higher lev-
els (bottom-up approach), or disaggregated for lower levels (top-down approach), to obtain
coherent forecasts across the hierarchy [30, 12]. As these methods produce forecasts con-
sidering only a single aggregation level, they are unable to exploit the information available
across the rest of the levels in the hierarchy. Alternatively, methods have been introduced
to combine forecasts across the entire hierarchy by assigning weights to each individual
forecast in the hierarchy, where the weights are obtained through an optimisation process
that produces coherent forecasts. Typically, such statistically solid hierarchical forecasting
methods pursue a two-step process: 1) the forecasting step to produce base forecasts for
each time series in the hierarchy; and 2) the reconciliation step to ensure the coherency
of the forecasts across the hierarchy [11, 15, 30]. During the reconciliation process, these
methods are benefited from utilising information across the hierarchy, thus often outper-
forming bottom-up and top-down approaches in the literature [30]. However, these methods
use strong assumptions, e.g., model forecasts being unbiased, model residuals being jointly
covariance stationary, and focus only on linear mappings to project the base forecasts onto
the coherent subspace.

In parallel to these developments, with the advent of Big Data, many recent advance-
ments in time series forecasting have been shifting to data-driven workhorses such as machine
learning. In hierarchical settings, the non-parametric modelling capabilities of these models
provide an opportunity to apply them as non-linear mapping functions to base forecasts,
obviating the assumptions of traditional linear reconciliation techniques. Nevertheless, the
advantages of using machine learning techniques as non-linear mapping functions for fore-
cast reconciliation are yet to be translated into hierarchical forecasting research. Moreover,
the time series forecasting techniques used to produce base forecasts have also evolved from
traditional univariate models to global models that are trained across sets of many related
time series [18]. Thus, the concept of sharing cross-series information can be applied to
build competitive global models by clustering all the series in the hierarchy and applying a
global model to each cluster allowing better control of the overall model complexity [3, 10].

In the recent literature, the incorporation of structural information for hierarchical fore-
casting has been explored [24, 21, 8] and has shown that exploiting hierarchical information
in a non-linear manner leads to better accuracy than following a conventional linear recon-
ciliation process. For example, [24] uses XGBoost and random forecast as non-linear models
to non-linearly map the forecasts in the hierarchy to generate better forecasts at the bottom
level of the hierarchy. Whereas [8] uses a regularized loss function to capture the non-linear
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relationships among the time series of the hierarchy, which also maintains the forecast co-
herency of the hierarchy. Also, [21] proposes a framework that simultaneously learns from
all the time series in the hierarchy to produce coherent, probabilistic forecasts, removing
the additional post-processing reconciliation step used in the traditional reconciliation al-
gorithms. However, the use of non-linear model along with a regularized loss function to
minimise the error of the entire hierarchy and a generic hierarchical forecasting framework
that can be used with both traditional univariate models and global models as base models
has not yet been thoroughly studied. To this end, in this paper, we propose NHR-TFNet, a
forecasting framework that attempts to account for the non-linear relationships that exist in
hierarchical time series. The proposed NHR-TFNet framework follows a two-step procedure
to produce coherent forecasts across the structure. Firstly, the base forecasts for each time
series in the hierarchy are generated. NHR-TFNet framework allows both univariate and
global models to be employed as base forecasting models. Secondly, to obtain the weights
of the non-linear mapping between the base forecasts, we train a feed-forward multi-layer
perceptron neural network (MLP) using the transformed fitted values of the base models as
inputs to the network. In order to train the MLP, we introduce a novel loss function that
accounts for the forecast loss and the loss associated with the coherency error, which acts
as a penalty if the fit of the model deviates from the inherent hierarchical structure. As the
base forecast models, we use univariate statistical forecasting techniques such as exponential
smoothing methods (ETS) [14, 13] and autoregressive integrated moving average (ARIMA)
models [6] from the forecast package [13] and a global model DeepAR [22] from the GluonTS
package [1]. The NHR-TFNet framework is evaluated using multiple hierarchically struc-
tured time series databases, which contain various seasonal and trend patterns, exhibiting
different time series characteristics. The source code relevant to NHR-TFNet framework is
available at https://github.com/ManeeshaPerera/hierarchical-reconcilation-ML/

The rest of the paper is organised as follows. In Section 2, we formally define hierar-
chical time series and discuss the state-of-the-art reconciliation methods. Here, we will also
introduce the proposed loss function that is used to train the MLP neural network. Next
in Section 3, we explore the proposed NHR-TFNet framework in detail and highlight the
key model development strategies used in our architecture. In Section 4, we summarise
the benchmark datasets and explain the experimental setup used in this study to evaluate
NHR-TFNet against other hierarchical reconciliation methods. Section 5 summarises the
results obtained by NHR-TFNet on multiple hierarchical time series datasets and analyse
the main observations of this study. Finally, Section 6 concludes the paper.

