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Abstract—We discuss common errors and fallacies when using
naive "evidence based" empiricism and point forecasts for fat-
tailed variables, as well as the insufficiency of using naive first-
order scientific methods for tail risk management.

We use the COVID-19 pandemic as the background for the
discussion and as an example of a phenomenon characterized by
a multiplicative nature, and what mitigating policies must result
from the statistical properties and associated risks. In doing so,
we also respond to the points raised by Ioannidis et al.(2020)
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dakis for helping organize this discussion, and John Ioannidis
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MAIN STATEMENTS

(i)– Forecasting single variables in fat-tailed domains
is in violation of both common sense and proba-
bility theory.

(ii)– Pandemics are extremely fat-tailed events, with
potentially destructive tail risk. Any model ignor-
ing this is necessarily flawed.

(iii)– Science is not about making single points predic-
tions but about understanding properties (which
can sometimes be tested by single point estimates
and predictions).

(iv)– Sound risk management is concerned with ex-
tremes, tails and their full properties, and not
with averages, the bulk of a distribution or naive
estimates.

(v)– Naive fortune-cookie evidentiary methods fail to
work under both risk management and fat tails,
because the absence of raw evidence can play a
large role in the properties.

(vi)– There are feedback mechanisms between forecast
and reaction that affects the validity of some
predictions.

(vii)– Individuals risks fail to translate into systemic
risks under multiplicative processes.

(viii)– One should never treat the "costs" of mitigation
without taking into account the costs of the dis-
ease, and in some cases naive cost-benefit anal-
yses fail (for sure when statistical averages are
nonconvergent or invalid for tail risk purposes).

July 23, 2020; nnt1@nyu.edu

Most likely

Mean

0 2 4 6 8 10 12 14
x

0.2

0.4

0.6

0.8

1.0

1.2
PDF

Fig. 1. A high variance Lognormal distributions. 85% of observations fall
below the mean. Half the observations fall below 13% of the mean. The
lognormal has milder tails than the Pareto which has been shown to represent
pandemics.

(ix) Historically, in the aftermath of the Great Plague,
economies were less fragile to pandemics, equipped
to factor-in effective mechanisms of containment
(quarantines) in their operating costs. It is more
cogent to blame overoptimization than reaction to
disease.

The article is organized at three levels. First, we make gen-
eral comments around the nine points in the Main Statements,
explaining how single point forecasts is an unscientific sim-
plification incompatible with processes with richer properties.
Next we go deeper into the technical arguments. Finally we
address specific points in Ioannidis et al. [16] and answer their
arguments concerning our piece.

COMMENTARY

Both forecasters and their critics are wrong: At the onset of
the COVID-19 pandemic, many research groups and agencies
produced single point "forecasts" for the pandemic—most
relied upon trivial logistic regressions, or upon the com-
partmental SIR model, sometimes supplemented with cellular
automata, or with agent-based models assuming various social
rules and behaviors. Apparently, the prevailing idea is that
producing a single numerical estimate is how science is
done, and how science-informed decision-making ought to
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Fig. 2. A Pareto distribution with a tail similar to that of the pandemics.
Makes no sense to forecast a single point. The "mean" is so far away you
almost never observe it. You need to forecast things other than the mean. And
most of the density is where there is noise.

be done: bean counters producing precise numbers. Always
within a narrowly considered set of options identified by the
researchers.

Well, no. That is not how "science is done", at least in this
domain, and that is not how informed decision-making should
develop.

Furthermore, subsequently and ironically, many criticized
the plethora of predictions produced, because these did not
play out (no surprise there). This is also wrong, because both
forecasters (who missed) and their critics (complaining) were
wrong. Indeed, forecasters would have been wrong anyway,
even if they had got their predictions right. In fact, as we
will clarify throughout this article, 1) in some domains (i.e.
under fat tails) naive forecasts are poor descriptors of a system
(hence highly unscientific), even when they might appear
reasonable; 2) for some functions (risk management related),
or some classes of exposures (systemic ones), these forecasts
are extremely misplaced.

