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MAIN STATEMENTS

(i)– Forecasting single variables in fat-tailed domains
is in violation of both common sense and proba-
bility theory.

(ii)– Pandemics are extremely fat-tailed events, with
potentially destructive tail risk. Any model ignor-
ing this is necessarily flawed.

(iii)– Science is not about making single points predic-
tions but about understanding properties (which
can sometimes be tested by single point estimates
and predictions).

(iv)– Sound risk management is concerned with ex-
tremes, tails and their full properties, and not
with averages, the bulk of a distribution or naive
estimates.

(v)– Naive fortune-cookie evidentiary methods fail to
work under both risk management and fat tails,
because the absence of evidence can play a large
role in the properties.

(vi)– There are feedback mechanisms between forecast
and reaction that cancels the invalidity of some
predictions.

(vii)– Exponential dynamics automatically satisfies the
mathematical condition for chaos and its unpre-
dictability.

COMMENTARY

Both forecasters and their critics are wrong: At the onset of
the COVID-19 pandemic, many research groups and agencies
produced single point "forecasts" for the pandemic—most
relied upon the compartmental SIR model, sometimes sup-
plemented with cellular automata, or with agent-based models
assuming various social rules and behaviors. Apparently, the
prevailing idea is that producing a single numerical estimate
is how science is done, and how science-informed decision-
making ought to be done: bean counters producing precise
numbers.

Well, no. That is not how "science is done", at least in this
domain, and that is not how informed decision-making should
develop.
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Fig. 1. A high variance Lognormal distributions. 85% of observations fall
below the mean. Half the observations fall below 13% of the mean. The
lognormal has milder tails than the Pareto which has been shown to represent
pandemics.
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Fig. 2. A Pareto distribution with a tail similar to that of the pandemics.
Makes no sense to forecast a single point. The "mean" is so far away you
almost never observe it. You need to forecast things other than the mean. And
most of the density is where there is noise.

Furthermore, subsequently and ironically, many criticized
the numerous predictions made by different groups, on
grounds that these did not play out (no surprise there). This is
also wrong, because both forecasters (who missed) and their
critics (complaining) were wrong. Indeed, as we will clarify
in what follows, forecasters would have been wrong anyway,
even if they had got their predictions right.
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Statistical attributes of pandemics: Using tools from ex-
treme value theory (EVT), Cirillo and Taleb [5] have recently
shown that pandemic deaths are patently fat-tailed1–a fact
some people such as Benoit Mandelbrot (or one of the authors,
in The Black Swan [17]) had already guessed, but never
formally investigated. Even more, the estimated tail parameter
α is smaller than 1, suggesting an apparently infinite risk
[5], in line with destructive events like wars [3], [4], and
the so-called "dismal" theorem [22]. Pandemics do therefore
represent a source of existential risk. The implication is that
much of what takes place in the bulk of the distribution is just
noise, according to "the tail wags the dog" effect [5], [18].
And one should never forecast, pontificate, or theorise from
noise! Under fat tails, all relevant and vital information lies
in fact in the tails themselves (hence in the extremes), which
can show remarkably stable properties2.

Remark 1: Distributional Evidence is Strongest Evi-
dence
Random variables with unstable (and uninformative)
sample moments may still have extremely stable and
informative tail properties, centrally useful for robust
inference and risk management.

Furthermore, counter to what one may be led to think
from naive "evidence based" claims, these constitute
evidence –distributional evidence is the strongest form
of evidence.

This is the central problem with the misunderstanding
of The Black Swan [17]: some events have stable and
well-known properties, yet they do not lend themselves
to naive conventional point-prediction.

Fortune-cookie evidentiary methods: In the early stages
of the COVID-19 pandemic, scholars like Ioannidis [13]
suggested that one should wait for "more evidence" before
acting with respect to that pandemic, claiming that "we are
making decisions without reliable data".