2. Problem Statement and Related work

This section mathematically defines hierarchical time series and briefly outlines widely
used traditional forecast reconciliation approaches. We then introduce the loss function of
the non-linear forecast reconciliation approach proposed in this paper which is then followed
by a discussion of closely related relevant work in the literature.
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Figure 1: A two-level hierarchical structure.

2.1. Forecasting hierarchical time series

Let bt ∈ Rn be a vector of observations collected from the n series at the most disaggre-
gated level of the structure at time t, yt ∈ Rm be a vector of all observations obtained by
aggregating the series at the most disaggregated level at time t, for t = 1, 2, . . . , T , where T
is the length of the series. These vectors hold the following relationship:

yt = Sbt,

where S is often referred to as the summing matrix of order m×n, which consists of a set of
linear constraints present in the structure. To elaborate on these notations, let’s consider the
structure given in Figure 1. For this structure,m = 8, n = 5, bt = [yAA,t, yAB,t, yAC,t, yBA,t, yBB,t]

⊤,yt =
[yt, yA,t, yB,t, b

⊤
t ]

⊤, and

S =


1 1 1 1 1
1 1 1 0 0
0 0 0 1 1

I5

 ,
where Ik denotes an identity matrix of order k × k. In general, a structure with linear

aggregation constraints can be decomposed as S =

[
C
In

]
, where C ∈ Rm∗×n, and m∗ =

m− n.
The point forecasts produced for all m series in the structure (also known as base fore-

casts) may not satisfy the aggregation constraints present in the data unless extremely
simple forecasting methods are used. We denote ŷT+h|T ∈ Rm as the vector consisting of h-
steps-ahead incoherent base forecasts made using information available up to and including
time T . To ensure that these forecasts satisfy the constraints, the base forecasts need to be
adjusted and we called this process forecast reconciliation. It involves defining a mapping
function ψ such that ỹT+h|T = ψ(ŷT+h|T ), where ỹT+h|T satisfies the constraints and we refer
to these as reconciled forecasts. The mapping function ψ(·) can be assumed to compose of
two mappings ψ(ŷT+h|T ) = s[g(ŷT+h|T )], where g combines the base forecasts to produce a
new set of bottom level forecasts which are then aggregated by s.

When g is assumed to be linear, we can rewrite the mapping function to obtain the
reconciled forecasts as ỹT+h|T = SGŷT+h|T , where G depends on the forecast reconciliation
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approach. Many existing point forecast reconciliation approaches in the literature belong to
this category and they are summarized in Table 1. Among them, the first five choices satisfy
the constraints GS = I which ensures that the reconciled forecasts are unbiased provided
that the base forecasts are unbiased. In addition, the estimation of covariance matrices for
MinT(Sample) and MinT(Shrink) assumes that the in-sample base forecast errors are jointly
covariance stationary.

We could provide an alternative representation for the first five choices of the G matrix
where we could interpret the reconciliation process as an adjustment done to the bottom-
level base forecasts as

GŷT+h|T = b̂T+h|T − JXU⊤ŷT+h|T ,

where X depends on the forecast reconciliation approach and are given in Table 1, b̂T+h|T

is the h-steps ahead base forecasts at the bottom level. and U⊤ =
[
In −C

]
. U⊤ŷT+h|T

quantifies the amount of aggregation inconsistency. For the hierarchy in Figure 1,

U⊤ŷT+h|T =

ŷT+h|T − ŷAA,T+h|T − ŷAB,T+h|T − ŷAC,T+h|T − ŷBA,T+h|T − ŷBB,T+h|T
ŷA,T+h|T − ŷAA,T+h|T − ŷAB,T+h|T − ŷAC,T+h|T

ŷB,T+h|T − ŷBA,T+h|T − ŷBB,T+h|T

 .
In theory, the matrixU is the null space of S⊤ and the above choice is only one possibility.

We have chosen this representation here because U⊤ŷT+h|T is interpretable as the amount
of aggregation inconsistency of the bottom-level forecasts.

Table 1: Traditional choices of the G matrix.

