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Abstract

This paper presents a new privacy-preserving framework for collaboratively
learning space-time dependencies in the multi-horizon probabilistic forecast-
ing of wind power. The approach relies on vertical split neural networks, i.e.,
a distributed setting that offers privacy by design via splitting a global deep
learning model between the collaborative wind parks, which avoids explicitly
sharing any raw data or details about local models in both training and infer-
ence stages. To achieve the optimal balance between exploiting global data
while complying with local data distribution, the approach is here tailored to
enable personalization, in a framework that is end-to-end trainable. More-
over, the model is augmented with specific layers designed to improve the
robustness in case of operational issues (such as inaccurate or missing data).
We evaluate several model configurations in a case study of seven correlated
wind farms. Outcomes reveal that our proposed solution leads to relative
improvements (measured with the quantile loss) of around 3% in comparison
with purely private solutions without data sharing.
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Privacy-preserving probabilistic wind forecasting using

personalized vertical split learning

Abstract

This paper presents a new privacy-preserving framework for collaboratively
learning space-time dependencies in the multi-horizon probabilistic forecast-
ing of wind power. The approach relies on vertical split neural networks, i.e.,
a distributed setting that offers privacy by design via splitting a global deep
learning model between the collaborative wind parks, which avoids explicitly
sharing any raw data or details about local models in both training and infer-
ence stages. To achieve the optimal balance between exploiting global data
while complying with local data distribution, the approach is here tailored to
enable personalization, in a framework that is end-to-end trainable. More-
over, the model is augmented with specific layers designed to improve the
robustness in case of operational issues (such as inaccurate or missing data).
We evaluate several model configurations in a case study of seven correlated
wind farms. Outcomes reveal that our proposed solution leads to relative
improvements (measured with the quantile loss) of around 3% in comparison
with purely private solutions without data sharing.

Keywords: Data sharing, Multivariate time series, Personalization,
Probabilistic forecasting, Split learning, Wind forecasting.

1. Introduction

Renewable energy forecasting is an important component of decision-
making in modern energy systems since it can help reduce operation costs
without requiring any new investment in physical assets. Traditionally, fore-
casting tasks are carried out centrally by gathering information from all in-
dividual generators (e.g., wind parks) in a single database (Arrieta-Prieto
and Schell, 2022; Hong et al., 2016). However, in the current liberalized en-
vironment, generators are typically owned by different entities, which may
be reluctant to share their private data because it contains sensitive infor-
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mation about their business operation (which could be exploited by market
competitors (Cui et al., 2018)). If generators use only their own local data,
they inevitably lose the explanatory power contained in measurements from
neighboring sites, which may lead to opportunity costs and higher electricity
costs for end-users (Webborn and Oreszczyn, 2019).

To address users’ privacy and data security concerns of traditional (cen-
tralized) forecasters and thus promote collaboration among different data
owners (Véliz and Grunewald, 2018), an efficient solution is provided by
distributed learning. In particular, the alternating direction method of mul-
tipliers (ADMM) has been investigated due to its ability to collaboratively
learn a global model by sharing only aggregate information instead of the raw
data (Zhang et al., 2018; Zhang and Wang, 2018; Gonçalves et al., 2021). To
alleviate shortcomings of such ADMM-based approaches that are tailored to
convex models (Boyd et al., 2011), federated learning (FL) was recently pro-
posed (McMahan et al., 2017) to accommodate non-linear, e.g., tree-based
(Cheng et al., 2021) or deep learning (McMahan et al., 2017) structures.

However, traditional FL algorithms focus on horizontally distributed data,
where parties have access to different samples from the same variables. The
goal is thus to augment the database with samples from many clients to feed
(and train) a global model (Toubeau et al., 2023). Unfortunately, such set-
tings are unable to explicitly combine the information from several entities to
form a complete feature set for each sample, which may reduce their capacity
to learn cross-entities dependencies (Liu et al., 2022; Abuadbba et al., 2020).
Hence, several approaches for vertically partitioned machine learning have
been developed, dedicated for, e.g., linear and logistic regression (He et al.,
2022), decision trees (Cheng et al., 2021), support vector machines (Shen
et al., 2020), and feedforward neural networks (Zhang et al., 2018). These
conventional solutions rely on cryptographic schemes such as secure multi-
party computation (that enables parties to privately compute a function over
their non-shareable inputs) and homomorphic encryption (that enables per-
forming simple mathematical operations on encrypted values), which suffer
from high computation and communication costs, such that current solutions
are not yet scalable (Lloret-Talavera et al., 2021).