Statistical attributes of pandemics: Using tools from ex-
treme value theory (EVT), Cirillo and Taleb [6] have recently
shown that pandemic deaths are patently fat-tailed1–a fact
some people like Benoit Mandelbrot (or one of the authors, in
The Black Swan [32]) had already guessed, but never formally
investigated. Even more, the estimated tail parameter α is
smaller than 1, suggesting an apparently infinite risk [6], in
line with destructive events like wars [4], [5], and the so-called
"dismal" theorem [39]. Pandemics do therefore represent a
source of existential risk. The implication is that much of
what takes place in the bulk of the distribution is just noise,
according to "the tail wags the dog" effect [6], [33]. And
one should never forecast, pontificate, or theorise from noise!
Under fat tails, all relevant and vital information lies in fact in

1A non-negative continuous random variable X has a fat-tailed distribution,
if its survival function S(x) = P (X ≥ x) is regularly varying, formally
S(x) = L(x)x−α, where L(x) is a slowly varying function, for which
limx→∞

L(tx)
L(x)

= 1 for t > 0 [7], [9], [10]. The parameter α is known as
the tail parameter, and it governs the fatness of the tail (the smaller α the
fatter the tail) and the existence of moments (E[Xp] < ∞ if and only if
α > p).

the tails themselves (hence in the extremes), which can show
remarkably stable properties.

Remark 1: Observed events vs Observed Properties
Random variables with unstable (and uninformative)
sample moments may still have extremely stable and
informative tail properties, centrally useful for robust
inference and risk taking. Furthermore, these reveal
evidence.

This is the central problem with the misunderstanding
of The Black Swan [32]: some events may have stable
and well-known properties, yet they do not lend them-
selves to prediction.

Fortune-cookie evidentiary methods: In the early stages
of the COVID-19 pandemic, scholars like Ioannidis [14]
suggested that one should wait for "more evidence" before
acting with respect to that pandemic, claiming that "we are
making decisions without reliable data".

Firstly, there seems to be some probabilistic confusion,
leading towards the so-called delay fallacy [13]: "if we wait
we will know more about X, hence no decision about X should
be made now."

In front of potentially fat-tailed random variables, more
evidence is not necessarily needed. Extra (usually imprecise)
observations, especially when coming from the bulk of the
distribution, will not guarantee extra knowledge. Extremes are
rare by definition, and when they manifest themselves it is
often too late to intervene. Sufficient –and solid – evidence, in
particular for risk management purposes, is already available
in the tail properties themselves. An existential risk needs to
be killed in the egg, when it is still cheap to do so. Events of
the last few months have shown that waiting for better data
has generated substantial delays, causing thousands of deaths
and serious economic consequences.

Secondly, unreliable data2–or any source of serious
uncertainty–should, under some conditions, make us follow
the "paranoid" route. More uncertainty in a system makes
precautionary decisions more obvious. If you are uncertain
about the skills of the pilot, you get off the plane when it is
still possible to do so. If there is an asteroid headed for earth,
should we wait for it to arrive to see what the impact will
be? We might counter that there were asteroids in the past
that had devastating impacts, and besides we can calculate
the physics. The logical fallacy runs deeper: "We did not
see this particular asteroid yet" misses the very nature of the
power of science to generalize (and classify), and the power of
actions to possibly change the outcome of events. Similarly,
if we had a hurricane headed for Florida, a statement like
"We have not seen this hurricane yet, perhaps it will not be
like the other hurricanes!" misses the essential role of risk
management: to take preventive actions, not to complain ex

2Many of those complaining about the quality of data and asking for more
evidence before taking action, even in extremely risky situations, rarely treat
the inputs of their predictive models as imprecise [4], [38], stressing them,
and performing serious robustness checks of their claims.
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post. And if people take action boarding up windows, and
evacuating, the claim "look it was not so devastating", that
someone might afterwards make, should be considered closer
to a lunatic conspiracy fringe than scientific discourse.