Reconciliation method G X

BU (bottom-up)
[
0n×m∗ In

]
0

OLS (ordinary least squares) [11] (S⊤S)−1S⊤ U (U⊤U)−1

WLS (weighted least squares) [15] (S⊤Λ̂−1
1 S)−1S⊤Λ̂−1

1 Λ̂1U(U⊤Λ̂1U)−1

MinT(Sample) [30] (S⊤Ŵ−1
1,samS)

−1S⊤Ŵ−1
1,sam Ŵ1,samU(U⊤Ŵ1,samU)−1

MinT(Shrink) [30] (S⊤Ŵ−1
1,shrS)

−1S⊤Ŵ−1
1,shr Ŵ1,shrU(U⊤Ŵ1,shrU)−1

EMinT-U [28] B⊤
h Ŷh(Ŷ

⊤
h Ŷh)

−1

Ŵ1,sam and Ŵ1,shr are the sample, and shrinkage covariance matrix, respectively of 1-

step-ahead in-sample base forecast errors. Λ̂1 = diag(Ŵ1,sam), Yh = [yh,yh+1, . . . ,yT ]
⊤ ∈

R(T−h+1)×m,Bh = [bh, bh+1, . . . , bT ]
⊤ ∈ R(T−h+1)×n, Ŷh = [ŷh|0, ŷh+1|1, . . . , ŷT |T−h]

⊤ ∈
R(T−h+1)×m. diag(A) constructs a diagonal matrix using the diagonal elements of the
square matrix A.
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2.2. Proposed loss function

Motivated by this second interpretation of forecast reconciliation, we consider a non-
linear mapping for g and are interested in minimise the following loss function:

min
θ

1

T

[
T∑
t=1

∥∥∥bt − b̃t|t−1

∥∥∥2

2
+ λ

∥∥∥at −Cb̃t|t−1

∥∥∥2

2

]
, (1)

where b̃t|t−1 = b̂t|t−1+g
(
U⊤ŷt|t−1,θ

)
, λ > 0 is the penalty parameter, g (·,θ) = [g1(·,θ1), g2(·,θ2), . . . gn(·,θn)]

⊤,
gj(·,θj) is a non-linear mapping function with parameter vector θj for j = 1, 2, . . . , n,

θ =
[
θ⊤
1 ,θ

⊤
2 , . . . ,θ

⊤
n

]⊤
, yt =

[
a⊤
t , b

⊤
t

]⊤
, and ∥ · ∥2 is the l2-norm. The intuition behind

this objective function is to non-linearly map a given set of base forecasts so that the mean
squared forecast error of the bottom level is minimized while incorporating a penalty for not
being able to minimize the mean squared forecast error of the aggregated series. We could
rearrange the terms of the loss function and rewrite it as

min
θ

1

T

[
T∑
t=1

∥∥∥Λ1/2(yt − Sb̃t|t−1)
∥∥∥2

2

]
, (2)

where Λ =

[
λI 0
0 I

]
and it can be viewed as a nonlinear weighted least squares approach

where the weights are given by Λ. It is interesting to note that MinT(Sample) can be viewed
as a special case of this approach. If restricted to linear mappings with no hidden layers
in the MLP network and include conditions for unbiasedness, then the solution reduces to
MinT(Sample) for any choice of λ.

After estimating the best non-linear mapping by minimizing the in-sample 1-step-ahead
forecast errors as shown in Eq. (1), we obtain the coherent forecasts for the structure as

ỹT+h|T = S
[
b̂T+h|T + g

(
U⊤ŷT+h|T , θ̂

)]
,

where θ̂ is the solution of Eq. (1). For simplicity, we could use the same non-linear mapping
for each forecast horizon. Alternatively, we could modify the proposed objective function
to accommodate h-step-ahead in-sample forecast errors which leads to different non-linear
mappings for each h.

2.3. Related literature

Burba and Chen [7] introduced a non-linear approach based on an encoder-decoder neu-
ral network, where the encoder is a trainable feed-forward neural network that takes base
forecasts as the input and outputs the bottom-level reconciled forecasts, and the decoder is
the summing matrix which obtains forecasts for all the levels using encoded bottom level
forecasts. They have evaluated the performance of this approach using two loss functions:
mean absolute scaled error and mean logarithm of absolute error and showed superior per-
formances over traditional approaches when the hierarchies are complex. Shiratori et al. [23]
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considered a loss function similar to Eq. (1) but it was used to estimate a prediction model
for the bottom-level series while incorporating upper-level forecasts through the penalty
function. They have used a different penalty parameter for each level in the hierarchy which
can be computationally costly for large structures. Using 2-level hierarchies constructed
from synthetic and real data, they have demonstrated that their method yields comparable
performances to BU and MinT(Shrink). Spiliotis et al. [24] proposed a non-linear reconcilia-
tion approach based on decision tree-based machine learning models: XGBoost and random
forest. Their approach models each of the bottom-level series separately on 1-step ahead
base forecasts obtained for each series in the structure for a holdout set. The loss function
used in this study is interested in minimizing the mean squared combination forecast error
for each bottom-level series and has not taken reconciliation error into account.