Alternatively, split learning was proposed in (Gupta and Raskar, 2018),
wherein involved parties have access only to a portion of the global model,
and only the output of these local models are shared with a central server
(in every iteration) to make the predictions, such that a low communica-
tion bandwidth is needed. Split learning is highly versatile, which allows
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it to accommodate different collaborative configurations for both horizon-
tal and vertical partitioned data (Vepakomma et al., 2018). In contrast to
FL, entities do not share their local model architecture nor its parameters,
which provides an additional level of privacy. This, moreover, reduces the
computational burden of the clients who need to run only a few local compu-
tations rather than the whole model (in both training and inference stages).
However, similar to FL, split learning struggles in dealing with entities with
heterogeneous data distributions. Moreover, the sequential nature of time
series models requires clients-server communication for each individual time
step, making vanilla split learning impractical for real-life applications (Abedi
and Khan, 2020).

In light of this context, the key idea of this paper is to propose a new
communication-efficient vertical split neural network for the collaborative
multi-horizon probabilistic forecast of wind parks. The privacy-preserving
model is tailored to capture all space-time dependencies among parks while
enabling personalization to ensure that predictions comply with all individual
data distributions. Overall, the contributions are threefold.

First, we adapt vertical split learning to accommodate advanced architec-
tures for time series regression without adding any communication overhead.
To that end, the proposed approach exploits the ability of sequential models
to extract the relevant temporal context at each time step, such that time
patterns can be decomposed over the prediction horizon. In this way, each
wind park can share all its temporal features (in a single instance) with a
central server, wherein a temporal alignment (between the wind parks) can
then be achieved to capture space-time dependencies.

Second, we propose a personalization strategy to achieve the optimal
trade-off between leveraging the relevant information from all wind parks
while respecting local characteristics. This is achieved by sending the server’s
output back to individual wind parks that can hence recombine this global
vector with their individual data using personalized processing layers for
making the predictions of interest.

Third, we investigate different aggregation mechanisms to combine the
outputs of the partial networks on the server side. Indeed, simply concate-
nating the client-side outputs (as done in traditional models) is not robust to
missing or even outlier data, and other pooling layers (that can accommodate
such bad data) are thus tested.

The resulting model is end-to-end differentiable (and can be learned using
gradient descent) while innately protecting data privacy without encryption

3
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algorithms or secure computation schemes. Outcomes from a case study
composed of seven correlated wind parks show the advantages of the pro-
posed method in comparison with other privacy-preserving techniques (such
as federated learning) and purely private models (without data sharing) in
terms of both forecasting performance and model robustness.

The rest of this paper is organized as follows. The formulation of the
collaborative probabilistic forecasting problem and the concepts of (verti-
cal) split learning are presented in Section 2. The proposed robust privacy-
preserving time series forecaster is presented in Section 3, while section 4
discusses implementation details. Simulation results of the proposed method
are provided in section 5, and the main conclusions and perspectives are
drawn in Section 6.

2. Problem formulation and background

We consider a collaborative setting consisting of correlated wind parks,
wherein the goal is to predict, at the forecast creation time t0, the conditional
distribution of wind power realizations yc1:C

t1:T
= {yc1t1 , ..., y

cC
tT
} across locations

c ∈ C = {c1, ..., cC} and future time steps t ∈ T = {t1, ..., tT}:

fθ = p
(
yc1:C
t1:T

∣∣yc1:C
:t0 ,x

(p),c1:C
:t0 ,x

(f),c1:C
t1:T︸ ︷︷ ︸

xall
t0

)
(1)

where xall
t0

=
{
xall,c1
t0 , ...,xall,cC

t0

}
aggregates the input features from all wind

parks, and is composed of the past wind measurements yc1:C
:t0 (before t0), the

past time-varying covariates x
(p),c1:C
:t0 (before t0), and the known future co-

variates x
(f),c1:C
t1:T

(over the horizon t1:T ). Here, the covariates used for the
proposed collaborative forecasting task are summarized in Table 1, and con-
sist of historical power measurements, along with calendar-based and weather
information for all wind parks.