By definition, evidence follows and never precedes rare
impactful events. Waiting for the accident before putting the
seat belt on, or evidence of fire before buying insurance would
make the perpetrator exit the gene pool. Ancestral wisdom has
numerous versions such as Cineri nunc medicina datur (one
does not give remedies to the dead), or the famous saying by
Seneca Serum est cavendi tempus in mediis malis (you don’t
wait for peril to run its course to start defending yourself).

However, just as there are frivolous lawsuits there are
frivolous risk claims and, as we will see further down, we
limit these precautionary considerations to a precise class of
fat tailed multiplicative processes –when there is systemic risk.

Remark 2: Fundamental Risk Asymmetry
For matters of survival, particularly when systemic,
and in the presence of multiplicative processes (like a
pandemic), we require "evidence of no harm" rather than
"evidence of harm."

TECHNICAL COMMENTS

The Law of Large Numbers (LLN) and Evidence: In order
to leave the domain of ancient divination (or modern anecdote)
and enter proper empirical science, forecasting must abide
by both evidentiary and probabilistic rigor. Any forecasting
activity about the mean (or the parameter) of a phenomenon
requires the working of the law of large numbers (LLN),
guaranteeing the convergence of the sample mean at a known
rate, when the number n of observations increases. This is
surely well-known and established, except that some are not
aware that, even if the theory remains the same, the actual
story changes under fat tails.

Even in front of the most well-behaved and non-erratic
random phenomenon, if one claimed fitness or non-fitness
of a forecasting ability on the basis of a single observation
(n = 1), he or she would be rightly accused of unscientific
claim. Unfortunately, with fat-tailed variables that "n = 1"
error can be made with n = 106. In the case of events like
pandemics, even larger n→∞ can still be anecdotal.

Remark 3: LLN and speed of convergence
Fat-tailed random variables with tail exponent α ≤ 1
are simply not forecastable. They do not obey the LLN,
as their theoretical mean is not defined, so there is
nothing the sample mean can converge to. But we can
still understand several useful tail properties.

And even for random variables with 1 < α ≤ 2,
the LLN can be extremely slow, requiring an often
unavailable number of observations to produce somehow
reliable forecasts.

As a matter of fact, owing to preasymptotic properties, a
conservative heuristic is to consider variables with α ≤ 2.5
as not forecastable in practice. Their sample mean will be too
unstable and will require way too much data for forecasts to
be reliable in a reasonable amount of time. Notice in fact that
1014 observations are needed for the sample mean of a Pareto
"80/20", with α ≈ 1.13, to emulate the gains in reliability of
the sample average of a 30-data-points sample from a Normal
distribution [33].

Assuming significance and reliability with a low n is
an insult to everything we have learned since Bernoulli, or
perhaps even Cardano.

Also notice that discussing the optimality of any alarm
system [3], [18], [31] trying to perform predictions on averages
would prove meaningless under extremely fat-tails, i.e. when
α ≤ 2, that is when the LLN works very slowly or does
not work. In fact, even when the expected value is well-
defined (i.e. 1 < α < 2), the non-existence of the variance
would affect all the relevant quantities for the verification of
optimality [8], from the size of the alarm to the number of
correct and false alarms, from the probability of detection of
catastrophes to the chance of undetected events. For all these
quantities, the naive sample estimates commonly used would
prove misleading. A solution could be the implementation on
EVT-based approaches, possibly with the additional tools of
[5] or [21], but at this stage nothing similar exists, to the best
of our knowledge.

For this and other reasons specified later, the application
of a non-naive precautionary principle [23] appears to be the
viable solution in front of potentially existential risks.