3. NHR-TFNet Framework

In this section, we describe the main components of the NHR-TFNet framework. NHR-
TFNet is composed of three components, namely: 1) the base-forecasting layer, 2) the
MLP training layer, and 3) the post-processing layer. In the following, we first discuss the
base-forecasting layer that generates base forecasts for each time series in the hierarchy and
provide fitted values of the base models. Next, we explain the MLP training layer, which
is the main learning component of NHR-TFNet. Then, we discuss the post-processing layer
of NHR-TFNet and describe the hyper-parameter selection method used in NHR-TFNet.
Finally, we demonstrate the forecast reconciliation stage of this trained network.

3.1. Base-forecasting layer

The base-forecasting layer produces base forecasts and model fits for each time series in
the hierarchy. In our experiments, we use both univariate and global models to generate base
forecasts. As the univariate models, we apply ETS and ARIMA implementations from the
forecast package [13], whereas for the global model, we use DeepAR [22] implementation
from the GluonTS package [1]. As global models are trained across a set of many time series,
prior to applying the DeepAR model, we first perform k-means clustering on the set of time
series features extracted from all the time series in the hierarchy. We use the tsfeatures

package developed by Hyndman et al. [16] to extract features from each time series. Based
on the time series features, we next perform the k-means clustering with a cluster size of
20 (i.e., the number of clusters). Although we have fixed the number of clusters here to
reduce the complexity of finding the optimal number of clusters and having a large number
of possible clusters, we can apply techniques such as the Elbow method to determine the
optimal number of clusters.

3.2. MLP training layer

For adjusting the base forecasts according to the aggregation constraints in the hierarchy,
we use an MLP based model. Neural Network based models have the support for producing
multiple outputs as a function of the same set of inputs. At time step t, the inputs x̄t|t−1

to our network are the transformed fitted values from the base forecasting method. Given
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a simple hierarchical structure with two levels as shown in Figure 1, the transformation
of the fitted values can be done as per Eq. (3). In Eq. (3), ȳt|t−1, ȳA,t|t−1 and ȳB,t|t−1 for
t = 1, 2, . . . , T refer to the transformed fitted values. If the residuals of the base forecasting
method are jointly covariance stationary, considering the transformed fitted values in this
way allows us to feed reasonably stationary data as inputs to the MLP model. The corre-
sponding outputs of the network b̃t|t−1 are the adjusted fitted values at the bottom-level as
shown in Eq. (4).

ȳt|t−1 = ŷt|t−1 −
[
ŷAA,t|t−1 + ŷAB,t|t−1 + ŷAC,t|t−1 + ŷBA,t|t−1 + ŷBB,t|t−1

]
ȳA,t|t−1 = ŷA,t|t−1 −

[
ŷAA,t|t−1 + ŷAB,t|t−1 + ŷAC,t|t−1

]
ȳB,t|t−1 = ŷB,t|t−1 −

[
ŷBA,t|t−1 + ŷBB,t|t−1

]
x̄t|t−1 =

[
ȳt|t−1, ȳA,t|t−1, ȳB,t|t−1, ŷAA,t|t−1, ŷAB,t|t−1, ŷAC,t|t−1, ŷBA,t|t−1, ŷBB,t|t−1

]⊤
(3)

b̃t|t−1 =
[
ỹAA,t|t−1, ỹAB,t|t−1, ỹAC,t|t−1, ỹBA,t|t−1, ỹBB,t|t−1

]⊤
(4)

Figure 2 shows the overall architecture of the MLP model used for the reconciliation in
this work. The model contains a number of stacks each of which consists of a dense layer,
a batch normalisation layer, rectified linear unit (ReLU) activation followed by a dropout
layer. The batch normalisation step helps to speed up the neural network model training by
standardizing the inputs to layers of the network while also handling internal covariate shift,
which is the change of data distribution from one layer of the network to the next [17]. Also,
both batch normalisation and the dropout layer help to reduce overfitting in the network.
The dropout layer randomly drops nodes from the dense layers during the model training to
ensure model generalisation and to reduce node inter-dependence [25]. A final dense layer,
placed after the final stack of the network, having the same size as the number of time series
in the bottom-most level of the hierarchy, reshapes the model outputs to the required final
output shape.

The MLP model also uses a skip connection to the outputs which directly adds up the
original fitted values of the bottom-level series to the outputs of the MLP model. Hence, the
skip connection helps the model to learn only the adjustment that needs to be performed on
top of the fitted values of the bottom-level series provided by the base forecasting method.
Theoretically, this makes the learning process of the MLP model easier [9]. On top of
the aforementioned input transformation, inputs are further transformed using min-max
normalisation as well.