Firstly, there seems to be some probabilistic confusion,

1A non-negative continuous random variable X has a fat-tailed distribution,
if its survival function S(x) = P (X ≥ x) is regularly varying, formally
S(x) = L(x)x−α, where L(x) is a slowly varying function, for which
limx→∞

L(tx)
L(x)

= 1 for t > 0 [6], [7], [8]. The parameter α is known as the
tail parameter, and it governs the fatness of the tail (the smaller α the fatter
the tail) and the existence of moments (E[Xp] <∞ if and only if α > p).

2In [15], Ioannidis et al. erroneously maintain that choosing tail events
as done by [5] is "selection bias". Actually, the standard technique there
used is the exact opposite of selection bias: in EVT, one purposely focuses
on extremes, to derive properties that nevertheless influence the rest of the
distribution as well, especially from a risk management point of view. One
could more reasonably argue that the data in [5] do not contain all the
extremes, but, by jackknifing and bootstrapping the data, the authors actually
show the robustness of their results to variations and holes in historical
observations: the tail index α is consistently lower than 1. Finally, when the
authors in [15] state that "Tens of millions of outbreaks with a couple deaths
must have happened throughout time," to support their selection bias claim
against [5], they seem to ignore the fact that the analysis deals with pandemics
and not with a single sternutation. The class of events under considerations
in [5] is precisely defined as "pandemics with fatalities in excess of 1K,"
and their dataset likely contains most (if not all) of them. Worrying about
many false alarms in the tail of the distribution of pandemic fatalities is thus
misplaced.

leading towards the so-called delay fallacy [12]: "if we wait we
will know more about X, hence no decision about X should be
made now." In front of potentially fat-tailed random variables,
more evidence is not necessarily needed. Extra (usually impre-
cise) observations, especially when coming from the bulk of
the distribution, will not guarantee extra knowledge. Extremes
are rare by definition, and when they manifest themselves it is
often too late to intervene. Sufficient –and solid – evidence, in
particular for risk management purposes, is already available
in the tail properties themselves. An existential risk needs to
be killed in the egg, when it is still cheap to do so. Events of
the last few months have shown that waiting for better data
has generated substantial delays, causing thousands of deaths
and serious economic consequences.

Secondly, unreliable data3–or any source of serious
uncertainty–should, under some conditions, make us follow
the "paranoid" route. More uncertainty in a system makes
precautionary decisions more obvious. If you are uncertain
about the skills of the pilot, you get off the plane. If there is
an asteroid headed for earth, should we wait for it to arrive to
see what the impact will be? The logical fallacy runs deeper:
"We did not see this particular asteroid yet" misses the very
nature of the power of science to generalize (and classify), and
the power of actions to possibly change the outcome of events.
Similarly, if we had a hurricane headed for Florida, a statement
that "We have not seen this hurricane yet, perhaps it will
not be like the other hurricanes!" misses the essential role of
risk management: to take preventive actions, not to complain
ex post. And if people take action boarding up windows,
and evacuating, a claim that someone might afterwards make
that "look it was not so devastating", such claim should be
considered closer to a lunatic conspiracy fringe than scientific
discourse.

By definition, evidence follows–and does not precede!–rare
impactful events. Waiting for the accident before putting the
seat belt on, or evidence of fire before buying insurance would
make the perpetrator exit the gene pool. Ancestral wisdom has
numerous versions such as "Cineri nunc medicina datur" (one
does not give remedies to the dead), or the famous saying by
Seneca "Serum est cavendi tempus in mediis malis" (you don’t
wait for peril to run its course to start defending yourself).

Remark 2: Fundamental Risk Asymmetry
For matters of survival, particularly when systemic,
and in the presence of multiplicative processes (like a
pandemic), we require "evidence of no harm" rather than
"evidence of harm."

