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Abstract

In this paper, we investigate predictability of predictability. Our emphasis is on

how the distinct components of predictability, namely momentum and reversals,

arise and on their variation over time and across assets. We find that, during

recessions, it is profitable to initiate long-run reversal strategies on the S&P and

short-run momentum strategies on gold. This is consistent with asset pricing

models with slow moving capital since, during recessions (expansions), risk capital

flows out of risky assets (safe heavens) and into safe havens (risky assets), thus

allowing (forcing) the former to deviate from (converge to) its efficient price.
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1. Introduction

Recent literature, including Adrian et al. (2010), Duffie and Strulovici (2012),

Mitchell and Pulvino (2012), Poti and Siddique (2013), Haddad (2014), Kondor

and Vayanos (2014), has highlighted the asset pricing implications of time-varying

capital availability and sluggish capital mobility. On a related note, Asness et al.

(2013) find that (“cross-sectional”) momentum and reversal are positively and

negatively, respectively, related to liquidity risk, pointing to a possible link to

availability of risk capital.

In this paper, we explore the relations between risk capital and predictability

and, more generally, what drives variation of predictability over time and across

asset classes, extending the work of Poti and Siddique (2013) on the role of risk

capital as a key driver of variation of predictability. We place special emphasis

on the possible interaction of risk capital availability with features of the market

micro-structure, most prominently capital constraints and limited capital mobil-

ity, as key determinants of the magnitude and time variation of predictability,

ultimately attempting to model ‘predictability of predictability’. To this end,

drawing on Vayanos and Woolley (2013), we extend the model proposed by Poti

and Siddique (2013) so as to be able to explain the distinct components of pre-

dictability, namely momentum and reversals, and their variation over time and

across assets. Our model predicts that short term momentum (reversal) strategies

should be profitable during recessions (expansions) in the case of risky assets, when

there is abundance (scarcity) of risk capital, and therefore scarcity (abundance) of

mispricing, whereas the opposite pattern should hold in the case of ‘safe heavens’,

nancial assistance and precious intellectual stimulus to carry out this research. Support from

FMC2 at University College Dublin, in the form of access to hedge fund data, is also gratefully

acknowledged.
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because capital moves from the former to the latter over the business cycle.1

Using data on the S&P500 and gold, taken to represent the universe of risky

assets and safe heavens, respectively, we find evidence in support of our model.

In particular, we find that, during recessions, it is profitable to initiate long-run

reversal strategies on the S&P and short-run momentum strategies on gold. Ac-

cording to our model, this is because, during recessions (expansions), risk capital

flows out of risky assets (safe heavens) and into safe havens (risky assets), thus

allowing the former to deviate from its efficient price while forcing the latter to

converge to its efficient price. We obtain similar results when we test the model

using a wider set of risky assets (i.e., a set of International equity market indices,

the Fama and French risk-factor mimicking portfolios, high interest rate curren-

cies) and ‘safe heavens’ (including other precious metals and commodities as well

as gold, low interest rate currencies). We do not report these additional results to

save space but they are available upon request.

The recurring pattern is that short term momentum (reversal) strategies are

profitable if started during recessions (expansions) in the case of risky assets, when

there is scarcity of risk capital and therefore abundance of mispricing, whereas they

are profitable if started during expansions (recessions) for safe havens, when risk

capital has left the gold market to flow into equities.

1Recent and still relatively embryonic literature, including Lucey et al. (2006); Baur and Lucey

(2010); Baur and McDermott (2010); Ranaldo and Soderlind (2010); Beckmann and Czudaj

(2013); Bredin et al. (2015) examined asset classes such as precious metals, certain currencies,

bonds issued by Sovereign entities considered especially stable and trustworthy, inquiring whether

they exhibit features that qualify them as ‘safe havens’. In spite of the lack of conclusive evidence

on whether such assets do provide a safe haven in times of financial turmoil, including evidence

that safe haven status might be time varying (e.g., Baur and Glover (2012)), it is clear that

capital does flow out of risky assets and into perceived safe havens during times of financial or

economic crisis, moving in the other direction during good times.
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2. Predictability-based strategies

We represent the data-generating process (DGP) of the one-period excess-

returns on the n assets in the economy as follows:

rt+h = µt+h (It) + ut+h (1)

µt+h ≡ E (rt+h|It) ≡ µt+h (It) (2)

Here, It is the information set at time t and ut,t+h is a zero-mean innovation,

which is unpredictable with respect to the information set It. The information

set includes not only the sigma-field generated by the past of ut,t+h but also all

other available public and private information. Under rational valuation, the ex-

pected excess-return µt+h equals the time t discount rate kt+h(It) at which the

marginal investor, assumed endowed with Rational Expectations (RE), values the

excess return rt+h. We define RE as the ability to formulate ex-ante forecasts

that do not systematically diverge from ex-post Maximum Likelihood (ML) esti-

mates of the DGP. This definition is consistent with Muth (1961) seminal article

and the subsequent generalizations, including Sargent (1996). One well-known

implication of this definition is that RE forecasts are such that abnormal returns,

et+h ≡ rt+h − kt+h (It), are unforecastable given the available information set It

and, therefore, that abnormal expected returns, εt+h ≡ µt+h (It) − kt+h (It), have

unconditionally zero mean, or α ≡ Et (εt+1−→t+h) = 0, at all horizons h ∈ {1, 2, },

where εt+1−→t+h ≡
∏h

s=1(1 + εt+s).

We focus on ‘predictability-based’ strategies that allow an investor endowed

with RE to take advantage of discrepancies between the (rational) expected rate

of return and the discount rate by exploiting the resulting predictability. We de-

note the excess-return on a generic member of this class of strategies as r∗t,t+h.

Momentum and reversal strategies are two members of such class of strategies.
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They exploit different components of predictability at different horizons. Momen-

tum exploits short run positive autocorrelation of asset abnormal returns whereas

reversal strategies exploit their negative autocorrelation at longer horizons.

We now derive the implications of RE for the entire class under a model in

which assets are traded both in a wider capital market, where assets are held

at the margin by a diversified investor, and in segmented markets where, due to

exogenous variation in information gathering and processing costs, the assets are

held at the margin by specialized and undiversified traders. In both situations,

we assume that investors are greedy, risk-averse individuals bent on maximizing

expected utility of lifetime wealth and endowed with RE. Also, investors are as-

sumed to be capital-constrained, in the sense that the risk capital supply curve

they face is upward-sloping. Here, risk capital is defined, as in Adrian and Shin

(2010), as “balance sheet size”. Finally, and importantly, we assume there are

two types of information sets (public and private) required to formulate rational

forecasts. One type (type A), denoted by IA,t, is freely accessible by investors at

no cost.2 The other type (type B), denoted by IB,t, can only be gathered and

processed by incurring fixed transaction costs. Together, the two information sets

add up to the entire information set available at time t. That is, It = IA,t ∪ IB,t,

where IA,t ∩ IB,t = ∅. We also assume that fixed transaction costs are large

enough and capital constraints are binding enough that, due to the need to ex-

ploit economies of scale while coping with capital-constraints, the incumbent will

prefer to specialize in gathering a subset of IB,t, IB,i,t ⊆ IB,t, and not to form

diversified portfolios. The incumbent overall information set will therefore be

Ii,t ≡ IA ∪ IB,i,t. Here, for simplicity and without loss of generality, we may

assume such that ∪i∈[1,...,n](IB,i,t) = IB,t and IB,i,t ∩ IB,j,t = ∅.

2Or, equivalently, at a cost proportional to the size of trading strategies required to exploit

it.
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Under this set of assumptions, asset payoffs will be traded in two parallel capital

markets, namely a wider capital market, where assets are held at the margin by a

diversified representative investor, and segmented markets populated by specialized

traders who hold undiversified portfolios so as to maximally exploit economies of

scale in the gathering and processing of type B information. In what follows, we

shall refer to the marginal trader in the wider capital market as the diversified

marginal trader (DMT) and to a marginal trader specialized in trading strategies

in a segmented market as an undiversified marginal trader (UMT). Assets are

held and priced in the wider capital markets as part of a static market portfolio

whereas, in segmented markets, they are held and priced as part of dynamic and

highly specialized (hence, undiversified) portfolios prescribed by trading strategies

designed to exploit type B information.

Notably, when assets are priced under the coarse information set that only

includes type A information, their returns exhibit predictability under the wider

information set that includes type B information. In other words, excess-returns rt

priced under type A information exhibit excess-predictability (on a risk adjusted

basis) that can be exploited and, hence, eliminated by strategies that use both

type A and type B information. We denote by r∗i,t,t+h ≡ r∗t,t+h (ri,t) , i = 1, 2, ..., n,

the excess-returns on the strategies with holding period h needed to exploit the

predictability of the (one-period) excess-returns on the i -th asset under the infor-

mation set Ii,t and, therefore, type B information relevant to identify such pre-

dictability.

The economy is frictionless up to the different cost of acquisition of type A and

B information. Therefore, investors will trade away all arbitrage opportunities un-

der the relevant information set. That is, for every holding period h and denoting

by of ri,t,t+h the i -th asset excess-return over holding-periods of length h, there

exists analogously denoted positive holding period kernels mt,t+h and mi,t,t+h such
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that

E (ri,t,t+hmt,t+h|IA,t) = 0 (3)

and

E
(
r∗i,t,t+hmi,t,t+h|Ii,t

)
= 0 (4)

hold for all traded assets and their predictability-based strategies, respectively

(and, therefore for all i = 1, 2, , n). Notably, (4) also holds with respect to the

coarser information set IA,t for all time horizons that end before the time t+τ when

the mispricing starts to correct. That is, even if IA,t 6= Ii,t, E
(
r∗i,t,t+hmi,t,t+h|Ii,t

)
=

0, as long as h < τ . If IA,t 6= Ii,t, however, E
(
r∗i,t,t+hmi,t,t+h|Ii,t

)
6= 0 ∀h ≥ τ .