3.3. Post-processing layer

The outputs of the model, which are the adjusted fitted values of the bottom-most
level in the hierarchy, are in the original scale. Once these values are retrieved, they are
hierarchically aggregated in a bottom-up fashion to construct the values for all the levels of
aggregation.
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Figure 2: An overview of the proposed architecture for the NHR-TFNet framework, which consists of a
base-forecasting layer, MLP training layer, and a post-processing layer.

Table 2: Minimum and maximum values for each hyper-parameter.

Hyper-parameter Minimum Maximum

Number of layers 1 5
Number of epochs 10 200

Dropout rate 0 0.5
Max normalization constraint 0 10

Learning rate 0.0001 0.1
Batch size 1 size of input data

λ (proposed loss function) 0.01 5

3.4. Hyper-parameter automation and optimisation

Several hyper-parameters need to be tuned for the MLP model. Table 2 shows the
hyper-parameters, minimum and maximum values we use for each parameter. To find the
best values for the hyper-parameters we use the Bayesian optimization algorithm [5] from
hyperopt Python package. Once the optimal parameter values are found, we train the
MLP using the optimal parameters five times with different seeds to account for the random
weight initialization of the network. The average across the adjusted bottom-level fitted
values from the five iterations is taken as the final adjusted bottom-level fitted values.

3.5. Forecast reconciliation stage

Once the network is trained, the base forecasts and transformed base forecasts (by fol-
lowing similar equations as transformed fitted values) are fed into the network to compute
the reconciled forecasts at the bottom level. These forecasts are then summed appropriately
to obtain the forecasts for other series in the structure.
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Table 3: Description of the datasets.

Total number of

Dataset Frequency Levels Series Bottom-level series Non-bottom level series

Prison 4 (quarterly) 5 121 64 57
Labour 4 (quarterly) 4 57 32 25
Tourism 12 (monthly) 3 85 77 8
Wikipedia 7 (weekly) 6 1095 913 182

4. Experiments

4.1. Datasets

We use four state-of-the-art hierarchical time series datasets for evaluation. We first pre-
process the datasets using the tsclean function from the forecast package [13] to remove
any outliers that maybe present in the data. Figure 3 shows the time series datasets after
pre-processing. Table 3 shows the frequency of the time series, the number of levels, the
total number of time series in the hierarchy, bottom-level and non-bottom level for the four
datasets. We can observe that these datasets show varying levels of non-linear trends and
seasonality. For the Wikipedia dataset, we can observe that some series at the bottom level
are intermittent.

Prison Quarterly prison population in Australia from Q1 2005 to Q4 2016 [12]. The levels
of the hierarchy are Australia (total), state, gender, legal status and indigenous status.

Labour Quarterly employed individuals in Australia from Q1 1987 to Q4 2018 [2]. The
levels of the hierarchy are Australia (total), occupation category, employment status
and gender.

Tourism Monthly domestic visitor nights in Australia from January 1998 to December
2019 [29]. The levels of the hierarchy are Australia (total), state and region.

Wikipedia Daily pageviews for the most popular social network articles on Wikipedia from
01-01-2016 to 29-06-2017 [19]. The levels of the hierarchy are access, agent, language,
purpose and article.

4.2. Evaluation

4.2.1. Benchmark Methods

We evaluate the proposed NHR-TFNet with six state-of-the-art hierarchical forecasting
benchmarks: BU, OLS, WLS, MinT(Sample), MinT(Shrink) and EMinT-U. For the prison
and Wikipedia datasets, MinT(Sample) cannot be calculated as the number of time series
in the hierarchy is greater than the number of observations. Therefore the comparisons for
these two datasets are done using the other five benchmarks.
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Figure 3: A few selected series at the top and bottom level of the hierarchy for each dataset used in this
study.

4.2.2. Rolling Origin Evaluation

In this work to evaluate the forecasting performance, we conduct a rolling origin evalu-
ation where the forecasting origin is updated at each rolling window and the forecasts are
produced from each origin. An example of this evaluation is illustrated in Figure 4. To
start the rolling origin evaluation, for each dataset we pick a reasonable training window
size considering the trade-off between the number of rolling windows and the number of
observations available to train the base forecasting methods and derive the fitted values
to train the proposed MLP model. Table 4 shows the number of rolling windows and the
number of observations available for the first rolling window (i.e., training window size of
the first rolling window).

For each rolling window, we fit the base forecasting methods (ARIMA, ETS, or DeepAR)
and compute the fitted values and 1-step-ahead forecasts. We next apply the hierarchical
forecasting benchmarks and the proposed MLP using the fitted values and forecasts for a
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Figure 4: An illustration of the rolling origin evaluation.

Table 4: Number of rolling windows for each dataset and observations present for training in the first rolling
window.