TECHNICAL COMMENTS

The Law of Large Numbers (LLN) and Evidence: In or-
der to leave the domain of ancient divination (or modern
anecdote) and thus enter proper empirical science, forecasting

3Ironically, many of those complaining about the quality of data and asking
for more evidence before taking action, even in extremely risky situations,
rarely treat the inputs of their predictive models as imprecise [3], [21],
stressing them, and performing serious robustness checks of their claims.
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must abide by both evidentiary and probabilistic rigor. Any
forecasting activity about the mean (or a given parameter) of a
phenomenon requires the working of the law of large numbers
(LLN), guaranteeing the convergence of the sample mean at
a known rate, when the number n of observations increases.
This is surely well-known and established, except that some
are not aware that, even if the theory remains the same, the
actual story changes under fat tails.

Even in front of the most well-behaved and non-erratic
random phenomenon, if one claimed fitness or non-fitness
of a forecasting ability on the basis of a single observation
(n = 1), she would be rightly accused of unscientific claim.
Unfortunately, with fat-tailed variables that "n = 1" error can
be made with n = 106. In the case of events like pandemics,
even larger n→∞ can still be anecdotal.

Remark 3: What is not Forecastable
Fat-tailed random variables with tail exponent α ≤ 1
are simply not forecastable in the traditional sense.
They do not obey the LLN, as their theoretical mean
is not defined, so there is nothing the sample mean can
converge to. But we can still understand several useful
tail properties.
And even for random variables with 1 < α ≤ 2, the LLN
can be extremely slow, requiring an often unavailable
number of observations to produce somehow reliable
forecasts.

As a matter of fact, owing to preasymptotic properties, a
conservative heuristic is to consider variables with α ≤ 5

2 as
not forecastable in practice. Their sample mean will be too
unstable and will require way too much data for forecasts
to be reliable in a reasonable amount of time. Notice that
1014 observations are needed for the sample mean of a Pareto
"80/20", with α ≈ 1.13, to emulate the gains in reliability of
the sample average of a 30-data-points sample from a Normal
distribution [18].

Assuming significance and reliability with a low n is
an insult to everything we have studied since Bernoulli, or
perhaps even Cardano.

Science is about understanding properties, not forecasting
single outcomes: Figures 1 and 2 show the extent of the
problem of forecasting the average (and so other quantities)
under fat tails. Most of the information is away from the center
of the distribution. The most likely observations are far from
the true mean of the phenomenon and very large samples are
needed for being able of performing a reliable forecast. In
the lognormal case of Figure 1, 85% of all observations fall
below the mean; half the observations even fall below 13% of
the mean. In the Paretian situation of Figure 2, mimicking the
distribution of pandemic deaths [5], the situation gets even
worse: the mean is so far away that we will almost never
observe it. It is therefore preferable to look at other quantities,
like for example the tail exponent.

In some situations of fast-acting LLN, as (sometimes) in
physics, properties can be revealed by single predictive exper-

iments. But it is a fallacy to assume that a single predictive
experiment can actually validate any theory–rather remember
that a single tail event can falsify a theory [17].

Sometimes, as recently shown in the IJF by one of the
authors [19]), a forecaster may find a single quantity that is
actually forecastable, say the survival function. For n observa-
tions a tail survival function has an error of o( 1n ), even when
tail moments are not tractable, which is why many predict
binary "outcomes"–as with the "superforecasters" masquerade.
In [18], it is actually shown how the more intractable the
higher moments of the variable, the more tractable the survival
function. Metrics such as the Brier score are well adapted to
binary survival functions, though not to the corresponding ran-
dom variables. That is why survival functions are essentially
useless for risk management purposes [19]. One never uses
survival functions for hedging, but rather expected shortfalls–
binary functions are reserved to (illegal) gambling4.

We do not observe properties of empirical distributions:
On his blog, Andrew Gelman [14] wrote: "The sad truth, I’m
afraid, is that Taleb is right: point forecasts are close to useless,
and distributional forecasts are really hard."