Under RE, these restrictions must also hold unconditionally. That is, ∀i ∈

[1, 2, ..., n] and ∀h ≥ 1,

E (ri,t,t+hmt,t+h) = E [E (ri,t,t+hmt,t+h|IA,t)] = 0 (5)

E
(
r∗i,t,t+hmi,t,t+h

)
= E

[
E
(
r∗i,t,t+hmi,t,t+h|Ii,t

)]
= 0 (6)

We thus have3

E (ri,t1) = −Cov (ri,t,t+h,mt,t+h)

E (mt,t+h)
∼= − Cov (ri,t,t+h,mt,t+h) (7)

E
(
r∗i,t,t+h

)
= −

Cov
(
r∗i,t,t+h,mi,t,t+h

)
E (mi,t,t+h)

∼= − Cov
(
r∗i,t,t+h,mi,t,t+h

)
(8)

The restrictions (5) and (6) and the corresponding ones in (7) and (8), respec-

tively, must hold for any admissible kernel, including the kernel with minimum

variance, for the given set of priced assets.

The minimum-variance kernel that satisfies (5) and (6) for all assets and static

combinations thereof traded in the wider capital market is the Inter-temporal

3When pricing excess-returns, and for realistically low levels of the risk free rate, the mean

of the kernel is essentially not identified and thus it can be well approximated by setting it to

unity.
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marginal Rate of Substitution (IMRS), φt,t+h, of the marginal investor in such

market. We model this IRMS as a linear function4 of a set of factors ft,t+h and

setting its mean equal to one (again, this is legitimate because we are working

with excess-returns):

ϕt,t+h = a+ b′ft,t+h = 1 + b′ft,t+h (9)

Then, from 7 and (9), we have

E(r∗i,t,t+h)
∼= −Cov(r∗i,t,t+h, ϕt,t+h(ft,t+h)) = −b′Cov(r∗i,t,t+h, ft,t+h) = β(r∗i,t,t+h)

′λi,t

(10)

Here, the elements of the vector β(r∗i,t,t+h) are the coefficients of the regres-

sion of r∗i,t,t+h on the factors and λi,t ∼= −b′V ar(ft,t+h)−1Cov(r∗i,t,t+h, ft,t+h) is a

conformable vector of risk-premia.

The minimum-variance kernel that satisfies (6) and (8) for the predictability-

based strategies on asset i is the IMRS of the investor who, at the margin, trades

r∗i,t,t+h. The fixed transaction costs entailed by trading this payoff impact the in-

vestors’ problem in the direction of increasing the optimal scale of trading, thus

creating an entry barrier. The marginal trader is the incumbent in the segmented

market for the trading strategy payoff. For ease of argument but without loss of

generality, we assume that average unit fixed transaction costs are, at the incum-

bent’s optimal scale, negligible. Thus, at such scale, the incumbent can invest

at the margin in the strategy even though she cannot optimally hold a diversified

portfolio. Hence, from (8), we have that maximization of the incumbent’s expected

4The representative investor’s IMRS will be a function of the payoff on a portfolio of risky

assets that represents the efficient allocation for all investors. Such a function will be uncondi-

tionally linear (static CAPM) or non linear (e.g., higher-moment versions of the static CAPM,

conditional CAPM) depending, in general, on the functional specification of the investors’ utility

functions and their wealth allocations.
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utility implies the following restriction on the strategy expected excess-returns:

E
(
r∗i,t,t+h

)
= −Cov

(
r∗i,t,t+h, ϕi,t,t+h

)
= σ

(
r∗i,t,t+h

)
σ
(
ϕi,t,t+h

)
(11)

Here, ϕi,t,t+h denotes the incumbent’s IMRS. The right-most equality follows

from the fact that, since the market for the strategy is segmented from the rest

of the capital market due to the entry barrier and the incumbent is undiversified,

ϕi,t,t+h is perfectly negatively correlated to the strategy since the latter makes up

her entire portfolio.

It remains to establish the relation between ϕi,t,t+h and ϕt,t+h at the equilibrium

allocation. Investors with access to Type B information have also access to Type

A information. Hence, if capital is perfectly mobile, investors with access to Type

B information can also trade the assets traded by investors with access to Type A

only. Therefore, ∀ i ∈ [1, 2, n], it must be that

E
(
xi,t+hϕi,t,t+h|Ii,t

)
= 0 (12)

Here, xi,t,t+h = [rt,t+h r
∗
i,t,t+h]

′. This means that ϕi,t,t+h prices both rt,t+h and

r∗i,t,t+h and, therefore, it must be at least as volatile as ϕt,t+h, which prices only

rt,t+h. That is, it must be

σ2
(
ϕi,t,t+h

)
≥ σ2

(
ϕt,t+h

)
(13)

Moreover, the investor that holds at the margin the portfolio of risky assets

traded in the wider capital market can always choose to undertake the fixed costs

and become an undiversified trader. Unless the optimal scale of trading allows

for only a limited number of incumbents, which seems implausible, and if the

incumbent’s risk capital is large enough, competitive pressure and the threat posed

by potential entrants will rule out σ2
(
ϕi,t,t+h

)
> σ2

(
ϕt,t+h

)
because, as implied by
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Proposition I in Ross (2005)5, investors with concave and non-decreasing utility of

wealth prefer an investment opportunity set priced by a more volatile minimum-

variance kernel. This turns the weak inequality in (13) into an equality. That is,

in equilibrium with perfect capital mobility, we have

σ2
(
ϕi,t,t+h

)
= σ2

(
ϕt,t+h

)
(14)

Therefore, (9) and (12) jointly imply

SR2
(
r∗i,t,t+h

)
≡
E(r∗i,t,t+h)

2

σ2(r∗i,t,t+h)
∼= σ2

(
ϕi,t,t+h

)
= σ2

(
ϕt,t+h

)
(15)

Here, SR denotes the strategy Sharpe Ratio. That is, since the strategy cannot

be traded at the margin by a diversified investor, we should observe a quest for

reward for total risk, instead of systematic risk alone. We use (9) and (15), together

with the well-known duality between the volatility of the minimum-variance kernel

and the economy maximal SR, and obtain the following more practical restriction

SR2
(
r∗i,t,t+h

) ∼= σ2
(
ϕi,t,t+h

)
= b′σ2 (ft+h) b = λ′σ−2 (ft+h)λ (16)

This can be seen as the squared hurdle SR that predictability-exploiting trades

must offer to be entered into by proprietary traders. A higher hurdle rate would

5The volatility of the minimum-variance kernel, as an implication of the familiar Hansen and

Jagannathan (1991) bound, coincides with the SR attainable by trading the available assets.

Therefore, if this weak inequality did not hold, the unconditional maximal SR attainable by

trading the currency would exceed the unconditional maximal SR attainable in the wider capital

markets. For the investor holding the market portfolio, this would represent an opportunity to

increase expected utility by switching risk capital to currency trading. As shown by Ross (2005),

this is true even if the investor’s preferences are defined over third and higher order moments of

her portfolio return. In this case, the investor can simply use a dynamic trading strategy to trade

off the conditional SR for conditional higher moments to achieve a more desirable combination.

This is the intuition behind Ross (2005) Proposition I. For a formal statement and proof, see pp.

28-29 in Ross (2005).
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imply, for the providers of risk capital, missing out on investment opportunities

that are more advantageous than those they typically undertake. The equilibrium

SR in the left-hand side of (16) should be seen as net of all transaction costs,

including the price impact of trades. As illustrated in Appendix, there is a duality

between the coefficient of determination of predictive regressions and the SR of

the strategies that exploit the predictability picked up by such regressions. Hence,

the restriction in (16) is consistent with the volatility bound in (A.4) in Appendix

and, therefore, with the restriction on predictability explored by Levich and Poti

(2015).

Next, we consider the equilibrium when capital is imperfectly mobile. To this

end, we note that it cannot be ruled out that the incumbents, in spite of committing

all their risk capital to trading a particular strategy, may still face a binding capital

constraint when σ2
(
ϕi,t,t+h

)
> σ2

(
ϕt,t+h

)
. In this case, SRs would exceed the

bound in (13) by a non-negative amount until enough new risk capital arrives, i.e.

until potential entrants decide to undertake the fixed entry cost. Due to limited

capital mobility à la Duffie (2010) and Duffie and Strulovici (2012), this may take

some time and occur somewhat sluggishly, giving rise to predictable co-variation

with the availability of risk-capital6, i.e.