Dataset Number of rolling windows Min. window size

Prison 24 24
Labour 60 68
Tourism 120 144
Wikipedia 70 324

given rolling window. The same steps are conducted for all rolling windows of a dataset.
For each rolling window, the mean squared error (MSE) is calculated and the average across
series in different levels and average across all the series in the structure for a given dataset
is obtained. Finally, the percentage relative improvement in average loss (PRIAL) is calcu-
lated as shown in Eq. (5) for each level in the structure and for the entire hierarchy (i.e.,
overall) using the average MSEs of the forecasts from the base forecasting methods (i.e., base
forecasts) and the average MSEs after applying the reconciliation methods (i.e., reconciled
forecasts). A positive value of PRIAL indicates the accuracy of the reconciled forecasts has
increased while a negative value indicates the accuracy has decreased.

PRIAL =
MSE(base forecasts)−MSE(reconciled forecasts)

MSE(base forecasts)
× 100%. (5)

5. Discussion

Table 5 reports the forecasting performance of the various reconciliation methods for the
four datasets. The row labeled Base MSE reports the MSEs of the base forecasting methods
and Rank reports the ranking of the reconciliation methods where rank one is given to the
best-performing method whereas rank 6 or 7 is given to the least performing method. For
the Prison, Labour and Tourism datasets, we set the λ value to take [0.1, 0.9] whereas
for the Wikipedia dataset, we set a slightly higher range i.e., [0.01, 5] because some series
at the bottom-level are intermittent so it may be better to give a high importance to the
non-bottom level series.

According to Table 5, we observe that the proposed NHR-TFNet framework obtains the
best PRIAL rank on the Prison, Labour, and Tourism datasets when DeepAR, ETS, and
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Table 5: Average MSE of the base forecasts and PRIAL from reconciliation methods for the four datasets.

Prison BU OLS WLS MinT(Sample) MinT(Shrink) EMinT-U NHR-TFNet

ARIMA

Base MSE (×103) 2.8
PRIAL −48.5 7.5 −2.3 −0.2 −83.5 −3.1

Rank 5 1 3 2 6 4

ETS

Base MSE (×103) 3.0

PRIAL −46.6 6.8 3.8 10.3 −139.2 −45.5
Rank 5 2 3 1 6 4

DeepAR

Base MSE (×103) 4.3

PRIAL 23.6 4.7 21.9 23.0 −32.4 24.1
Rank 2 5 4 3 6 1

Labour BU OLS WLS MinT(Sample) MinT(Shrink) EMinT-U NHR-TFNet

ARIMA

Base MSE (×102) 3.9

PRIAL −6.8 3.8 2.2 −33.1 5.8 −141.6 −2.7
Rank 5 2 3 6 1 7 4

ETS

Base MSE (×102) 3.8

PRIAL −2.8 2.2 2.0 −30.3 3.2 −198.1 3.5

Rank 5 3 4 6 2 7 1

DeepAR

Base MSE (×102) 5.3

PRIAL 15.0 5.0 12.4 −1.3 17.0 −116.9 13.4

Rank 2 5 4 6 1 7 3

Tourism BU OLS WLS MinT(Sample) MinT(Shrink) EMinT-U NHR-TFNet

ARIMA

Base MSE (×104) 5.6

PRIAL −71.7 2.5 −27.7 0.3 −11.9 −35.9 −3.1

Rank 7 1 5 2 4 6 3

ETS

Base MSE (×104) 5.3

PRIAL −38.7 0.8 −17.7 2.1 −13.1 −116.8 1.0

Rank 6 3 5 1 4 7 2

DeepAR

Base MSE (×104) 11.8
PRIAL −23.2 1.8 −9.8 16.1 12.6 −6.5 23.0

Rank 7 4 6 2 3 5 1

Wikipedia BU OLS WLS MinT(Sample) MinT(Shrink) EMinT-U NHR-TFNet

ARIMA

Base MSE (×105) 1.6

PRIAL 4.4 2.1 8.8 13.4 −294.3 6.5
Rank 4 5 2 1 6 3

ETS

Base MSE (×105) 1.2
PRIAL 1.6 0.6 2.4 2.7 −604.4 −5.2
Rank 3 4 2 1 6 5

DeepAR

Base MSE (×105) 5.0

PRIAL 19.9 3.3 19.9 47.4 −49.0 15.5
Rank 3 5 2 1 6 4
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DeepAR models are used as the respective base forecasting models. For the Prison, Labour
and Wikipedia datasets, in general, the best-performing methods use a linear mapping
function such as MinT(Shrink). Notably, the proposed NHR-TFNet framework performs
among the top four reconciliation methods. This observation can be attributed to these
three datasets having a limited number of observations in comparison to the number of
bottom-level and non-bottom level series so learning a less complex linear mapping function
is beneficial. For the Tourism dataset, MinT(Sample) and NHR-TFNet show competitive
performances as this dataset has a reasonable number of observations in comparison to
the number of bottom-level and non-bottom level series. For all the datasets, the worst-
performing method is EMinT-U. This result is expected as this method works well when the
series are jointly covariance stationary which is not valid for these datasets. With respect to
base forecast models, we see that MSE is highest in DeepAR. This result is not surprising
given that all the datasets have a limited number of time series, thus learning a global model
such as DeepAR can be challenging in practice as they require a sufficient amount of time
series to estimate their numerous model parameters.