Table 1: Input features of the wind power forecaster.

Past data
x
(p),c1:C
:t0

past measurements of wind speed and direction, calendar
information (period of the day)

Known
future data
x
(f),c1:C
t1:T

deterministic forecasted values of wind speed and
direction (done by the system operator), calendar

information (period of the day)
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The target distribution (1) is here approximated by a set of conditional

quantiles ŷ
(q),c
t , i.e., p

(
yct ≤ ŷ

(q),c
t |xall

t0

)
= q, which are defined for Q relevant

probability levels q (Toubeau et al., 2019). The model fθ thus yields:

fθ
(
xall
t0

)
= ŷc1:C

t1:T
=
{
ŷ
(q),c1:C
t1:T

}
q∈Q

(2)

where the output ŷc
t of each client c for each time step t is thusQ-dimensional.

Due to data privacy considerations, individual data cannot be shared
between wind parks or any other entity. The overall goal of the work is,
therefore, to learn a shared model fθ, while preserving data privacy, which is
achieved by relying on vertical split learning (Gupta and Raskar, 2018).

2.1. Vertical split learning

In vanilla vertical split learning (represented in Figure 1), each client c
has a (private and self-tailored) part fθcx of a shared model, and the outputs

ac = fθcx
(
xall,c
t0

)
of these local models are fed to a central server. There,

local outputs are aggregated a = fagg
(
ac1 , ..., acC

)
and processed to make the

predictions ŷc1:C
t1:T

of interest (Ceballos et al., 2020). By combining information
from different entities (carrying specific modalities of data) without sharing
any raw data, the resulting model can capture cross-entities dependencies in
a privacy-compliant way.

Figure 1: Architecture of vanilla vertical split learning.
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2.2. Distance correlation

When all clients c ∈ C send their intermediate feature map ac to the cen-
tral server, an adversary may be able to reconstruct original raw data from
these activations ac (Yang et al., 2019). Inspired by (Vepakomma et al.,
2020), we further robustify the procedure against honest-but-curious agents
(i.e., that follow the communication and computation protocols while at-
tempting to uncover private information from other entities) by minimizing
the distance correlation between raw data xall,c

t0 and ac. This provides an
extra level of security on top of the obfuscation given by local models fθcx .

In statistics, the distance correlation is a measure of dependence between
two random vectors (Székely et al., 2007), and is included in the interval
[0, 1], where a value of 0 means that the vectors are independent. Distance
correlation is selected because of its unique set of advantages, i.e., i) it can
be computed for two vectors (i.e., xall,c

t0 and ac) of different dimensions, ii) it
captures both linear and nonlinear dependencies, iii) it has a closed-form that
is easily computable (without requiring any tuning of additional parameters),
and iv) it is fully differentiable (and can thus be used as a loss function in
training).

3. Personalized split learning with vertically partitioned data

Vanilla (vertical) split learning models are developed for traditional feed-
forward neural networks. However, such networks do not perform well for
times series regression tasks (Toubeau et al., 2019). Here, split learning
is thus adapted to leverage the temporal nature and modeling power of
sequence-to-sequence (seq2seq) deep learning networks without requiring com-
munication at each time step of the horizon t1:T . Practically, each wind park
has its own local (seq2seq) network fθcx that encodes its data x

all,c
t0 into an out-

put sequence ac
t1:T

. Local outputs from all parks are then transmitted (in a
single communication step) on a shared server network that performs a tem-
poral alignment of those outputs, hence capturing all underlying space-time
dependencies.