SR2
t

(
r∗i,t,t+h

)
− σ2

(
ϕt,t+h

)
= −θ

[
SR2

t−1

(
r∗i,t−1,t−1+h

)
− σ2 (ϕt,t+h)

]
+ et (17)

where h ≥ 1, 0 < θ ≤ 1 and et is a random error term. The error-correction

parameter θ, in the context of our stylized model, is proportional to the risk

capital of the marginal trader of the strategy with excess-return r∗i,t,t+h and, in

the presence of imperfect capital mobility, we have θ < 1 whereas, in case of

6Of course, the economy maximal SR also likely co-varies with risk-capital but the testable

implication here is that currency strategies SRs should co-vary more with risk capital than the

economy maximal SR does.
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perfect capital mobility, θ = 1. To conceptualize such risk capital, we follow the

capital allocation literature (e.g., Matten (1996); Chorafas (2004)) and define it

as the difference between the market value of the marginal trader’s assets and the

quantile of the distribution of the latter under which the marginal trader is forced

to liquidate her positions, to meet liabilities. The latter may include debt-type

obbligations, such as margin calls, and, if the marginal trader is a fund manager,

investors’ redemptions. Then, according to the above discussion, we must have

that
∂θt
∂qt

> 0

If we model the marginal trader as a hedge fund manager, we may assume

a logistic relation between θt and asset under management (AUM) flow gAUM,t

centred at a (possibly time-varying) steady-state AUM flow ḡAUM . In this case,

we have

θt = θa + θb

{
1−

[
1 + e−γ(gAUM,t−ḡAUM )

]−1
}

(18)

This specification implies an autoregressive process with time-varying coeffi-

cients

SR2
t (r
∗
i,t,t+h) = (1− θt)σ2(ϕt,t+h)− θtSR2

t−1(r∗i,t−1,t−1+h) + et (19)

or, using the shorthand notation yt = SR2
t (r
∗
i,t,t+h),

yt = βa,0 + βb,0(γ, gAUM,tḡAUM)

+βa,1yt−1 + βb,1(γ, gAUM,t, ḡAUM)× yt−1 + et

(20)

where

βa,0 = (1− θa)σ2(ϕt,t+h)

β0,b = θb

{
1−

[
1 + e−γ(gAUM,t−ḡAUM )

]−1
}
σ2 (ϕt,t+h))

βa,1 = θa

βb,1 = θb

{
1−

[
1 + e−γ(gAUM,t−ḡAUM )

]−1
}

(21)
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In this model, G(γ, gAUM,t, ḡAUM) ≡ 1−
[
1 + e−γ(gAUM,t−ḡAUM )

]−1
is a transition

function bounded between 0 and 1 and depends upon the location parameter

ḡAUM and the scale parameter γ. For identification purposes, γ is restricted to be

positive. In principle, ḡAUM could be time-varying, if the steady-state growth rate

of AUM changes over time. The above suggests a negative relation between the

rate of change of the SR available from exploiting predictability and the risk capital

committed to do so. For values of gAUM,t below ḡAUM , the value of the transition

function G(γ, gAUM,t, ḡAUM) tends to zero and, therefore, the coefficient vector is

(βa,0, βa,1), as in a standard auto-regressive model. For values above this threshold,

G(γ, gAUM,t, ḡAUM) tends to one and, therefore the coefficient vector is (βa,0 +

βb,0, βa,1 + βb,1), as in a threshold model with break at gAUM,t. The specification

of G(γ, gAUM,t, ḡAUM), for γ < ∞, implies a smooth transition between these two

regimes. For γ → ∞, however, the model converges to a standard (non-smooth)

threshold autoregression with break at gAUM,t. Availability of risk capital in the

wider capital market drives instead fluctuations in the economy-wide SR, i.e. in the

right-hand side of (16), whereas funding liquidity in any given currency predicts

spot returns on holdings of assets denominated in that currency, as shown by

Adrian et al. (2010).

We can generalize this model to allow for more lags, extra predetermined re-

gressors and a different specification of the transition function as follows:

yt = X ′tβa +X ′tβbGt + et (22)

where Xt contains a constant, lags of the dependent variables, lags of gAUM,t and

possibly other predetermined variables, i.e. known at time t − 1. Also, Gt =

G(γ, St−d, c) is the transition function, d ≥ 1 an integer, St−d is the variable that

drives the transition (e.g., gAUM,t−1 in (20)) and c is the threshold, which could be

a fixed parameter or a variable in It−d. We can write such a model as follows, in a

format that will facilitate the reporting (tabulation) and discussion of the model
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estimates:

yt = βa,0 + βa,1,1yt−1 + ...+ βa,1,syt−s

+ βa,2,1gAUM,t−1 + ...+ βa,2,rgAUM,t−r

+ β′a,3,1Zt−1 + ...+ β′a,3,pZt−p

+ ftgt + et

(23)

where

ft = βb,0 + βb,1,1yt−1 + ...+ βb,1,syt−s

+ βb,2,1gAUM,t−1 + ...+ βb,2,rgAUM,t−r

+ β′b,3,1Zt−1 + ...+ β′b,3,pZt−p

(24)

and

gt = 1− (1 + exp(γ(St−d − c)))−1 (25)

Here, Zt is a vector of possible additional explanatory variables. This more

general specification can be seen as an ADL(s,max(r, p)) model with a smooth

transition between regimes. Overall, under this stylized model, the availability of

risk capital committed to trading a given asset drives down excess-predictability

of the asset returns, i.e. deviations from the steady-state equilibrium described by

(15) and (16).

3. Methodology

Under imperfect capital mobility, our model predicts a negative relation be-

tween the rate of change of the SR available from exploiting predictability and the

risk capital committed to do so. Testing this prediction requires estimates of (a)

the SR of trading strategies that exploit predictability and (b) measures of risk

capital availability.
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The trading strategies we consider are the ones that most commonly are de-

ployed to exploit the two main manifestations of predictability, namely momentum

and reversal. These are the most natural strategies if one intends to exploit de-

layed discounting of information on the part of the market. Clearly, we could

have engaged in a search over trading strategies and we would most likely have

found strategies that, at least in sample, perform much better but this would have

exposed to the risk of data snooping.

As for measures of risk capital availability, our approach to their identification

is twofold. First, because risk capital is arguably more plentiful during times of

economic expansion, we proxy for availability of risk capital by using business

cycles variables, such as the NBER classification of time periods into expansions

and recessions and estimated probabilities that the economy is in a recession.

Second, following Jylha and Suominen (2011) and Poti and Siddique (2013), we use

relatively direct albeit noisy measures of risk capital availability, such as the flow of

asset under management to the hedge fund industry. This choice is motivated by

the fact that hedge fund managers arguably represent ideal candidates to epitomize

the informed trader who, at the margin, deploys the predictability-based strategies.

Unfortunately, both approaches provide proxies for risk capital availability that

are very broad in nature and do not give any indication on the amount of risk

capital directed towards specific strategies and asset classes. Also, not all risk

capital flowing in and out of assets throughout the economic cycle is allocated by

informed traders, giving rise to a possible error in variable (EIV) problem. To

partially obviate to these shortcomings, we group traded assets in two broad asset

classes, namely risky assets and safe havens, and study relative time-variation of

the SRs of predictability-based strategies based on these two asset classes. Our

rationale is that, in spite of the lack of conclusive evidence on whether such assets

do provide a safe haven in times of financial turmoil, including evidence that safe
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haven status might be time varying (e.g., Baur and Glover (2012)), it is clear that

capital does flow out of risky assets and into perceived safe havens during times

of financial or economic crisis, especially into gold, moving in the other direction

during good times. This fact offers the opportunity to test the asset pricing im-

plications of time-varying capital availability, including sluggish capital mobility,

posited by our model. In capital markets with mobile but sluggish capital, there

should be relative scarcity of risk capital allocation to risky assets during reces-

sions and abundance during expansion, whereas the opposite should be the case

for safe havens. That is, for assets that enjoy safe haven status, there should be

more plentiful capital allocation during recessions than during expansions. This

should have implications for the relative efficiency of the pricing of safe havens and

risky assets over the business cycle and, therefore, for the timing of momentum

and reversal strategies. Because these two asset classes benefit from risk capital

flows at opposite times, their SRs should change across the business cycle and

react to measures of broad risk capital availability in the opposite manner. In this

regard, our econometric strategy for identifying the effect of risk capital availabil-

ity is to compare the profitability of predictability-based strategies that experience

opposite capital flows in different states of the economy while conditioning on the

state of the economy. Our working assumptions, underpinning this economet-

ric identification strategy by linking our chosen predictability-based strategies to

our chosen measures of risk capital availability, are that (a) informed risk capital

always does its best to correct/exploit mispricing (no strategic with-holding of fire-

power or “bubble-riding”) and (b) momentum, as well as reversal, works because

it exploits/corrects mispricing.

In our context, we are interested in excess-predictability rather in predictability

per se because, by definition, only the former can translate into trading profits

on a risk-adjusted basis and is of interest from a policy of point of view. To
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measure excess-predictability we must measure inefficient pricing relative to the

RE benchmark. The required measure of excess-predictability must reflect all

mispricing, whether captured by momentum or reversal strategies and, for each

strategy initiation time, across all lookback and holding periods. We define two

such basic measures of mispricing and, therefore, excess-predictability. The first

one is a measure of excess-reward to total risk of predictability-based strategies

and is the relevant measure of excess-predictability if the strategies are traded

by a UMT, which is the case under the assumed presence of economies of scale

for gathering and processing Type B information. The second one is a measure

of excess-reward to systematic risk and would be the relevant measure of excess-

predictability if the strategies were traded by a UMT, which would happen if there

were no such economies of scale. More in detail, the first of such measures is

ESR∗2i,t ≡ SR∗2i,t − σ(ϕt,t+h)
2 (26)

Here, SR∗2i,t ≡ limh→∞ SR
2
t (r
∗
i,t,t+h), where SR2

t (r
∗
i,t,t+h) ≡

µ2t (r
∗
i,t,t+h)

σ2
t−1(r∗i,t,t+h)

, is the

squared holding-period SR of a strategy that exploits all predictability of ri,t and

σ(ϕt,t+h)
2 is the variance of the capital market’s IMRS which, as per (16), bounds

from above the maximal attainable squared SR on any strategy. The second one

is the squared information ratio of a strategy that exploits all the predictability of

ri,t, i.e.

IR∗2i,t ≡ lim
h→∞

IR2
t (r
∗
i,t,t+h) (27)

Here, IR2
t (r
∗
i,t,t+h) ≡

α2
t (r

∗
i,t,t+h)

σ2
t (u∗i,t,t+h)

, α2
t (r
∗
i,t,t+h) ≡ µ2

t (r
∗
i,t,t+h) − β(r∗i,t,t+h)

′λi,t and

u∗i,t,t+h = r∗i,t,t+h − µ∗i,t,t+h, where β(r∗i,t,t+h) and λi,t are defined as in (10). Notice

that, in the definitions above, we must let h → ∞ because the strategy with

excess-return r∗i,t,t+h must have a long enough holding period for it to be open

when mispricing corrects and predictability becomes observable.