Table 6 summarizes the performance across various levels in the hierarchy for the Prison
dataset. The bold entries highlight the best-performing method and the underline numbers
highlight the second-best method. On average, for ARIMA base forecasts, OLS performs
the best, and MinT(Shrink) is the second best in most of the levels. For ETS and DeepAR
base forecasts, MinT(Shrink) is the best in most of the levels except the top-level. This
observed pattern is aligned with the rankings noted in Table 5. To save space we report
PRIAL for each level in Appendix A for the remaining datasets.

6. Conclusions and Future Work

Widely used traditional methods for forecast reconciliation use a linear function to map
all the base forecasts into the bottom-level series which are then added up by a summing
matrix to produce coherent forecasts for the whole hierarchy. In this paper, we explored the
forecasting performance when a non-linear mapping function is used instead. We trained a
feed-forward neural network with a skip connection where an adjustment estimated using
transformed fitted values is added to the original base forecasts at the bottom-level series
which are then summed to produce forecasts for the upper-level series. We evaluated the pro-
posed methodology using four benchmark datasets. The results indicated that NHR-TFNet
showed competitive results for the datasets having a reasonable number of observations
compared to the number of bottom-level and non-bottom level series.

An important perspective of this study is to explore a slightly modified version of the
proposed loss function. It attempts to find a non-linear mapping by minimizing the in-sample
1-step-ahead mean squared error of the whole structure while penalizing for incoherence in
the forecasts. However, this approach will produce near coherent forecasts, and the deviation
from coherence depends on the tuning parameter.
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Table 6: Average MSEs of base forecasts and PRIAL from reconciliation methods for the Prison dataset.

Method Australia State Gender Legal Indigenous

ARIMA

BU −125.3 −46.6 −37.4 −4.4 0.0

OLS 5.75.75.7 3.33.33.3 4.04.04.0 13.213.213.2 11.2
WLS −26.0 −3.5 2.8 11.0 13.3

MinT(Shrink) −19.7 −2.6 2.3 12.1 14.514.514.5

EMinT-U −101.4 −79.1 −79.4 −66.8 −85.9
NHR-TFNet −9.1 −9.3 −4.5 3.9 5.4

Base MSE (×103) 88.1 7.9 3.5 2.3 0.9

ETS

BU −105.8 −40.6 −30.4 −6.4 0.0
OLS 4.7 4.5 8.1 9.0 9.8

WLS −4.7 3.0 9.3 9.3 9.6

MinT(Shrink) 6.56.56.5 8.28.28.2 13.313.313.3 13.413.413.4 13.713.713.7
EMinT-U −154.6 −122.4 −133.1 −140.2 −133.5

NHR-TFNet −83.5 −43.0 −30.8 −25.1 −11.6

Base MSE (×103) 113.7 8.6 3.8 2.2 0.8

DeepAR

BU 43.1 12.5 9.0 0.9 0.0

OLS 11.4 −1.3 0.6 −2.4 −2.2

WLS 39.1 11.6 9.4 2.2 1.1
MinT(Shrink) 39.1 11.811.811.8 9.89.89.8 6.46.46.4 5.95.95.9

EMinT-U −9.4 −34.8 −45.2 −63.9 −77.9

NHR-TFNet 46.946.946.9 8.7 5.7 0.0 −0.4
Base MSE (×103) 241.9 10.7 4.4 2.1 0.8
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Appendix A. Level-wise forecasting performances of the datasets

Table A.1: Average MSEs of the base forecasts and PRIAL from reconciliation methods for the Labour
dataset.