Science is about understanding properties, not forecasting
single outcomes: Figures 1 and 3 show the extent of the
problem of forecasting the average (and so other quantities)
under fat tails. Most of the information is away from the center
of the distribution. The most likely observations are far from
the true mean of the phenomenon and very large samples
are needed for reliable estimation. In the lognormal case of
Figure 1, 85% of all observations fall below the mean; half the
observations even fall below 13% of the mean. In the Paretian
situation of Figure 3, mimicking the distribution of pandemic
deaths, the situation gets even worse: the mean is so far away
that we will almost never observe it. It is therefore preferable
to look at other quantities, like for example the tail exponent.

In some situations of fast-acting LLN, as (sometimes) in
physics, properties can be revealed by single predictive exper-
iments. But it is a fallacy to assume that a single predictive
experiment can actually validate any theory; it is rather a single
tail event that can falsify a theory.

Sometimes, as recently shown on the International Journal
of Forecasting by one of the authors [34], a forecaster may
find a single quantity that is actually forecastable, say the
survival function. For n observations a tail survival function
has an error of o( 1n ), even when tail moments are not tractable,
which is why many predict binary outcomes–as with the
"superforecasting" masquerade. In [33], it is shown how–
paradoxically–the more intractable the higher moments of the
variable, the more tractable the survival function becomes.
Metrics such as the Brier score are well adapted to binary
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survival functions, though not to the corresponding random
variables. That is why survival functions are essentially useless
for risk management purposes. In insurance, for instance, one
never uses survival functions for hedging, but rather expected
shortfalls–binary functions are reserved to (illegal) gambling.3

We do not observe properties of empirical distributions:
A commentator (Andrew Gelman) [12] wrote "The sad truth,
I’m afraid, is that Taleb is right: point forecasts are close to
useless, and distributional forecasts are really hard."

The problem is actually worse. In fact, distributional fore-
casts are more than hard–and often uninformative. Building
so-called empirical distributions by survival functions does
not reveal tail properties since it will necessarily be censored
and miss tail observations –those that under very fat tails (say
α ≤ 2) harbor not most, but literally all of the properties
[33]. In other words, probabilities are thin-tailed (since they
are bounded by 0 and 1) but the corresponding payoff is not,
so small errors in probability translate into large changes in
payoffs. However, as further discussed in [6], the tail param-
eters are themselves thin-tailed distributed, hence reveal their
properties rather rapidly. Simply, tail parameters extrapolate–
while survival functions don’t–and methods to measure the tail
are quite potent.4

Uncertainty goes one way; errors in growth rates induce
biases and massive fat tails for the quantity of interest:
Consider the simple model

Xt = X0e
r(t−t0),

where Xt represents the quantity of interest (say the number
of fatalities in pandemics) between periods t0 and t,

r =
1

(t− t0)

∫ t

t0

rsds

and rs is an instantaneous rate.
Using the histograms of r and X , Figure 3 shows something

fundamrntal: a well-behaved distribution, that of r, may lead
to an untractable one, that of X; furthermore, the more volatile
r, the more downward-biased your observation of the mean of
X .

Implication: one cannot naively translate between the rate
of growth r and XT , because errors in r could be small (but
surely not zero), but their impact will be explosive on X ,
because of exponentiation.

Simply, if r is exponentially distributed (or part of that
family), X will be power law. The tail α is a direct function
of the variance: the higher the variance of r, the thicker the
tail of X .

3The main problem is that the conditional expectation is not convergent:
limK→∞

1
K
E(X|X > K) > 1, see [34] for a lengthy discussion.

4This also relates to the superforecasters masquerade mentioned earlier:
building survival functions for tail assessments via sports-like "tournaments"
as in [37], instead of using more rigorous approaches like EVT, is simply
wrong and violates elementary probability theory.
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Fig. 3. Above, a histogram of 106 realizations of r, from an exponential
distribution with sole parameter λ = 1

2
. Below, that of X = er . We can

see the difference between the two distributions. The sample kurtosis are 9
and 106 respectively (in fact it is infinite for the second) –all values for the
second one are dominated by a single large deviations.