This leaves open the issue of how to empirically proxy for such measures. Prag-
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matically, we shall adopt the approach of estimating these quantities for averages

of r∗i,t,t+h across different predictability-based strategies and for a relatively long

holding period, i.e. setting h = 60 months, so that we can expect that we capture

as much as possible of the mispricing present at time t and most of such mispricing

has been corrected by the market by time t + h. We shall denote such “average”

predictability based strategies as

r∗t,t+h ≡
∑
i

wir
∗
i,t,t+h (28)

Here, wi are the weights with which the individual strategies are combined in

the average one, i ∈ 1, 2, ..., n.

To make inferences on ESR2
t (r
∗
i,t,t+h) and IR∗2i,t, we use two closely related

statistics. To make inferences on ESR2
t (r
∗
i,t,t+h), we use the Jobson and Korkie

(1981b) z statistic of the difference between SRt(r
∗
i,t,t+h) and the holding-period

SR of the market portfolio, i.e.

JK(r∗i,t,t+h) ≡
√
T

σ̂(r∗i,t,t+h)µ̂(r∗m,t,t+h)− σ̂(r∗m,t,t+h)µ̂(r∗i,t,t+h)√
2σ̂2(r∗m,t,t+h)σ̂

2(r∗i,t,t+h)− σ̂(r∗m,t,t+h)σ̂(r∗i,t,t+h)
(29)

Here, r∗m,t,t+h denotes the holding-period excess-return on the market portfo-

lio. To make inferences on IR2(r∗i,t,t+h), we use the OLS t-statistics of Jensen’s

alpha, which we denote as τ(r∗i,t,t+h) ≡ t(α2
t (r
∗
i,t,t+h)). Under the null of no excess-

predictability, both statistics are normally distributed with zero mean and unit

variance.7.

From these measures of excess-predictability, we also construct an additional

statistic specifically designed to test the implications of our model. It is defined as

diffi ≡ JK2(r∗i,t,t+h)− τ 2(r∗i,t,t+h) (30)

7We also experimented with GMM adjustments for heteroskedasticity and autocorrelation.

Our inferences are both qualitatively and, to a large extent, quantitatively unchanged. These

results are not reported to save space but are available upon request.
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This measure, as the difference between a (squared) measure of reward for

total risk and a (squared) measure of reward for systematic risk, will be highest

when risk capital is scarce, because exploiting the predictability of ri,t to generate

this high SR is a risk-arbitrage that requires risk capital. In this regard, it is

important to remember that, in our model (i.e., (16)), capital-constrained risk-

arbitrageurs disregard alphas and seek instead reward for total risk because, from

their point of view, the risk involved in the risk-arbitrage activity is non-marginal

and, hence, undiversifiable. In (30), therefore, the role of τ 2(r∗i,t,t+h) is to provide a

reference point for the reward for risk in the wider capital market whereas the role

of JK2(r∗i,t,t+h) is to measure reward for risk in the market for the predictability-

based strategies.

4. Data

Our main dataset are monthly chained front-month futures price data from

1982-2013 on the S&P 500 and gold, taken to represent the universe of risky assets

and safe heavens and obtained from Bloomberg. Working with futures data means

that excess-returns and rates of returns are the same. That is, we do not have to

subtract the risk free rate and add the dividend rate to get the former from the

latter.

For comparison and performance attribution purposes, we also use data on the

Fama and French (1996) risk factor-mimicking portfolios, rmrft, smbt and hmlt

taken from the online library of Professor Kenneth French.

We use data HFR data to construct, as done by Jylha and Suominen (2011),

a measure of aggregate asset under management flows to the hedge fund industry,

which we denote as gAUM,t and, following Kruttli et al. (2015), a measure of aggre-

gate illiquidity of holdings in this industry. Finally, we use data on a number of

other variables to construct proxy measures of the state of the economy and pos-

19



sible determinants of predictability. The NBER classification of time periods into

expansions and recessions, the related smoothed recession probability estimates

and time-series of estimates of economic and equity market uncertainty produced

by Baker et al. (2015) are obtained from the St Luis Federal Reserve database

(FRED Economic data).

5. Construction of predictability-based strategies

We construct momentum strategies by forming dynamic portfolios rebalanced

monthly based on a signal represented by past returns. We form the strategies by

varying both the look-back period and the holding period. Here, by look-back period

we mean the number of months we lag returns to define the signal used to form

a new portfolio each month whereas, by holding period, we mean the number of

months we hold each portfolio after it has been formed. For each asset s and month

t, we define the signal to be positive if the excess return over the past k months is

positive, and negative otherwise. In “un-weighted” versions of the strategies, we

go long a fixed amount of the asset if the signal is positive and short if negative,

holding the position for h months. In “weighted” versions of the strategies, we

set the position size to be proportional to the signal thus defined and inversely

proportional to the asset ex ante volatility each month. Sizing each position in

each strategy to have constant ex ante volatility filters out noise from the estimate

of the signal provided by the past return. As such, the“weighted” strategies can be

seen as instances of the class of strategies that combine a directional signal with

a volatility filter. As noted by Moskowitz et al. (2012), the volatility-weighting

makes it easier to aggregate strategies across assets with very different volatility

levels and it is helpful econometrically because it yields a time series with relatively

stable volatility, which is not dominated by a few volatile periods.

For each trading strategy (k,h), we derive a time series of non-overlapping

20



monthly returns even if the holding period h is more than one month. We do so

following the methodology proposed by Jegadeesh and Titman (1993) and used by

Moskowitz et al. (2012). The return at time t represents the average return across

all portfolios at that time, namely the return on the portfolio that was constructed

last month, the month before that (and still held if the holding period h is greater

than two), and so on for all currently “active” portfolios. In what follows, we shall

use a terminology popular among financial traders and refer to all such active

portfolios as “positions”. Specifically, for each asset and trading time period t, we

start by constructing the position initiated in the last time period based on the

sign of the past asset return from time t-k -1 to t-1 and compute, for the period

from t-1 to t, a one period rate of return on this position. We then continue by

constructing the position initiated in the previous time period based on the sign

of the past asset return from time t-k -2 to t-2 and compute, for the period from

t-1 to t, a one period rate of return on this position. We continue in this fashion

until we compute the rate of return from t-1 to t on the oldest position that is

still open at t-1, based on the sign of the past return from t-k-h to t-h. This way,

for each (k,h), we get a single time series of monthly returns by computing the

average return of all of these h currently “active” portfolios (i.e., the portfolio that

was just formed and those that were formed in the past and are still held at time

t-1). We refer to it as the series of one-period returns on trading strategy (k,h)

and denote it as Ri,k,h,t, where t = k+1, ..., T and T is the number of monthly

observation in the sample period.

Importantly and more innovatively, for each trading strategy (k,h), we also

construct two time series of non-overlapping monthly returns on positions formed

at the same time, to which we refer as RIi,k,h,t. Here, RIi,k,h,t is a time series of

returns on positions initiated at time t only. Positions are allocated to trading

period t depending on when they are opened, regardless of when the returns that
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they generate occur. For each trading period t, such positions are then aggregated

into a total position for the trading period and a time series of rates of returns for

an holding period h is then calculated, without or with volatility-weighting. As an

application of this approach, for each trading strategy (k,h), we also construct two

time series of non-overlapping monthly returns on portfolios formed during either

recessions or expansions only, to which we refer as RIji,k,h,t ∈ {RIreci,k,h,t, RI
exp
i,k,h,t}.

Here, RIreci,k,h,t and RIexpi,k,h,t are time series of returns on strategies comprising posi-

tions initiated only during recessions and only during expansions, respectively. Po-

sitions are allocated to a subset corresponding to either period depending on when

they are opened, regardless of when the returns that they generate occur. Positions

within each subset are then aggregated and a time series of one-period returns is

then calculated (separately for recessionary and expansionary periods) following

the Moskowitz et al (2012) methodology, without or with volatility-weighting.

6. Predictability of S&P vs. Gold

In Table 1, for the full sample period, we report SRs for ‘un-weighted’ (i.e.,

without volatility-weighting) and ‘weighted’ (i.e., with volatility-weighting) ver-

sions of the momentum strategy considered by Moskowitz et al. (2012) for lookback

periods k ∈ K of 1 to 12 months, as well as 15, 18, 21 and 24 months, matching

the holding-period with the look-back period length in each case. For each holding

period (and lookback period) k, the reported SRs are calculated as

µ̂(Ri,k,k,t|{t− 1− k, ..., t− 1} ∈ S)

σ̂(Ri,k,k,t|{t− 1− k, ..., t− 1} ∈ S)
(31)

where µ̂() and σ̂() denote the sample mean and the sample standard deviation

operator, respectively, and S = {t − 1 − k, 2, ..., T} is the sets of observations

on the strategy returns over the full sample period. In the last row of the table,

labelled “Avg”, we also report the SRs for the strategy that invests with equal
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weights in all the individual trading strategies (k, k), namely the equally weighted

average trading strategy with return Ri,avg,t = (1/16)
∑

k∈K Ri,k,k,t.

In Table 2, we report SRs for the same strategies “initiated” during recession-

ary (in Panel A) and expansionary periods (in Panel B). In each case, the reported

SRs are calculated as
µ̂(RIji,k,h,t)

σ̂(RIji,k,h,t)
(32)

Here, as explained earlier, RIji,k,h,t ∈ {RIreci,k,h,t, RI
exp
i,k,h,t} are time series of re-

turns on strategies comprising positions initiated either only during recessions

(RIreci,k,h,t) or only during expansions (RIreci,k,h,t). Importantly, the SRs thus calcu-

lated do not refer to the performance of the strategy during either expansions or

recessions but rather to their performance over time depending on whether they

were started during an expansion or a recession.