In addition, although vanilla split learning avoids sharing any raw in-
put data xall,c

t0 , it involves sharing the labels yc
t1:T

. Since the labels contain
sensitive information (i.e., actual wind realizations), we adopt a U-shaped
configuration (Figure 2), wherein the server’s output zct1:T are sent back to
the wind park entities to make the final predictions ŷc

t1:T
. In addition to

preventing data leakages, this configuration can be used for personalization,

6
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where each individual wind park c can tailor the last processing layers fθcy of
the model to better fit its local data.

Figure 2: Forward pass of the personalized vertical split learning architecture, where the
local extraction module and the personalized prediction module are only depicted for c1.

The proposed collaborative model is composed of three main modules:

1. Feature extraction modules (section 3.1) that extract the relevant in-
formation to share with other collaborative entities, in a format that
prevents reconstructing raw data.

2. A central server (section 3.2) that aggregates and processes the result-
ing space-time information using a strategy that is inherently robust
to missing data.

3. Personalized prediction modules (section 3.3) that combine the shared
server’s output with local data to obtain a park-specific prediction.

The resulting model can be learned entirely end-to-end using gradient
descent (section 3.4).

3.1. Local extraction modules

Each wind park processes its own data xall,c
t0 , which is here carried out with

seq2seq models fθcx . In this architecture, an encoder processes past informa-

tion
{
yc
:t0
,x

(p),c
:t0

}
to convert it into a fixed-length vector, that is then used,

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



along with the known future data x
(f),c
t1:T

, to generate the intermediate feature

map ac
t1:T

. The goal is to decorrelate the output ac
t1:T

from raw data xall,c
t0 ,

while still containing explanatory power for the prediction task. Both encoder
and decoder are modeled using Long Short Term Memory (LSTM) recurrent
neural networks, but other architectures, e.g., Transformers (Vaswani et al.,
2017), can be used.

It should be noted that both local data xall,c
t1:T

and the model design fθcx
(architecture and parameters) are kept private, i.e., never shared with other
wind park entities.

3.2. Central Server

The outputs ac
t1:T

from all local extraction modules are then temporally
aligned on the server. A naive approach consists in concatenating the local
outputs along the dimension of features (left part of Figure 3), but this
strategy requires having access to the intermediate outputs ac

t1:T
from all

entities on every iteration, which makes it very vulnerable in case of missing
data (during the operational inference phase).

To tackle this problem, we rather propose element-wise operations across
the local outputs ac

t1:T
of all wind parks. As represented in the right part of

Figure 3, this only involves that all local outputs have compatible shapes.

Figure 3: Aggregation of client-side outputs at the server side. Comparison between
concatenation and element-wise pooling strategies.

Inspired by (Ceballos et al., 2020), we use the element-wise maximum,
but alternatives such as element-wise average and element-wise sum are also
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tested. The resulting matrix at1:T is then processed by fθz to extract the
relevant space-time information zt1:T that will be returned back to individual
wind park entities.

3.3. Personalized prediction modules

Since local wind power measurements may not be identically distributed,
a personalization strategy composed of two components is adopted. First,
each wind park c relies on its own local prediction module, which can thus
be adapted (during training) to fit the park-specific wind power distribution.
Second, a (data augmentation) procedure is carried out by concatenating
(along the dimension of features) the server’s output zt1:T with local data
xall,c
t1:T

to form a new set of input features xzct1:T . Overall, the augmented data
xzct1:T are thus processed by park-specific layers for computing the quantiles
of the forecast distribution, i.e., ŷc

t1:T
= fθcy({xzct1:T }).

To that end, a seq2seq model (different from the one in the extraction

module) is used, where the encoder is fed with past information
{
yc
:t0
,x

(p),c
:t0

}
,

while the decoder is fed with the augmented data xzct1:T .