The problem is actually worse. Even if one moves away
from point forecasts and looks at "distributional forecasts,"
then he may find out that these are often hard to obtain,
and possibly uninformative. Playing with empirical survival
functions under fat tails in many cases does not reveal tail
properties, since observations will likely be censored and miss-
ing the real tail–the object that under strong fat tails (α ≤ 2)
harbors not most but literally all of the story [18]. However,
as also shown in [5], the tail parameters are themselves thin-
tailed distributed, so they reveal their properties rather rapidly.
The correct analysis of tail parameters via EVT thus allows
for a more reliable study of tails, and a more solid approach
to risk, while empirical survival functions simply do not.

Uncertainty goes one way: errors in growth rates induce
biases and massive fat tails.: Consider the simple model

Xt = X0e
r(t−t0),

where Xt represents the number of fatalities between periods
t0 and t. Set then

r =
1

(t− t0)

∫ t

t0

rsds,

with rs being the instantaneous rate.
A small change in r can have a tremendous impact on

X , because of the connection between the two quantities.
As shown in Figure 3 an exponentially distributed r, which
thus follows a well-behaved thin-tailed distribution, leads to an
extremely fat-tailed X , which may turn out to be intractable.
Furthermore the more volatile r, the more downward-biased
your observation of the mean of X .

The implications is clear: one cannot translate between the
rate of growth r and the quantity X , because changes in r can
be small (but likely nonzero), but they may have an explosive
impact on X , because of exponentiation. The tail exponent α

4For the fat-tailed random variable X and a high threshold value K, one
has limK→∞

1
K
EP(X|X > K) > 1, where the expectation is under the

real-world measure P. We refer to [19] for all details and implications.
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Fig. 3. Above, a histogram of 106 realisations of r, from an exponential
distribution with intensity λ = 1

2
. Below, the histogram of X = er . We can

see the difference between the two distributions. The sample kurtosis are 9
and 106 respectively (in fact it is theoretically infinite for the second); all
values for the latter are dominated by a single large deviations.

of X is a direct function of the variance of r: the more volatile
r, the fatter the tail of X .

Remark 4: Exponential Growth
Errors in the growth rates of a disease increase the
fatness of the tail in the distribution of fatalities.
Errors in growth rates translate, on balance, into higher
expected casualties and a magnification of unpredictabil-
ity.

We note that in the context of dynamical systems an
exponential dynamics is defined as chaotic [1]. While the study
of chaos often considers systems with fixed parameters and
variable initial conditions, the same sensitivities arise due to
variations in parameters. In the case of pandemics, the value
of the contagion rate (R) and the social behaviors affecting it.
This means that by changing human behavior, the dynamics
can be strongly affected (something that can be both good and
bad news, depending on the decisions taken) [11].

Never cross a river that is 4 feet deep on average : Risk
management (or policy making) should focus on tail properties
and not on the body of probability distributions. For instance,
The Netherlands have a policy of building and calibrating their
dams and dykes not on the average height of the sea level, but

on the extremes, and not only on the historical ones, but also
on those one can expect by modelling the tail using EVT,
mainly via semi-parametric approaches [6], [7].

Science is not about safety: Science is a procedure to
update knowledge; and it can be wrong provided it produces
interesting discussions that lead to more discoveries. But real
life is not an experiment. If we used a p-value of .01 or other
methods of statistical comfort for airplane safety, few pilots
and flight attendants would still be alive. For matters that have
systemic effects and/or entail survival, the asymmetry is even
more pronounced.

Forecasts can result in adjustments that make forecasts less
accurate: It is obvious that if forecasts lead to adjustments,
and responses that affect the studied phenomenon, then one
can no longer judge these forecasts on their subsequent accu-
racy. Yet the point does not seem to be part of the standard
discourse on COVID-19.

By various mechanisms, including what is known as Good-
hart’s law [16], a forecast can become a target that is gamed
by participants–see also the Lucas’ critique applying the point
more generally to dynamical systems. In that sense a forecast
can be a warning of the style "if you do not act, these are the
costs".

More generally any game theoretical framework has an
interplay of information and expectation that causes forecasts
to be self-canceling. The entire apparatus of efficient markets–
and most of modern economics–is based on such a self-
canceling aspect of prediction under both rational expectations
and an arbitrage-free world.
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