We see an almost perfect reversal pattern during recessions across the S&P

and gold, which is especially clear in the case of the volatility-weighted strategies,

though there are little differences during times of economic expansions. During

recessions, momentum strategies based on the S&P, which acts in our analysis as

the representative risky asset, are profitable at short horizons and unprofitable at

longer horizons. Since the losses incurred by momentum strategies imply prof-

itability of the corresponding reversal strategy, the SR estimates in the panels of

Table 2 imply that, during recessions, reversals strategies based on the S&P are

loss-making at short horizons and profitable at longer horizons. For gold, during

recessions, the pattern is the exact opposite. That is, momentum strategies are

profitable at longer horizons whereas, at short horizons, it is reversal strategies to

be profitable. During recessions, moreover, the simple ‘buy and hold’ strategy is

profitable only for gold, consistent with the safe haven property of this asset, and

for the S&P at the longest horizon. During expansions, all strategies appear to be

profitable for both the S&P and gold, with the exception of short term momentum
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on the S&P.

The fact that short term momentum strategies initiated during recessions are

profitable in the case of the S&P but not in the case of gold is consistent with

positing that, during recessions, there is less risk capital allocated to the risky

asset and more risk capital allocated to the safe haven, resulting in the mispricing

of the former and the efficient pricing of the latter. The mispricing of the S&P

is the basis for the profitability of the short-term momentum strategies based on

it whereas the efficient pricing of gold brought about by the risk capital flows is

the reason for the unprofitability of the short-term momentum strategies on this

asset.

At longer horizons, gold momentum strategies are more profitable than S&P

momentum strategies for most horizons, both during recessionary and expansion-

ary periods, possibly due to the greater liquidity and overall maturity of the equity

market compared to gold markets.

7. Predictability of predictability

As a further check on the predictability of predictability-based strategies, we

carry out an analysis along the lines of Asness et al. (2001). These authors were

interested in whether there is ‘stale pricing’ in hedge fund returns. We are inter-

ested in whether there is stale (i.e., sluggish) discounting of information regarding

time-variation of predictability determinants.

In Table 3, we report estimates of the first order autocorrelation coefficient, ρ,

together with the associated GLS t-statistic, the coefficient of determination, R2, of

the first order autoregression used to estimate ρ and the variance ratio (the ratio of

the sample variance of annual excess-returns to the annualized sample variance of

monthly excess-returns), for the un-weighted (in Panel A) and volatility-weighted

momentum strategies (in Panel B) on the S&P with holding period and lookback
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period of k months (specified in the first column), as well as the average momentum

strategy on the S&P without and with volatility-weighting, which, in each panel,

are reported in the rows labelled as “Avg”. The sample period, in all cases, is

the full one, namely the period 1982-2013. In Table 4, we report estimates of the

same measures of serial correlation for the corresponding momentum strategies on

gold. In Table 5, for comparison, we do so also for the strategies represented by

the Fama and French (1996) risk factor mimicking portfolios.

There is clear evidence of both predictability of the momentum returns and het-

erogeneity of this predictability across trading horizons (holding periods and/or

lookback period) and assets (S&P and Gold). This results in time-varying pre-

dictability of S&P and gold returns.

These results imply that there is indeed stale (i.e., sluggish) discounting of

information regarding time-variation of predictability and, therefore, that pre-

dictability is indeed predictable. The fact that momentum returns are themselves

predictable (mainly mean-reversion) suggests this is a possibility, but we need to

establish whether it arises from time-variation of risk capital availability. For it to

be the case, such availability would have to be itself predictable, and the market

pricing mechanism would have had to either overlook this predictability or not be

in a position to exploit it (e.g., if traders who knew of the usefulness of deploying

more risk capital were unable to find it).

In Figure 1 and 2, we treat the holding the S&P index as a benchmark and plot

two different measures of excess-reward for risk estimated over rolling 5-year win-

dows of monthly excess-returns on the “overall” (i.e., average) momentum strate-

gies on the S&P and gold, respectively. The first of such measures, denoted by a

jagged red line, is the Jobson and Korkie (1981a) z statistic, which is zero under

the null that the Sharpe ratios of the momentum strategy and of the benchmark

(holding the S&P) are equal. As such, it is a measure of reward for total risk (i.e.,
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both systematic and idiosyncratic risk) The second of such measures, denoted by

a continuous blue line, is the more familiar Jensen’s alpha, which is zero under

the null that the intercept of the regression of the excess-return on the momentum

strategy on the S&P excess-return is zero. As such, it is a measure of reward for

systematic risk only.

In the case of the S&P, the Jobson and Korkie (1981) z statistic closely tracks

the alpha of the momentum strategy and their volatility is comparable (i.e., 1.13%

and 1.25%, respectively). For gold, to the contrary, the time series of these two

measures of excess-reward for risk are noticeably different. The time series of the

rolling alphas is almost always above the time series of the rolling Jobson and

Korkie (1981) z statistics and their volatility is quite different (i.e., 1.52% and

1.31%, respectively).

As a more direct check on the implications of our model, we focus on DIFFt in

(30). In Figure 3, we plot DIFFt for the S&P against the flow of AUM to the hedge

fund industry. We see a striking comovement, which suggests that predictability

and market efficiency, on the one hand, and hedge funds capital flows, on the other

hand, are indeed closely related. The close comovement suggests that investors’

capital is attracted to the hedge fund industry at times of high predictability and

ow market efficiency. We do not report the corresponding figures for gold and other

assets to save space (but they are available upon request). In all cases, we find a

positive association but weaker and less clear than in the case of the S&P. This

is not surprising because, if it is true that risk capital to the hedge fund industry

flows when predictability is high, the greatest driver will be the predicability on

the most heavily traded assets and asset classes, as they will have more capacity

to absorb the AUM flows.

According to the model in (20)-(21), the growth of AUM above its steady state

should negatively predict predictability. Hence, it should forecast a drop of DIFFt.
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To test whether the co-movement is of the type predicted by the model, we estimate

(20) for both the S&P and gold. In the model in (20), the dependent variable is

yt = SR2
t (r
∗
i,t,t+h) but we also estimate it with using DIFFt as the dependent

variable, i.e. with with yt = DIFFt, since the former is a positive function of

SR2
t (r
∗
i,t,t+h) and, because it is defined as a difference between a measure of reward

for total risk and reward for systematic risk, it is more likely to pick up genuine

variation in predictability, under the null of our model, rather than spurious in-

sample performance of the predictability based strategies. This is because the

UMT cares about reward for total risk rather than reward for systematic risk and

she will arbitrage excessive levels of the former and disregard the latter away excess-

is scarce. Hence, when risk capital sluggishly becomes available after a period of

scarcity, reward for total risk should drop more than reward for systematic risk,

leading DIFFt to decrease.

In Table 6, we report estimates of specifications of the model in (24), which

extends the baseline model in (20), with either yt = DIFFt or yt = SR2
t (r
∗
i,t,t+h),

i.e. with either DIFFt or SR2
t (r
∗
i,t,t+h) as the dependent variable. As for the

transition variable, i.e. St−d in (25), we experiment with both gAUM,t−1 and

SR2
t−1(r∗i,t−1,t−1+h). All reported p-values are based on Newey and West (1987)

standard errors with 60 lags (to account for the error serial correlation induced by

the unavoidable overlapping observation problem). Unfortunately, for this prob-

lem, no other remedy is available as the specialized corrections proposed by the

literature so far, e.g. the method of Hodrick (1992) is not applicable because it

requires one-period returns whereas we work with multi-period SRs (SR2
t (r
∗
i,t,t+h))

or functions thereof (DIFFt). The p-values for the tests concerning sums of coeffi-

cients are obtained using the delta-method. The sample period is from 1991:01 to

2011:01, the longest possible given that data on aggregate hedge fund flows gAUM,t

is not available before 1991:01 and that, because of the length of the holding pe-
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riod, the final month for which we can compute SR2
t is 2011:01. To save space,

we do not report the individual autoregressive coefficients βa,1,i, i = 1, 2, ..., s, and

βb,1,i, i = 1, 2, ..., s. In Table 7, we report corresponding estimates for gold. No-

tably, apart from the case of the model in the third column which failed to converge,

the sign of the recession variable is the opposite as in the corresponding estimates

for the S&P, consistent with the conjecture that capital moves in and out of these

two asset classes at different points of the business cycle and, therefore, confirming

the importance of risk capital flow for predictability determination.

As shown by the estimates reported in the table, a number of the coefficients of

gAUM,t are negative to statistically significant extent. In the case of the coefficients

of gAUM,t in the “ADL” part (i.e., the βa,2,i coefficients) of the model, their sum

is negative and, when the dependent variable is SR2
t (r
∗
i,t,t+h), also statistically

significant. Not surprisingly, these coefficients are not negative at all lags, as

perhaps suggested by popular but simplistic views of the relation between risk

capital and profitability of trading rules. Our model implies that risk capital flows

and predictability are jointly determined in dynamic market equilibrium, in that

excess-predictability attracts, albeit sluggishly, risk capital and the latter, when its

flow grows above its steady-state magnitude, reduces excess-predictability. From

this point of view, (20) and the more general version thereof in (25) should be seen

as reduced form representations of this dynamic equilibrium, in which a negative

relation between risk capital and excess-predictability only takes hold with delay.

In fact, Figure (3) shows that, on a contemporaneous basis, this relation is clearly

positive (consistent with the fact that risk capital flows by informed investors are

high when the reward on this capital, due to excess-predictability, is high).

One shortcoming of the relatively general specifications examined in the previ-

ous two Tables is the large number of variables, which makes interpretation difficult

and, due to possible collinearity among some of the regressors, may affect the sig-
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nificance of the coefficient estimates. In Table 8, to obviate to this shortcoming, we

therefore report estimates of more parsimonious variations on the model in (24),

with yt = SR2
t (r
∗
i,t,t+h) as the dependent variable, without regime transition (“no

threshold”) and with regime transition. When a regime transition is allowed, it

is restricted to affect only the coefficients of the lags of gAUM,t and it is governed

by a function of the lagged squared SR and a threshold, with the latter specified

either as a fixed parameter or as a multiple of the lagged variance of the market

portfolio and with two alternative specifications for the transition function (i.e.,

the logistic, as before, and an exponential specification, as in an ESTAR model).