3.4. Training scheme

The goal of training is to find the best model fθ in regards to two objec-
tives, i) achieve the best forecasting performance on new future data (i.e.,
minimize the generalization error), and ii) protect the privacy of raw data.
Since the true future data distribution is unknown, the training is carried
out by minimizing the empirical risk, i.e., averaging the total loss ℓ(·) over
the training set composed of sequences s ∈ S of historical data {xall

t0
,yc1:C

t1:T
}s:

min
θ

∑
s∈S

∑
c∈C

∑
t∈T

∑
q∈Q

ℓc(·) (3)

where the total loss ℓc(·) is composed of two different losses (to reflect both
objectives), i.e., the quantile loss QLc(·) that learns to predict the conditional
quantiles, and the distance correlation dCorc(·) between raw data xall,c

t0 and
the intermediate feature map ac

t1:T
, i.e.,

min
θ

∑
s∈S

∑
c∈C

(
α · dCorc(xall,c

t0,s , a
c
t1:T ,s) +

∑
t∈T

∑
q∈Q

(1− α) ·QLc
(
ŷ
(q),c
s,t , ycs,t

))
(4)
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where the α-value controls the level of privacy, by decreasing the depen-
dence between the shared arrays ac

t1:T
and raw local data xall,c

t0 . The distance
correlation dCor(·) is defined in section 2.2, while QL is given by:

QL(ŷ(q), y) = q ·max(0, y − ŷ(q)) + (1− q) ·max(0, ŷ(q) − y) (5)

Solving (4) is a non-convex task, and the model is thus trained using
gradient descent method, i.e., an iterative procedure wherein we first com-
pute the derivative of the loss function (4) with respect to parameters θ,
and then adjust those parameters in the direction of the negative gradient
θ ← θ − η∇θℓ(·) towards a local minimum.

All gradients ∇θℓ(·) can be sequentially computed through backpropaga-
tion, as seen in Figure 4.

Figure 4: Backward pass (here depicted for a single wind park).

The training is initiated by individual wind parks c, each one calculating
the derivatives of their own quantile loss with respect to predicted quantiles,
i.e., ∂QLc(·)

∂ŷc
t1:T

. The training continues by applying the chain rule, working

backwards to sequentially derive ∂QLc(·)
∂θcy

and ∂QLc(·)
∂xzct1:T

.
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Then, each park shares ∂QLc(·)
∂z

with the central server that, in turn, com-

putes the derivatives with respect to the server’s parameters, i.e., ∂QL(·)
∂θz

.

The derivatives associated with the pooling layers, i.e., ∂QL(·)
∂at1:T

, are also

computed at the server side. It should be noted that each pooling layer
leads to a different outcome. In this way, the element-wise maximum pool-
ing returns zero gradients for non-maximum values and simply propagates
∂QL(·)
∂at1:T

for the input that actually corresponds to the maximum. On the

other hand, the concatenation-based aggregation layer involves that the gra-
dient values are split between their respective source layers, i.e., ∂QL(·)

∂at1:T
=[

∂QL(·)
∂a

c1
t1:T

, . . . , ∂QL(·)
∂a

cC
t1:T

]
, where each component is sent to its corresponding wind

park.
Finally, the backpropagated errors are transmitted back to the wind parks

that finalize the training. This is achieved by computing the gradient of the
total loss ℓc(·) with respect to local parameters θcx, hence jointly minimizing
the distance correlation dCorc(·) and the total quantile loss QL(·).

4. Implementation details

Before starting the collaborative learning, it should be noted that data
samples from all clients need to be properly matched for training, i.e., (cleaned)
samples need to be aligned across calendar information, which can be effi-
ciently done using private set intersection (Pinkas et al., 2018).

Then, each wind park performs an offline local training to minimize the
distance correlation dCorc(xall,c

t0 , ac
t1:T

). In this way, the amount of informa-
tion shared with the server during the first iterations of the collaborative
training is already obfuscated, thus preventing data leakage during early
training stages.

The target distribution is estimated for Q = 7 probability levels q, i.e.,
the 5th, 15th, 25th, 50th, 75th, 85th and 95th percentiles. The training is
carried out (according to section 3.4) using mini-batch stochastic gradient
descent. Batches of 96 sequences {xall

t0
,yc1:C

t1:T
}s are used during training. To

ensure both generalization and unbiased model estimation, the historical
sequences are divided into training, validation, and test sets via a (60%,
20%, 20%) allocation. The validation set is used for early stopping, while
the test set enables estimating the performance of the resulting (trained)
model on unseen conditions.
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In the proposed collaborative setting, the wind parks need to agree on the
optimization algorithm (here, the Adam algorithm with a starting learning
rate of 0.001 is selected).