Remark 4: Errors in Exponential Growth
1) Errors in growth rates of a disease increase the fatness
of tails in the distribution of fatalities.
2) Errors in growth rates translate, on balance, into
higher expected casualties.

We note that in the context of dynamical systems an
exponential dynamics is defined as chaotic [19]. While the
study of chaos often considers systems with fixed parameters
and variable initial conditions, the same sensitivities arise
due to variations in parameters; in this case, the value of
contagion rate (R) and the social behaviors that affect it.
Indeed this means that by changing human behavior, the
dynamics can be strongly affected, thus allowing for the
opening of opportunities for extinction.5

5One of the authors has shown [25] that with increasing global trans-
portation there is a phase transition to global extinction with probability
1. This indicates that historical distributions don’t account for the severity
or frequency of current or future extreme events because the fat tailed
distributions themselves are coalescing to unit probability extreme events over
shorter time intervals due to global changes in societal behaviors. During this
process the probability distributions for events in any time interval becomes
progressively more weighted to large scale events. Thus historical decadal
or century intervals between pandemics are inadequate descriptors of current
risk.
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Never cross a river that is 4 feet deep on average : Risk
management (or policy making) should focus on tail properties
and not on the body of probability distributions. For instance,
The Netherlands have a policy of building and calibrating their
dams and dykes not on the average height of the sea level, but
on the extremes, and not only on the historical ones, but also
on those one can expect by modelling the tail using EVT, via
semi-parametric approaches [7], [9].

Science is not about safety: Science is a procedure to
update knowledge; and it can be wrong provided it produces
interesting discussions that lead to more discoveries. But real
life is not an experiment. If we used a p-value of .01 or other
methods of statistical comfort for airplane safety, few pilots
and flight attendants would still be alive. For matters that have
systemic effects and/or entail survival, the asymmetry is even
more pronounced.

Forecasts can result in adjustments that make forecasts less
accurate: It is obvious that if forecasts lead to adjustments,
and responses that affect the studied phenomenon, then one
can no longer judge these forecasts on their subsequent accu-
racy. Yet the point does not seem to be part of the standard
discourse on COVID-19.

By various mechanisms, including what is known as Good-
hart’s law [30], a forecast can become a target that is gamed
by participants–see also the Lucas’ critique applying the point
more generally to dynamical systems. In that sense a forecast
can be a warning of the style "if you do not act, these are the
costs" 6.

More generally, any game theoretical framework has an
interplay of information and expectation that causes fore-
casts to become self-canceling. The entire apparatus of ef-
ficient markets–and modern economics–is based on such self-
canceling aspect of prediction, under both rational expectations
and an arbitrage-free world.

REMARKS SPECIFIC TO IOANNIDIS ET AL.
Systemic risks vs individual risks: A fundamental problem,

in both [15] and [16], lies in ignoring scaling: systemic risks do
not resemble (even qualitatively) individual risks. The macro
and the micro-properties of contagious events, given their
infective multiplicative nature, don’t map directly onto one
another.

Ioannidis et al. [15] write: "the average daily risk of dying
from coronavirus for a person <65 years old is equivalent to
the risk of dying driving a distance of 13 to 101 miles by car
per day during that COVID-19 fatality season in 17 of the
24 hotbeds (...) For many hotbeds, the risk of death is in the
same level roughly as dying from a car accident during daily
commute."

Even if Ioannidis et al.’s computation were to hold true for
one individual (it does not), conditionally on an excess of 103

of such individuals dying, the probability that the cause of
death is COVID-19 and not a car accident converges to 1.
When you die of a contagious disease, people around you are

6For instance Dr. Fauci’s warning that the number of (verified) infections
could reach 100K per day (New York Times, June 30, 2020) should not be
interpreted as a forecast to be judged according to its accuracy; rather a signal
about what could happen should one avoid taking action.

at risk of contagion, and they can then infect other people,
in a cascading effect. It is quite elementary: car accidents
are not contagious, while COVID-19 is. You cannot conflate
the two objects: one is additive in the aggregate, the other is
multiplicative. In [33], it has been shown that this is a severe
error, leading to macroscopic blunders7.