The multiple of the variance of the market portfolio is a proxy for the SR bound in

(16), with the factor in (9) given by the market porfolio excess-return, based on the

predictability bound in (A4) in Appendix. Hence, in the specification in which the

threshold is a multiple of the lagged variance of the market portfolio, the multiple

plays the role of the squared relative risk aversion (RRA) of the marginal trader,

as per (A4) in Appendix. As before, all reported p-values are based on Newey and

West (1987) standard errors with 60 lags (to account for the error serial correla-

tion induced by the unavoidable overlapping observation problem). As shown in

Panel A, hedge funds AUM flows gAUM,t predict a decrease of SR2
t (r
∗
i,t,t+h) and,

therefore, a decrease of predictability. This is consistent with our predictability

determination model in (17). Also consistent with our model is the fact that the

sum of the coefficients of gAUM,t is negative either in the autoregressive part of the

model or in the part that multiplies the transition function, though this sum of

coefficients if never statistically significant. The estimates for the threshold, in the

models in which the latter is specified as a fixed parameter, are consistent (i.e.,

c = 0.25 in models 2 and 3) with a squared SR of c = 0.25 per annum, or a SR

of 0.5 per annum, which is a very reasonable estimate. Similarly, in the models

with dynamic threshold specified as a multiple of the lagged variance of the return
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on the market portfolio (the S&P), the multiple is c = 28.72, which implies a

marginal trader RRA given by RRAt =
√

28.72 = 5.35, which is in line with the

RRA bound proposed by Ross (2005) and used by Poti and Wang (2010).

8. Conclusions and final remarks

In this paper, our focus is on the determination of predictability of financial

asset returns or, equivalently, on predictability of predictability in financial mar-

kets. Building on Poti and Siddique (2013), we develop a model in which capital

constraints and limited capital mobility determine the magnitude and variation of

predictability over time and across assets. To test this model, we explore the dif-

ferent properties of momentum and reversal strategies on gold and the S&P, taken

to represent safe haven and risky assets, during different stages of the economic

cycle.

Conventional wisdom has it that momentum strategies fail during volatile

times, hence they should fail during recessions. The point, however, is the rel-

ative strength of the trend vs. the volatility of the traded asset. If volatility is

high but, due to delayed absorption of information, the trend is even stronger,

momentum will make money. The strategy would have to be started, however,

at a time of relative capital scarcity (i.e., recessions in the case of the S&P and

expansions in the case of gold), as otherwise prices would not discount informa-

tion with a delay and no trend would ensue. Hence, momentum strategies on safe

assets will do well if started during a recession but momentum strategies on safe

haven will do well if started during expansions, which are times of capital outflows

from safe havens and, therefore, times of capital scarcity.

A related issue is the one raised by Asness et al. (2013) in their 2013 article in

the Journal of Finance (page 962). They write:

“Why does momentum load positively and value load negatively on liquidity
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risk? ... Further investigation into the opposite signed exposure of value and

momentum to liquidity risk is an interesting research question, but beyond the

scope of this paper”.

Our results suggest that the explanation is precisely the different timing of

risk capital flows to safe haven and risky assets we propose. More specifically,

momentum loads positively on liquidity because liquidity is a proxy for risk capital

so, when it flows into a market, the latter becomes more efficient and prices slowly

move towards the fair value, whether from below or from above (depending on

where they were before the liquidity flow). The opposite is the case for value

(reversal). It is profitable to start a contrarian strategy (with a suitably long time

horizon) when risk capital moves out of a market and prices get out of line with

fundamentals. If this explanation is correct, an implication is that “alphas” should

be more persistent than Sharpe ratios both for momentum and reversal strategies.

We leave the investigation of this implication for further research.

The usefulness of our results is that they clarify the circumstances when one

can expect financial asset returns to be predictable. For risky assets, as we have

seen, this is during recessions and when risk capital leave the hedge fund indus-

try. For safe havens, this is at the opposite times. Further worthwhile steps,

which will be taken next in the research program to which this report belongs,

include the identification of estimators of predictability that can be used in real

time. All known estimators of predictability require knowledge, explicitly or im-

plicitly, of the ex-post performance of predictability-based strategy. For example,

SR2
t (r
∗
i,t,t+h) requires knowledge of the performance between t and t + h of the

predictability-based strategy r∗i,t,t+h, i.e. the average momentum/reversal strat-

egy in our context. The coefficient of determination of predictive regressions and

variance ratios (used, among others, by Campbell and Thompson (2008) and,

in conjunction with a predictability bound, by Levich and Poti (2015); but see
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also Cochrane (2005) for a systematic and lucid discussion) suffer from the same

shortcoming because they represent measures of predictability that can only be

exploited by entering a suitable trading strategy at the beginning of the estima-

tion period and keeping it in place until the end. One possibility, which we shall

explore next, is to extract predictability estimates from traded option prices. By

applying our model to a time series of these predictability estimates, it would then

be possible to obtain “real time” forecasts of how this preditability would evolve.

An obvious possible applications would be to help decide whether to commit capi-

tal (i.e., invest) to the exploitation of predictability, e.g. whether to open a trading

desk. Another less obvious application would be in terms of econometric modeling

and forecasts of predictability can be used to refine priors about predictability

itself and related parameters in econometric models in a number of contexts, e.g.

in making inferences on asset pricing models.
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9. Appendix

Consider the regression model, or an estimate (of a possibly reduced form

representation) thereof, of the data generation process (DGP) given in equation (1)

of the main text of the article. The coefficient of determination R2 ≡ σ2
µ

σ2
r

of such a

model, where σ2
µ ≡ σ2(µt+1 (It)) is the unconditional variance of conditional mean

excess-returns and σ2
r ≡ σ2(rt+1) is the unconditional variance of excess-returns,

can be decomposed as follows:

R2 ≡
σ2
µ

σ2
r

=
E
(
µ2
t+1

)
− E

(
µt+1

)2

σ2
r

=
E
(
µ2
t+1

)
σ2
u/(1−R2)

−
E
(
µt+1

)2

σ2
r

= E

(
µ2
t+1

σ2
u

)(
1−R2

)
− E

(
µt+1

σr

)2

= E

((
µt+1

σu

)2
)(

1−R2
)
− SR (rt+1)2

In the first term on the right-hand side of this equation, the expression inside

the expectation can be seen as the squared conditional Sharpe Ratio (SR) in the

special case of constant conditional volatility8, whereas the second term is simply

the squared unconditional SR attainable by holding the asset with excess-return

rt+1 (the currency, in our case). We can thus write:

R2 = E
(
SRt (rt+1)2) (1−R2)−SR (rt+1)2 (A.1)

In this study, we are only concerned with the predictability of excess-returns.

When pricing excess-returns, the risk-free rate can be treated as if it were con-

stant and known. In this case, as shown by Cochrane (1999),9 the squared un-

8Or simply neglecting heteroskedasticity as a further possible source of predictability and

hence profitability
9See p. 75-76 in the appendix of Cochrane (1999).
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conditional SR is the expectation of the squared conditional SR, i.e. SR(rt+1)2 =

E
(
SRt (rt+1)2). In the case of a predictability-based strategy that involves only

a single risky asset (alongside the risk-free one), its conditional SR is generated

by time-varying positions in such asset. Hence, the conditional SR of the strat-

egy that exploits the predictability of the asset with excess-return rt+1, to which

we refer as the rational trading rule on such asset, is generated by a time vary-

ing position in the asset itself. Letting r∗t+1 denote (as in the main text of the

article) the excess-return on such strategy, its unconditional squared SR is thus

SR
(
r∗t+1

)2
= E

(
SRt

(
r∗t+1

)2
)

= E
(
SRt (rt+1)2). We can therefore rewrite (A.1)

as follows:

R2 = SR
(
r∗t+1

)2
(1−R2)− SR2 (rt+1) (A.2)

The equality in (A.2), in turn, can be solved for the unconditional squared SR

of r∗t+1:

SR
(
r∗t+1

)2
= SR2(rt+1)+R2

1−R2 (A.3)

Hence, the SR of r∗t+1 can be decomposed in the SR of a ‘static’ long position in

the currency and the coefficient of determination R2 of the dynamic strategy that

exploits its predictability. This shows that there exists a duality between the R2

of a given predictive model and the SR attainable by exploiting the predictability

captured by the model. As a consequence of (A.3), we also have R2 ≤ SR
(
r∗t+1

)2
.

That is, the R2 of a given predictive regression is no greater than the squared

SR of the rational trading rule that exploits the predictability captured by the

regression itself.

Following Poti and Wang (2010), who build on Ross (2005), one way to restrict

the attainable SR is to directly restrict the curvature of the marginal trader’s

utility function by imposing a relative risk aversion (RRA) upper bound RRAV,

i.e. imposing

SR
(
r∗t+1

)2 ≤ σ (mt+1)2 ≤ σ
(
ϕV,t+1

)2 ∼= RRA2
V σ(rm,t+1)2 ≡ φ (A.4)
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Here, ϕV,t+1is the IMRS between present and future wealth of an investor with

relative risk aversion RRAV and σ (rm,t+1) is the volatility of the market portfolio.