5. Case studies

The proposed privacy-preserving collaborative wind power forecasting
method is tested on a publicly available dataset (Hong et al., 2014) com-
posed of seven neighboring wind farms, recorded in hourly intervals over
three years. As depicted in the correlation matrix in Figure 5, the seven
wind parks are significantly correlated, with the exception of park 2 (and
park 5 to a lesser extent) that exhibit weaker links with other parks.

Figure 5: Correlation matrix yielding the linear dependencies among the seven wind parks.

The wind powers are predicted over a multi-horizon of T = 6 hourly
intervals. A look-back window of k = 8 hours (used by all local models fθcx)
is selected to capture past dynamics. Other input features were presented
in Table 1. After preliminary tests, we found that a value of α = 0.92 in
the loss function (4) leads to a very robust and consistent trade-off between
forecasting performance and data privacy, and this value is thus used across
all simulations. All features are individually scaled (using the training set)
in the range [-1, 1].

For all tested models, the search for the optimal architecture (i.e., hyper-
parameter tuning) is done using random search (Bergstra and Bengio, 2012).
The forecast performance is evaluated using two different metrics, with re-
sults given in p.u. (since wind powers are also used in p.u.).
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First, we use the quantile loss, i.e., the same function that is minimized
during training in (5), averaged over all time steps of the test set, all wind
parks c ∈ C and all quantiles q ∈ Q.

We complement the quantile loss with the Winkler score, which quantifies
the forecast quality for different prediction intervals. For a prediction interval
covering (1− β) · 100%, the Winkler score WSβ is defined as:

WSβ =


δ ŷ(β/2) ≤ y ≤ ŷ(1−β/2)

δ + 2(ŷ(β/2) − y)/β y < ŷ(β/2)

δ + 2(y − ŷ(1−β/2))/β y > ŷ(1−β/2)

(6)

where ŷ(β/2) and ŷ(1−β/2) are respectively the lower and upper bounds of the
prediction interval δ = ŷ(β/2) − ŷ(1−β/2) (defined by the confidence level β).
Hence, the Winkler score increases in case of large uncertainty and when the
actual observation falls outside the predicted interval. It is thus preferable
to have lower Winkler scores.

The data privacy of each wind park is measured using the distance corre-
lation (defined in section 2.2) between the raw data xall,c

t0 and the information
ac
t1:T

shared with the server.

5.1. Ablation study

In this part, we perform an ablation study by measuring the change in
performance of the proposed collaborative model (denoted by Ref) when
removing/adapting important components of its architecture. In particular,
four different aspects are investigated:

• ref-dCor, i.e., the ref model without the integration of the dCor mini-
mization into the training procedure.

• ref-noPers, i.e., the ref model without the personalization strategy.
Hence, the prediction modules fθcy rely only on zt1:T .

• ref-noSeq, the ref model wherein the seq2seq models are replaced by
feedforward networks. This topology reduces to a U-shaped vanilla
(vertical) split neural network.

• ref-concat, i.e., the ref model using the concatenation as the aggrega-
tion layer fagg (instead of the element-wise maximum). In addition, the
element-wise mean (ref-mean) and the element-wise sum (ref-sum) are
also tested.
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The prediction performance and privacy measure (through the distance
correlation) of all models are provided in Table 2. The training times are
not reported since they are quite similar and consistently lower than 10 min-
utes. Typically, the training phase lasts around 10 seconds per epoch (for a
convergence after 40 epochs).

Table 2: Forecasting performance and privacy preservation of different architectures of
split learning-based models.