Remark 5: Additive vs. Multiplicative Risks (Scaling
of Probabilities)
Under multiplicative effects the risks for a collective do
not scale up from the risks of an individual. Trivially,
systemic risks can be extreme, where the individual ones
are low, or vice-versa.

Trade-offs and Ergodicity: One could say: panic saves lives,
but at what economic price? Let us put aside ethical arguments,
and answer it, ignoring for a moment the value of human life.

The fact is that some classes of (systemic) risks require
being killed in the egg, also from an economic point of view.
The good news is that there are not so many–but pandemics
as we said fall squarely within the category.

The "dismal" theorem [39] mentioned earlier tells us that it
is an error to use trade-off analysis under existential risk. There
have been many proofs of similar arguments on grounds of
ergodicity, well-known by insurance companies since Cramèr:
simply, you cannot use naive B-school costs-benefit analyses
for Russian roulette, because of the presence of an absorption
barrier [32]. But one should not blame Ioannidis et al. [15] for
this error in reasoning: it has been shown to be unfortunately
prevalent in the decision-science literature [24].

Remark 6: Ruin Problems
Traditional cost-benefit analysis fails to apply to situ-
ations where statistical averages are unreliable, if not
invalid.

Moreover, it is not correct to assume, more or less implicitly,
that a disease brings no or little costs, while mitigation is
burdensome. There are indeed severe nonlinearities at play.

First of all, risk is beyond the simple and direct disease-
specific mortality rate. In fact, letting the disease run above a
certain threshold would compound its effect (in an explosive
manner), because of the saturation of services, causing for ex-
ample the displacement of other patients, many in potentially
critical conditions; something that we have seen happening
in the Region of Lombardy in Italy, in New York City, and
elsewhere for several weeks during the spring of 2020 [29].
Furthermore, for survivors the illness itself represents a large
economic drain, be it only from lost working hours, not
counting the costs of hospitalization. And for every severe
infection, there is an unspecified number of morbidities, with
unknown (but definitely larger than zero) additional mortality

7Note that this is also a typical example of "size fallacy," in which different
risky events are compared just on the basis of their probabilities of occurrence,
without caring about their different nature [13].
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and long term costs for the health system [1], [29], as it has
been the case for other diseases like SARS [22].8

Remark 7: False Dichotomies
One should not treat the economy and the disease as
separate independent items, particularly by viewing a
naive trade-off between economic costs and pandemic
mitigation.

Moreover, never underestimate consumers’ (nonlinear) be-
havior. When risks are visible (and a pandemic definitely
is), people tend to modify their behavior, rationally or not,
also switching to alternatives, with nonlinear effects on the
businesses concerned [26]. This is the reason why the airline
industry in the U.S. manages to have fewer than 1 fatal crash
in 25×106 flights (and aims at an even more favorable ratio).
One may claim that it is irrational to spend so much of our
resources mitigating plane crashes, but airline companies know
that, in case of fewer checks and efforts, consumers would
then probably switch to other companies, if not directly to
other types of transportation.

Take the hospitality industry. Unless there is once again
comfort on the part of the public, restaurants and hotels will
be unprofitable. The rule of thumb in NYC is that a drop of
15% in revenues is sufficient to make a restaurant shutter per-
manently; there has been a large drop in restaurant attendance
in Sweden where the state did not enforce lockdowns, owing
to a high rate of voluntary self-isolation [17].

The United States (and many other countries worldwide)
have spent trillions of dollars on sophisticated weaponry in
the past decades, to counter uncertain threats. It would be a
good idea to question these expenditures first, before doubting
the spending to stave off certain pandemics.