The latter should be seen as the portfolio of risky assets held by the marginal

investor active in the wider capital market (the potential entrant in the market for

predictability-based strategies in the context of the UMTM). The right-hand side

of (A.4), which we denote in short as φ ≡ RRA2
V σ (rm,t+1)2, represents an upper

bound to the variance of the pricing kernel. Poti and Wang (2010) demonstrate

that, as long as the RRA bound holds, the corresponding bound on the volatility

of the kernel holds even when the marginal investor exhibits non-constant RRA

and thus her preferences are defined over moments of possibly third and higher

orders. 10

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

10In particular, Poti and Wang (2010) argue that the IMRS volatility bound must hold in world

where, consistent with 3 and 4 moment extensions of the CAPM, co-skewness and co-kurtosis

risk carry a non-zero price.
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[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]
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Figure 1: This Figure plots the time series of the Jobson and Korkie (1981) rolling z statistic and
of Jensen’s Alpha estimated over rolling 5-year windows of monthly data on S&P excess-returns.
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Figure 2: This Figure plots the time series of the Jobson and Korkie (1981) rolling z statistic
and of Jensen’s Alpha estimated over rolling 5-year windows of monthly data on excess-returns
on gold.
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Figure 3: This Figure plots the time series of the difference between the squared Jobson and
Korkie (1981) rolling z statistic and the squared Jensen’s Alpha estimated over rolling 5-year
windows of monthly data on S&P excess-returns.
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Table 1: This table reports annualized ex-post Sharpe Ratios over the full sample period 1982-
2013 for momentum strategies (in the column labelled “Momentum”) and volatility-weighted
momentum strategies (in the column labelled “Weighted Momentum”) characterized by differing
holding periods, as well as the equally weighted average of these strategies (in the row labeled by
“Average”) and, for comparison, for ‘buy & hold’ strategies with the same holding period. The
strategies use the sign of returns over a lookback period to signal the position to be held for a
holding period. In each case, both the lookback period and the holding period equal k.
Weighted momentum corresponds to a strategy taking a volatility-weighted position.

Momentum Weighted Momentum Buy & Hold
k S&P Gold S&P Gold S&P Gold
1 0.19 -0.07 0.21 0.02 0.45 0.24
2 0.08 -0.08 0.09 -0.06 0.44 0.24
3 0.20 0.08 0.16 0.12 0.44 0.24
4 0.20 0.16 0.22 0.14 0.44 0.25
5 0.41 0.16 0.37 0.16 0.43 0.25
6 0.43 0.22 0.42 0.25 0.43 0.25
7 0.42 0.35 0.46 0.34 0.43 0.25
8 0.46 0.36 0.53 0.39 0.43 0.25
9 0.51 0.41 0.55 0.41 0.43 0.25
10 0.51 0.45 0.53 0.48 0.43 0.26
11 0.44 0.46 0.48 0.48 0.44 0.26
12 0.46 0.48 0.47 0.47 0.44 0.26
15 0.44 0.43 0.44 0.40 0.44 0.27
18 0.37 0.39 0.41 0.32 0.44 0.28
21 0.38 0.38 0.42 0.26 0.44 0.29
24 0.34 0.38 0.40 0.25 0.44 0.29

Avg 0.45 0.41 0.49 0.35 0.43 0.26

44



Table 2: This table reports Sharpe Ratios for positions initiated during recessionary (Panel A)
and expansionary periods for differing investment strategies over the period 1982-2013. Momen-
tum strategies use the sign of returns over the lookback period k to signal the position to be
held for the holding period. In each case, the lookback period is equal to the holding period.
Weighted momentum corresponds to a strategy taking a volatility weighted position. The signal
is based upon the sign of the return over the entire lookback only. For comparison, we also report
Sharpe Ratios for ‘buy & hold’ strategies with the same holding periods.

Panel A (Recession)
Momentum Weighted Momentum Buy & Hold

k S&P Gold S&P Gold Gold S&P
1 0.85 -0.55 1.21 -0.53 0.29 -0.78
2 0.48 -0.81 0.50 -0.70 0.29 -0.78
3 0.63 -0.65 0.52 -0.66 0.29 -0.78
4 0.61 -0.03 0.49 -0.04 0.29 -0.78
5 0.57 -0.52 0.38 -0.52 0.29 -0.78
6 0.49 -0.08 0.28 -0.11 0.29 -0.78
7 0.37 0.09 0.20 0.04 0.29 -0.78
8 0.34 0.17 0.23 0.14 0.29 -0.78
9 0.39 0.07 0.37 0.06 0.29 -0.78
10 0.32 0.14 0.33 0.14 0.29 -0.78
11 0.34 0.10 0.40 0.10 0.29 -0.78
12 0.28 0.24 0.32 0.26 0.29 -0.78
15 0.22 0.34 0.31 0.35 0.29 -0.78
18 0.05 0.35 0.24 0.36 0.29 -0.78
21 0.01 0.52 0.25 0.51 0.29 -0.78
24 -0.11 0.48 0.14 0.49 0.29 -0.78

Panel B (Expansion)
Momentum Weighted Momentum Buy & Hold

k S&P Gold S&P Gold Gold S&P
1 0.07 0.02 0.07 0.11 0.23 0.70
2 0.01 0.17 0.01 0.13 0.24 0.70
3 0.14 0.18 0.14 0.18 0.26 0.69
4 0.13 0.18 0.16 0.18 0.26 0.67
5 0.36 0.26 0.37 0.25 0.28 0.66
6 0.47 0.32 0.46 0.29 0.26 0.67
7 0.50 0.46 0.51 0.40 0.24 0.67
8 0.51 0.45 0.52 0.38 0.28 0.70
9 0.50 0.50 0.51 0.45 0.30 0.71
10 0.50 0.53 0.49 0.50 0.33 0.71
11 0.40 0.48 0.39 0.44 0.33 0.71
12 0.41 0.46 0.39 0.40 0.34 0.71
15 0.36 0.38 0.34 0.30 0.36 0.71
18 0.36 0.36 0.33 0.29 0.35 0.71
21 0.37 0.32 0.34 0.27 0.37 0.73
24 0.32 0.32 0.30 0.28 0.39 0.72
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Table 3: This table reports, for the excess-return on several strategies, estimates of the first order
autocorrelation coefficient, ρ, and the associated GLS t-statistic, the coefficient of determination,
R2, of the first order autoregression used to estimate ρ and the variance ratio (the ratio of
the variance of annual excess-returns to the annualized variance of monthly excess-returns).
The strategies under consideration are the un-weighted (in Panel A) and volatility-weighted
momentum strategies (in Panel B) on the S&P with holding period and lookback period of k
months (specified in the first column), as well as the corresponding equally-weighted strategies
(in the rows labelled as “Avg”). The sample period is the full one, 1982-2013.

Strategy ρ t R2
Variance
ratio

k Panel A
1 0.02 0.36 0.00 0.97
2 0.05 0.89 0.00 0.97
3 0.09 1.60 0.01 1.00
4 0.07 1.34 0.01 0.86
5 0.07 1.21 0.01 1.12
6 0.10 1.84 0.01 1.17
7 0.12 2.13 0.01 1.11
8 0.13 2.32 0.02 1.08
9 0.08 1.41 0.01 1.04
10 0.09 1.53 0.01 1.15
11 0.07 1.21 0.01 1.24
12 0.07 1.19 0.00 1.29
15 0.05 0.87 0.00 1.49
18 0.03 0.48 0.00 1.58
21 -0.01 -0.12 0.00 1.84
24 0.01 0.14 0.00 2.05

Avg -0.01 -0.12 0.00 1.40
k Panel B
1 0.12 2.16 0.01 1.27
2 0.04 0.77 0.00 0.85
3 0.05 0.92 0.00 0.84
4 0.03 0.46 0.00 0.98
5 0.02 0.27 0.00 1.16
6 0.07 1.23 0.01 1.28
7 0.10 1.77 0.01 1.26
8 0.10 1.76 0.01 1.20
9 0.04 0.63 0.00 0.98
10 0.03 0.50 0.00 0.90
11 0.01 0.23 0.00 0.91
12 0.00 -0.06 0.00 0.95
15 0.01 0.20 0.00 1.10
18 0.04 0.65 0.00 1.36
21 0.01 0.26 0.00 1.54
24 0.02 0.33 0.00 1.37

Avg -0.02 -0.30 0.00 1.19
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Table 4: This table reports, for the excess-return on several strategies, estimates of the first order
autocorrelation coefficient, ρ, and the associated GLS t-statistic, the coefficient of determination,
R2, of the first order autoregression used to estimate ρ and the variance ratio (the ratio of
the variance of annual excess-returns to the annualized variance of monthly excess-returns).
The strategies under consideration are the un-weighted (in Panel A) and volatility-weighted
momentum strategies (in Panel B) on gold with holding period and lookback period of k months
(specified in the first column), as well as the corresponding equally-weighted strategies (in the
rows labelled as “Avg”). The sample period is the full one, 1982-2013.

Strategy ρ t R2
Variance
ratio

k Panel A
1 -0.11 -1.89 0.01 0.74
2 -0.03 -0.51 0.00 0.84
3 -0.04 -0.72 0.00 0.79
4 -0.13 -2.37 0.02 0.84
5 -0.06 -1.02 0.00 0.81
6 -0.09 -1.54 0.01 1.06
7 -0.08 -1.41 0.01 1.08
8 -0.10 -1.87 0.01 1.13
9 -0.15 -2.62 0.02 0.95
10 -0.14 -2.49 0.02 1.08
11 -0.14 -2.57 0.02 1.06
12 -0.14 -2.44 0.02 1.32
15 -0.13 -2.38 0.02 1.50
18 -0.14 -2.53 0.02 1.78
21 -0.14 -2.59 0.02 1.65
24 -0.15 -2.72 0.02 1.60

Avg -0.14 -2.61 0.02 1.17
k Panel B
1 -0.10 -1.80 0.01 0.67
2 0.00 -0.06 0.00 0.86
3 -0.02 -0.38 0.00 0.58
4 -0.07 -1.25 0.01 0.63
5 -0.06 -1.09 0.00 0.79
6 -0.10 -1.72 0.01 0.84
7 -0.08 -1.46 0.01 0.85
8 -0.10 -1.82 0.01 0.79
9 -0.14 -2.50 0.02 0.69
10 -0.14 -2.56 0.02 0.70
11 -0.15 -2.69 0.02 0.72
12 -0.15 -2.64 0.02 0.73
15 -0.15 -2.72 0.02 0.98
18 -0.15 -2.66 0.02 1.07
21 -0.14 -2.43 0.02 1.15
24 -0.13 -2.42 0.02 1.52

Avg -0.16 -2.90 0.03 0.70
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Table 5: This table reports, for the excess-return on several strategies, estimates of the first order
autocorrelation coefficient, ρ, and the associated GLS t-statistic, the coefficient of determination,
R2, of the first order autoregression used to estimate ρ and the variance ratio (the ratio of the
variance of annual excess-returns to the annualized variance of monthly excess-returns). The
strategies under consideration are the risk-factor mimicking portfolios. The sample period is the
full one, 1982-2013.