Model
QL Winkler score [pu] dCor
[pu] β = 0.5 β = 0.3 β = 0.1 mean max

ref 0.176 0.260 0.321 0.451 0.15 0.24
ref-dCor 0.175 0.257 0.320 0.449 0.85 0.89
ref-noPers 0.187 0.276 0.343 0.473 0.18 0.37
ref-noSeq 0.190 0.281 0.350 0.480 0.32 0.36
ref-concat 0.178 0.263 0.327 0.453 0.23 0.37
ref-mean 0.177 0.262 0.326 0.451 0.25 0.32
ref-sum 0.178 0.262 0.326 0.453 0.31 0.44

First, we observe that the best forecasting accuracy is provided by the
ref-dCor model, but at the expense of the privacy of the raw data. Thus is
reflected by high values of the distance correlation between such individual
raw data xall,c

t0 and the information ac
t1:T

shared with the server. In this way,
adding the distance correlation minimization in the training procedure en-
ables decreasing the average distance correlation from 0.85 to 0.15. However,
it is interesting to notice that our ref model achieves a performance close to
the ref-dCor model, which shows that data privacy can be improved without
significantly degrading the prediction accuracy.

In Figure 6, we represent the evolution of the distance correlation over
the whole training for wind park 1, which is well representative of all parks.
It is divided into two steps, starting from training local extraction modules
fθ

c
x with the goal of solely minimizing the distance correlation. Then, the

collaborative model is trained to minimize the total loss defined in (4). We see
that minimizing the local distance correlation ensures that raw data xall,c

t0 are
well obfuscated before starting the collaborative training (i.e., dCor < 0.1).
Data remain remains well protected thereafter (i.e., dCor < 0.2). The slight
increase during the collaborative phase enables us to keep the correlation
necessary to successfully achieve the forecasting task.
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Figure 6: Evolution of the distance correlation with raw data over the training set (blue)
and the validation set (green) for wind park 1.

The highest loss of prediction accuracy is given by the ref-noSeq model,
which confirms the importance of properly capturing time dependencies in
the wind power forecasting task. In particular, the ref model relies on seq2seq
models for both extraction and prediction modules. The encoder and decoder
networks of the feature extraction are composed of a single LSTM-based layer
with 10 neurons. The same architecture is used for the prediction module
but with 20 neurons in both encoder and decoder networks.

For illustrating the quality of the ref model, the probabilistic wind power
forecasts (given in pu) of 3 parks (i.e., 1, 2, and 5) during two days (i.e.,
a summer and a winter afternoon) are shown in Figure 7. The gray areas
cover the prediction intervals, while the red line represents the actual hourly
wind power realizations. For both days, we observe that wind power pat-
terns are well captured by the ref model, even for park 2 that exhibits a
slightly different behavior (in line with its low correlation with other parks,
see Figure 5).

In Table 2, we also see that the personalization strategy is also instru-
mental for the prediction performance. Only relying on the shared server’s
output zt1:T leads to significant losses, which tends to demonstrate that the
server struggles in its dual mission to generalize from all wind parks (by
grasping space-time dependencies), while capturing local data distributions.
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Figure 7: Multi-horizon probabilistic forecasts of wind power for parks 1, 2, and 5 for two
different days.

Finally, simulations reveal that the max pooling layer outperforms other
topologies, including the concatenation layer. This suggests that, in addition,
to provide a robust framework in case of client dropout or inaccurate data
(as further investigated in section 5.4), those pooling also serve of efficient
downsampling, i.e., creating a lower resolution version of the input signals
that disregards the elements useless for the forecasting task.

5.2. Comparison with centralized and purely private models

In this part, we compare the forecasting performance of the ref model
with centralized and fully private models.

On the one hand, the purely private (non-cooperating) setting consists
in training a different forecasting model for each wind park individually,
assuming there is no collaboration. On the other hand, the (non-private)
central models rely on complete information, i.e., an ideal (but impractical)
case where each wind park builds its own model using all private data from
other parks (Toubeau et al., 2021).

Both settings are tested with a traditional seq2seq model. In comple-
ment, we also implement a local multilayer perceptron (MLP), or feedfor-
ward neural network, to investigate the importance of explicitly capturing
time dependencies. All these models are compared in Figure 8, where the
forecasting performance (measured with the quantile loss) is given for each
of the seven wind parks.