Likewise, it would be a good idea to question first the
excessive burden on Western economies, particularly the U.S.,
of measures taken to ensure workplace and transportation
safety which, we saw, are driven by the legal system and the
tort mechanisms.

Remark 8: Domain Dependence
It is not rational to worry about pandemic costs (ex-
tremely fat-tailed exposure), while not also questioning
other sizable insurance-style expenditures for transporta-
tion and workers safety.

It is therefore incorrect to claim that it is the authorities’

8Geronticide: This discussion does not even cover the ethical discussion of
trade-offs and their inapplicability in some domains, perhaps the most central
discussion. At what price will you kill your parents/grandparents? A million
dollars? Ten million? A billion? Furthermore, the fact that older people are
more vulnerable to the disease brings considerations of geronticide (senicide):
one misses that the silver rule [32] commands treating older generations under
a moral liability, as one wishes to be treated by the next generation. Letting
the disease run through older generations violates the interdicts on geronticide
and intergenerational obligations. The fact that your parents did not sacrifice
their own parents creates an obligation to not sacrifice them; your children
will spare you in turn, under the same rule.

response to the pandemic that caused unemployment in the
transportation or hospitality industries. As a matter of fact, the
arguments proposed by two of the authors [23], last January
2020, were aimed at lowering the economic effect of the
pandemic: prevention is orders of magnitude cheaper than the
cure–recall that sed prior est sanitas quam sit curatio morbi.

We note that many comments of the type "the pandemic
has caused only 640K fatalities" (as of July 25, 2020) simply
ignore the fact that, in practically every location subject to
the pandemic, there has been local or governmental action to
mitigate it–we do not consider the counterfactual of "what if"
because it is not visible.

Remark 9: Economic Fragility
The argument in [32] is that we live in an over-optimized
environment, in which a slight drop in sales or a change
in consumer preferences may cause wild interlocking
industry collapses. This nonlinearity is similar to "large
a movie theater with a very small door at the times of
fire."

It is more cogent to blame the over-optimized eco-
nomic structure than the general reaction to the disease.

Early Mitigation and Economic History: We note here that
while the Great Plague took place in the fourteenth century,
quarantines were enforced five centuries later as economies
understood they could not afford recurrences. Between the
Habsburg and the Ottoman Empire, there were lazarettos
along the border, and every active Mediterranean port en-
forced quarantines for travelers along the expanded silk road,
while pilgrim routes were subjected to similar measures. For
instance, in the 1830s, in the Count of Monte Christo, a
traveler from Paris to Ioanina (where Prof. Ioannidis was
previously located), had to spend four days in quarantine to
get there, while there was no particular threat of disease. In
fact, the novelist was underestimating, for historian records
show mandatory nine days for ordinary travelers and fifteen
days for merchants according to [28], [27]. Economies adapted
to early mitigation throughout the centuries preceding our
era. Furthermore, the Ottoman Empire has ready lazaretos
for additional quarantining along specified stations at the first
signs of a pandemic.

Mitigation has another effect: to delay and temporize, while
we can understand the properties of the disease. While initial
treatments are under high opacity, later treatments allow for
gains of collective experience9 .

Selection Bias and Class of Events: In [16], the authors
erroneously maintain that choosing tail events as done by [6]
is "selection bias". Actually, the standard technique there used
is the exact opposite of selection bias: in EVT, one purposely
focuses on extremes to derive properties that influence the
outcomes, especially from a risk management point of view.
One could more reasonably argue that the data in [6] do not

9Aside from considerations of geronticide, when the costs of the Swedish
experiment are finally told, one of the factors will be the early loss of life
when later (current) medical practice would have saved them even before a
vaccine.
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Fig. 4. Zipf plots (log-log plots of the empirical survival function P>) for nine random selections of 30 out of the 72 pandemics in [6]. The number in the
center represents the a naive (OLS) estimate of the tail parameter α, readable as the absolute slope of the red negative line. The values of α appear to be
stable notwithstanding the sampling, signalling the robustness of the approach and the inconsistency of the "selection bias" critique. The values are also in
line with the more rigorous EVT-based findings of [6].