Strategy ρ t R2
Variance
ratio

rmrf 0.11 2.03 0.01 1.27
hml -0.04 -0.70 0.00 0.78
smb 0.13 2.38 0.02 1.51
umd 0.08 1.40 0.01 1.19
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Table 6: The panels of this table report alternative models, specified in the headings of the
panel themselves, of the measure of excess-predictability DIFFt, of strategies on the S&P with
5-year holding periods initiated at time t. The sample period is from 1991:01 to 2011:01, the
longest possible given that data on aggregate hedge fund flows gAUM,t is not available before
1991:01 and that, because of the length of the holding period, the final month for which we
can compute SR2

t is 2011:01. To save space, we do not report the individual autoregressive
coefficients βa,1,i, i = 1, 2, ..., s, and βb,1,i, i = 1, 2, ..., s. All p-values are based on Newey and
West (1987) HAC standard errors with 60 lags. The p-values for the tests concerning sums of
coefficients are obtained using the delta-method.

Transition variable: gAUMt−1 SR2
t−1

Independent variable: DIFFt SR2
t (r
∗
i,t,t+h) DIFFt∑

βa,1,i 0.90 0.89 0.87
(0.000) (0.000) (0.000)∑

βa,2,i -0.04 -0.01 -0.03
(0.149) (0.000) (0.150)∑

βb,1,i -0.05 0.02 0.09
(0.910) (0.320) (0.220)∑

βb,2,i -0.00 0.01 0.01
(0.764) (0.951) (0.593)

βa,2,1 -0.01 -0.01 0.03
(0.657) (0.000) (0.000)

βa,2,2 -0.02 0.00 -0.03
(0.008) (0.000) (0.053)

βa,2,3 -0.01 0.00 0.00
(0.108) (0.225) (0.707)

βa,2,4 0.00 0.00 -0.03
(0.004) (0.014) (0.176)

βa,V XO 0.51 0.15 1.14
(0.018) (0.000) (0.006)

βa,rec 0.07 0.02 0.00
(0.000) (0.018) (0.988)

βa,unc -0.03 -0.01 -0.07
(0.231) (0.000) (0.228)

βb,2,1 -0.04 0.00 -0.03
(0.001) (0.000) (0.026)

βb,2,2 0.05 0.01 0.03
(0.023) (0.000) (0.122)

βb,2,3 0.10 0.00 0.03
(0.000) (0.000) (0.258)

βb,2,4 -0.10 0.01 -0.02
(0.000) (0.000) (0.000)

βb,V XO 6.38 -0.07 -2.09
(0.091) (0.027) (0.000)

βb,rec 0.18 -0.02 0.15
(0.695) (0.123) (0.000)

βb,unc 0.24 0.01 0.23
(0.095) (0.000) (0.008)

γ 16218.28 242.06 8005.71
(0.999) (0.031) (0.000)

c 4.32 0.00 0.19
(0.000) (0.000) (0.991)

R
2

0.87 0.86 0.88
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Table 7: The panels of this table report alternative models, specified in the headings of the
panel themselves, of the measure of excess-predictability DIFFt, of strategies on gold with 5-
year holding periods initiated at time t. The sample period is from 1991:01 to 2011:01, the
longest possible given that data on aggregate hedge fund flows gAUM,t is not available before
1991:01 and that, because of the length of the holding period, the final month for which we
can compute SR2

t is 2011:01. To save space, we do not report the individual autoregressive
coefficients βa,1,i, i = 1, 2, ..., s, and βb,1,i, i = 1, 2, ..., s. All p-values are based on Newey and
West (1987) HAC standard errors with 60 lags. The p-values for the tests concerning sums of
coefficients are obtained using the delta-method.

Transition variable: gAUMt−1 SR2
t−1

Independent variable: DIFFt SR2
t (r
∗
i,t,t+h) DIFFt∑

βa,1,i 0.82 0.94 0.88
(0.053) (0.000) (0.000)∑

βa,2,i -0.15 0.00 0.01
(0.072) (0.029) (0.054)∑

βb,1,i 0.13 0.01 -1617.87
(0.074) (0.780) (1.000)∑

βb,2,i 0.5 -0.00 119.87
(0.082) (0.184) (0.587)

βa,2,1 -0.03 0.00 0.01
(0.549) (0.639) (0.486)

βa,2,2 -0.05 0.00 -0.01
(0.016) (0.715) (0.099)

βa,2,3 0.01 0.00 -0.01
(0.000) (0.103) (0.323)

βa,2,4 -0.09 0.00 0.03
(0.073) (0.103) (0.009)

βa,V XO 0.22 0.04 -2.04
(0.810) (0.014) (0.021)

βa,rec -0.41 -0.01 0.72
(0.010) (0.004) (0.000)

βa,unc 0.10 0.00 -0.56
(0.270) (0.000) (0.000)

βb,2,1 0.04 0.00 591.45
(0.221) (0.502) (0.000)

βb,2,2 0.04 0.00 -3583.56
(0.136) (0.381) (0.000)

βb,2,3 -0.02 0.00 1411.09
(0.242) (0.321) (0.000)

βb,2,4 0.09 0.00 1700.81
(0.057) (0.082) (0.000)

βb,V XO -4.77 -0.05 -84560.35
(0.000) (0.286) (0.000)

βb,rec 1.06 0.01 -32666.22
(0.000) (0.348) (0.000)

βb,unc -0.66 0.01 6577.06
(0.000) (0.002) (0.000)

γ 2718.63 204.85 62.25
(0.000) (0.002) (0.000)

c 0.17 0.00 0.33
(0.000) (0.000) (0.000)

R
2

0.84 0.93 0.79
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Table 8: The panels of this table report alternative models, specified in the headings of the panel
themselves, of the average squared Sharpe ratio, SR2

t , of strategies with 5-year holding periods
initiated at time t. The sample period is from 1991:01 to 2011:01, the longest possible given that
data on aggregate hedge fund flows gAUM,t is not available before 1991:01 and that, because of
the length of the holding period, the final month for which we can compute SR2

t is 2011:01.

Panel A (No threshold)
SR2

t = β0 + β1,1SR
2
t−1 + ...+ β1,sSR

2
t−s + gAUM,t−1 × SR2

t−1 + ut

β0 SR2
t−1 SR2

t−2 SR2
t−3 gAUM,t−1 gAUM,t−1 × SR2

t−1 R
2

1. 0.08 0.45 0.30 0.18 -0.49 2.10 0.83
(0.023) (0.000) (0.000) (0.003) (0.003) (0.030)

Panel B.1 (LSTAR Exogenous time-invariant threshold)
SR2

t = β0 + β1,1SR
2
t−1 + ...+ β1,4SR

2
t−4

+β2,1gAUM,t−1 + ...+ β2,4gAUM,t−4 + ftgt + ut,
ft = const.+ β3,1gAUM,t−1 + ...+ β3,4gAUM,t−4,

gt = 1− (1 + exp(γ(SR2
t−1 − c)))−1∑

β1,i

∑
β2,i

∑
β3,i γ c R

2

2. 1.03 -0.37 1.75 17115.27 0.25 0.85
(0.000) (0.153) (0.000) (0.987) (0.000)

Panel B.2 (ESTAR Exogenous time-invariant threshold)
SR2

t = β0 + β1,1SR
2
t−1 + ...+ β1,4SR

2
t−4

+β2,1gAUM,t−1 + ...+ β2,4gAUM,t−4 + ftgt + ut
ft = const.+ β3,1gAUM,t−1 + ...+ β3,4gAUM,t−4,

gt = 1− exp(−γ(SR2
t−1 − c)2)∑

β1,i

∑
β2,i

∑
β3,i γ c R

2

3. 0.96 14.36 -14.65 19474.23 0.25 0.85
(0.000) (0.003) (0.001) (0.000) (0.000)

Panel C.1 (LSTAR Exogenous time-varying threshold)
SR2

t = β0 + β1,1SR
2
t−1 + ...+ β1,4SR

2
t−4

+β2,1gAUM,t−1 + ...+ β2,4gAUM,t−4 + ftgt + ut,
ft = const.+ β3,1gAUM,t−1 + ...+ β3,4gAUM,t−4,
gt = 1− (1 + exp(γ(SR2

t−1 − c× σ2(rm,t−1))))−1∑
β1,i

∑
β2,i

∑
β3,i γ c Restrictions R

2

4.a -0.035 0.55 -1.60 0.58 28.72 0.86
(0.493) (0.271) (0.200) (0.031) (0.028)

4.b -0.030 0.55 -1.13 0.68 25.00 c ≤ 25 0.86
(0.446) (0.441) (0.258) (0.000) (0.000)

4.c 0.084 0.46 -1.36 5.56 5.00 c ≤ 5 0.86
(0.303) (0.592) (0.471) (0.000) (0.000)

Panel C.2 (ESTAR Exogenous time-varying threshold)
SR2

t = β0 + β1,1SR
2
t−1 + ...+ β1,4SR

2
t−4

+β2,1gAUM,t−1 + ...+ β2,4gAUM,t−4 + ftgt + ut,
ft = const.+ β3,1gAUM,t−1 + ...+ β3,4gAUM,t−4,
gt = 1− exp(−γ(SR2

t−1 − c× σ2(rm,t−1)))∑
β1,i

∑
β2,i

∑
β3,i γ c R

2

5. 0.16 -0.21 0.50 0.56 20.16 0.86
(0.052) (0.451) (0.265) (0.058) (0.000)
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