First, there is a significant performance gap between seq2seq centralized
and seq2seq local models, which shows the practical interest of data shar-
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Figure 8: Comparison of the forecast accuracy (given by the quantile loss) of different
centralized and fully-private models for the seven wind parks.

ing for correlated wind parks. Interestingly, this can be efficiently achieved
through collaboration since our proposed ref model leads to a relative im-
provement of the quantile loss (averaged over the seven parks) with respect to
local seq2seq models equal to around 3%. It should, however, be noted that,
even with the personalization strategy, the ref model is slightly worse than
the local model for wind park 2, which demonstrates the importance of rely-
ing on significant inter-park dependencies to participate to the collaborative
learning task.

Second, we also confirm the importance of properly capturing time depen-
dencies since local seq2seq models outperform local MLPs by 4.5% (regarding
the quantile loss QL averaged over the seven wind parks). This highlights
the inherent limitations of feedforward neural networks and by extension, of
vanilla split neural networks for time series forecasting tasks.

5.3. Comparison with other collaborative models

Then, we consider two alternative collaborative methods: the Federated
Averaging (FedAv) learning algorithm (McMahan et al., 2017) and horizontal
split learning (HSplit). The outcomes are compared with our proposed ref
model for the seven wind parks in Figure 9.

In FedAv, a global model is fully shared among wind parks. During
the iterative training procedure, parks perform local computations on their
private dataset to improve the model parameters θ. These local updates
are then sent back to the server, which calculates the global average until
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convergence. In HSplit, each wind park has its own local extraction module.
The intermediate output is then shared with the global (shared) server that
sends the information back to the park for the final prediction. In this setting
(that aims at enriching sample diversity), the server is thus responsible to
learn from sequences of all wind parks to improve generalization.

Figure 9: Comparison of the forecast accuracy (given by the quantile loss) of different
collaborative models for the seven wind parks.

Although federated learning (FedAv) augments the database (by training
a single shared model on the samples from all wind parks), we see that it
fails to properly capture space dependencies among correlated variables.

Simulations also revealed that Hsplit is very sensitive to local overfitting.
In particular, when the training is performed sequentially for each wind park,
the results are dramatically biased in favor of the last trained parks. In par-
ticular, training from park 1 to 7, leads to a quantile loss of 0.29 for park
1 and 0.168 for park 7. Such discrepancies are unacceptable for collabora-
tive entities, and we therefore mitigate this issue by shuffling all training
sequences, which stabilizes the variability across parks.

5.4. Robustness to data errors

To investigate the robustness of the proposed ref model, we study the
forecasting performance in case of an unexpected drop of clients (during the
inference stage), which can be seen as an extreme case of data poisoning. A
sensitivity analysis on the ratio of defaulting wind parks is carried out, and
results are summarized in Table 3.
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Table 3: Comparison of pooling strategies of the server on the forecasting performance
(measured with the quantile loss) for different rates of clients dropping during testing.

Pooling
Quantile loss QL [pu]

r = 0.1 r = 1 r = 2
element-wise max 0.176 0.177 0.181
element-wise mean 0.177 0.180 0.185
element-wise sum 0.178 0.181 0.187

As expected, the performance suffers as a consequence of the clients drop-
ping, which arises from the loss of the explanatory power of the underlying
features xall,c

t0 . However, the performance loss is less severe for the element-
wise maximum pooling strategy.

Moreover, we also observe that the collaborative setting enables obtaining
prediction for all wind parks, even when some of them suffer from missing
data (e.g., due to local sensor failures), which is achieved by leveraging the
information given by other parks. This is a strong advantage with respect
to fully private solutions, wherein the loss of input information cannot be
mitigated by correlated variables from other entities.

6. Conclusion and perspectives

This paper presented a general collaborative framework for capturing
space-time dependencies in privacy-preserving regression tasks and is here
applied to the probabilistic forecast of wind power among neighboring parks.
Outcomes revealed that the combination of (vertical) split learning with per-
sonalization is instrumental to unlock the value of collaboration. However,
it is important to properly select the pooling layer (wherein local data are
aggregated on a central server) to ensure robustness in case of missing infor-
mation.

An important perspective of this work is to investigate how do we select
the entities participating in collaboration since it has been shown that the
model can struggle for weaker correlations. Also, we should further study
how do we select the best model to ensure fairness among all collaborative
entities (i.e., ensure that the gains of each entity are reflective of the added
value provided to other agents).
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