contain all the extremes, but, by jackknifing and bootstrapping
the data, the authors actually show the robustness of their
results to variations and holes in historical observations: the
tail index α is consistently lower than 1. In Figure 4 a simple
illustration is given, showing that one can be quite radical in
dealing with the uncertainty in pandemic fatalities, and still
find out that the findings of [6] hold true.

When the authors in [16] state that "Tens of millions of
outbreaks with a couple deaths must have happened through-
out time," to support their selection bias claim against [6],
they seem to overlook the fact that the analysis deals with
pandemics and not with a single sternutation. The class of
events under considerations in [6] is precisely defined as
"pandemics with fatalities in excess of 1K," and their dataset
likely contains most (if not all) of them. Worrying about many
missing observations in the left tail of the distribution of
pandemic deaths is thus misplaced.

Conditional information: One may be entitled to ask: as
we get to know the disease, do the tails get thinner? Early in
the game one must rely on conditional information, but as our
knowledge of the disease progresses, shouldn’t we be allowed
to ignore tails?

Alas, no. The scale of the pandemic might change, but

the tail properties will remain invariant. Furthermore, there
is an additional paradox. If one does not take the pandemic
seriously, it will likely run wild (particularly under the con-
nectivity of the modern world, several orders of magnitude
higher than in the past [2]). And diseases mutate, increas-
ing or decreasing in both lethality and contagiousness. The
argument would therefore resemble the following: "we have
not observed many plane crashes lately, let’s relax our safety
measures".

Finally, we conclude this section with an encouraging point:
fat tails do not make the world more complicated and do
not cause frivolous worries, to the contrary. Understanding
them actually reduces costs of reaction because they tell us
what to target–and when to do so. Because network models
tend to follow certain patterns to generate large tail events
[2], [11], in front of contagious diseases wisdom in action
is to kill the exponential growth in the egg via three central
measures 1) reducing super-spreader events; 2) monitoring and
reducing mobility for those coming from far-away places (via
quarantines); 3) looking for cheap measures with large payoffs
in terms of the reduction of the multiplicative effects (e.g. face
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masks10). Anything that "demultiplies the multiplicative" helps
[35].

Drastic shotgun measures such as lockdowns are the price of
avoiding early traveler quarantines and border monitoring; they
can be –temporarily and cum grano salis –of help, especially
in the very early stages of the new contagious disease, when
uncertainty is maximal, to help isolating and tracing the
infections, and also buying some time for understanding the
disease and the way it spreads. Indeed such drastic and painful
measures can carry long-lasting damages to the system, not
counting an excessive price in terms of personal freedoms.

But they are the price of not having a good coordinated
tail risk management in place –to repeat, border monitoring
and control of superspreader events being the very first such
measures. And lockdowns are the costs of ignoring arguments
such as increased connectivity in our environment and con-
flating additive and multiplicative risks.

***

To conclude, as the trader lore transmitted by generations
of operators goes, "if you must panic, it pays to panic early."

The Ottoman Empire integrated Byzantine knowledge ac-
cumulated since at least the Plague of Justinian; it is sad to
see ancient cultures more risk-conscious, better learners from
history, and economically more effective than modern govern-
ments. They avoided modern "evidence based" reductions that,
as we saw, are insulting to both science and wisdom. And, had
it not been for such a collective ancestral risk-awareness and
understanding of asymmetry, we doubt that many of us would
be here today.

Now, what did we learn from the pandemic? That an intel-
ligent application of the precautionary principle [23] consists
in formulating decisions that are wise in both foresight and
hindsight. Here again, this is ancient: it maps to Aristotle’s
phronesis as presented in his Nichomachean Ethics.
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