Method Total Employment Occupation Employment Status Gender

ARIMA

BU −36.1 −3.3 0.7 0.0

OLS 3.5 4.6 4.6 2.3
WLS −7.0 3.6 5.3 2.9

MinT(Sample) −46.8 −30.7 −28.7 −32.1

MinT(Shrink) 4.64.64.6 5.35.35.3 7.87.87.8 4.74.74.7
EMinT-U −145.4 −143.2 −140.4 −138.7

NHR-TFNet −18.3 −2.3 2.5 1.2

Base MSE (×102) 37.6 7.8 4.2 1.8

ETS

BU −14.5 −3.5 2.5 0.0

OLS 3.9 1.61.61.6 3.2 0.4

WLS 3.1 1.0 3.7 0.1
MinT(Sample) −11.3 −39.4 −28.7 −35.1

MinT(Shrink) 7.7 1.0 4.64.64.6 0.9

EMinT-U −194.0 −201.2 −198.6 −196.7
NHR-TFNet 12.112.112.1 −0.8 4.5 1.31.31.3

Base MSE (×102) 37.6 7.6 4.0 1.7

DeepAR

BU 27.927.927.9 21.5 2.8 0.0
OLS 7.4 14.0 −2.4 −3.1

WLS 20.9 20.5 1.8 −0.4

MinT(Sample) 9.7 7.2 −12.4 −17.5
MinT(Shrink) 26.0 24.424.424.4 7.17.17.1 4.14.14.1

EMinT-U −144.2 −87.4 −117.7 −118.3

NHR-TFNet 14.9 23.8 7.17.17.1 3.1
Base MSE (×102) 88.6 10.8 4.3 1.8
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Table A.2: Average MSEs of the base forecasts and PRIAL from reconciliation methods for the Tourism
dataset.

Method Australia States Regions

ARIMA

BU −122.2 −31.0 0.0

OLS −2.5−2.5−2.5 9.1 5.1

WLS −54.8 −3.1 6.4
MinT(Sample) −9.5 11.811.811.8 8.18.18.1

MinT(Shrink) −29.7 5.7 8.18.18.1

EMinT-U −44.4 −24.5 −31.4
NHR-TFNet −12.6 7.6 5.1

Base MSE (×104) 242.2 21.2 1.1

ETS

BU −59.2 −20.4 0.0
OLS −1.2 3.43.43.4 3.3

WLS −29.4 −6.5 3.4
MinT(Sample) 2.02.02.0 2.2 2.4
MinT(Shrink) −22.6 −3.8 3.83.83.8

EMinT-U −127.7 −103.5 −102.4

NHR-TFNet 0.3 1.3 2.9
Base MSE (×104) 249.4 18.1 0.9

DeepAR

BU −36.6 0.3 0.0

OLS 1.0 3.7 1.2

WLS −19.0 7.6 2.5
MinT(Sample) 13.2 25.8 9.1

MinT(Shrink) 8.6 22.9 10.210.210.2
EMinT-U −4.4 −2.5 −30.6

NHR-TFNet 22.522.522.5 30.530.530.5 6.2
Base MSE (×104) 635.7 37.7 1.3
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Table A.3: Average MSEs of the base forecasts and PRIAL from reconciliation methods for the Wikipedia
dataset.

Method Total Access Agent Language Purpose Article

ARIMA

BU 7.6 8.6 −2.7 3.9 6.3 0.0

OLS 4.4 6.3 −2.5 1.6 0.1 0.0

WLS 11.9 14.2 3.7 8.9 7.1 1.5
MinT(Shrink) 15.215.215.2 19.219.219.2 9.29.29.2 14.814.814.8 11.211.211.2 4.74.74.7

EMinT-U −316.0 −258.0 −285.0 −293.5 −313.0 −323.0

NHR-TFNet 13.0 10.9 −1.0 6.7 3.5 0.0
Base MSE (×104) 3811.9 1239.1 670.2 137.1 14.1 1.7

ETS

BU −0.4 4.9 4.6 0.8 −3.3 0.0

OLS −1.9 2.8 2.3 −0.2 −1.1−1.1−1.1 0.5
WLS 0.4 5.2 5.5 1.5 −2.0 1.3

MinT(Shrink) 0.80.80.8 5.55.55.5 5.85.85.8 1.91.91.9 −1.7 1.71.71.7

EMinT-U −694.0 −576.5 −558.6 −621.1 −631.7 −512.0
NHR-TFNet −8.1 −4.4 −4.0 −4.6 −8.7 −0.2

Base MSE (×104) 2799.7 897.6 552.0 100.8 10.6 1.5

DeepAR

BU 33.6 15.8 18.2 21.0 8.6 0.0

OLS 17.4 −2.0 0.5 1.5 −2.2 −2.2
WLS 40.0 14.9 16.8 17.9 6.1 −3.0

MinT(Shrink) 62.362.362.3 46.346.346.3 47.947.947.9 45.345.345.3 30.830.830.8 8.18.18.1
EMinT-U −52.9 −30.3 −27.0 −48.6 −107.9 −183.3

NHR-TFNet −8.2 22.4 25.7 25.0 13.3 1.3
Base MSE (×104) 11921.9 4766.0 2841.5 404.1 30.9 2.1
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