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Abstract

The existing techniques of forecasting a future count either treat the time series

of counts as a Gaussian time series or use a random effects based dynamic

Poisson model. The normality based approach may not yield valid forecasting,

whereas the random effects based model usually generates a complex correlation

structure for the time series of counts which may be impractical to use for

forecasting. Moreover, when the time series contains moderately large or large

counts, the later random effects based models are known to be inefficient in

forecasting a future count, based on such a time series of large counts.

In this report, we propose an observation driven non-stationary correlation

model to fit a time series of counts with possible overdispersion. Analogoues to

the Gaussian time series techniques, we develop forecasting functions to forecast

future counts. The proposed forecasting approach is simpler than the existing

approaches and it is shown through a simulation study that this approach pro-

vides satisfactory forecasting for a future count, irrespective of the cases whether

time series contains small or large counts. Thus, the proposed approach may

be recommended as the best practical approach for forecasting a count. The

forecasting methodology is illustrated by analyzing a U.S. time series of polio

counts.

Some key words: Consistency; Efficiency; Latent process driven longitudinal

correlation; Observations driven longitudinal autocorrelation; Overdispersion;

Regression effects; Forecasting.

1 Introduction

Forecasting counts is an important reserach topic in many socio-economic sec-

tors. For example, forecasting the number of polio patients for a state/country
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based on the time series of polio counts is an important problem for health

economics. Similarly, forecasting the number of tourists for a city/country and

forecasting the number of patents to be awarded to a firm are important eco-

nomic problems. The modelling of the time series of counts, in particular the

non-stationary time series of counts, is however not easy. This is mainly because

of the difficulty of writing the multivariate distribution for the correlated counts

recorded over the years. This hampers the forecasting ability naturally.

There exist some studies where the time series of counts are treated as Gaus-

sian time series and normality based available forecasting techniques are used

(see for example, Kulendran and King (1997)) to forecast a future count. As in

this approach forecasting is made without challenging the Gaussian assumption

for the Poisson or negative binomial data, the forecasting may not be valid.

Further, there exist a random effects based dynamic modelling approach (Zeger

(1988), Harvey and Farnandes (1989), Settimi and Smith (2000)). In this ap-

proach, random parameters defined at a time point t are assumed to have a

functional relationship with parameters defined for past times, with the initial

random parameter having a suitable probability distribution. To be specific,

Zeger (1988) has modelled the time series of counts by assuming that each of

the count responses is affected by a specific random effect. If the individual

random effect follows a suitable gamma distribution, then the corresponding

count response will have a negative binomial distribution. As far as the joint

distribution is concerned, it is reasonable to assume that conditional on the

random effects, the count responses follow independent Poisson distributions.

Next by assuming that the random effects are correlated with a Gaussian type

auto-correlation structure, Zeger (1988) has developed a unconditional correla-

tion structure which is not easy to estimate as this structure is dependent on

the unknown correlation structure of the random effects. Furthermore, forecast-

ing aspects of the data were not considered. Similarly to Zeger (1988), Harvey

and Fernandes (1989) have also modelled the time series of counts by using

Poisson distributions for the count responses conditional on the random effects.

They used a suitable dynamic relationship among the random effects which in

turn make the count responses correlated. Note that their approach generates a

negative binomial distribution for the random count response yt at time t, say,

conditional on the available past count Yt−1 = yt−1, whereas Zeger’s model pro-

duces marginal negative binomial distribution for each yt. Consequently, even
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though one can develop a forecasting function based on the conditional distri-

bution approach of Harvey and Fernandes (1989), it seems more appropriate

to develop suitable conditional distribution for forecasting where the responses

will have marginal negative binomial distribution. Recently, Settimi and Smith

(2000) used a Bayesian approach, which is similar to Harvey and Fernandes’s

(1989) approach, for forecasting for discrete time series data. More recently,

Davis et al (2003) considered a dynamic conditional Poisson probability model

which may be used for forecasting the future counts but their correlation model

for the random effects appear to be arbitrary.

As opposed to the random effects based models for the time series of counts,

there also exist observation driven models. For example, McKenzie (1986, 1988)

[see aslo Al-Osh and Alzaid (1987)] introduced auto-regressive models for sta-

tionary Poisson and negative binomial data. Recently, following McKenzie,

Jowaheer and Sutradhar (2002) used the observations driven stationary neg-

ative binomial correlation model to analyze non-stationary negative binomial

data in the longitudinal set up. More recently, Freeland and McCabe (2004)

used the stationary correlation models for Poisson data in the context of fore-

casting future counts. Note however that as in practice one frequently en-

counters non-stationary count data, it raises the concern to use the appropriate

correlation models for non-stationary data for the purpose of forecasting. More-

over, the non-stationary count data may also exhibit overdispersion so that a

non-stationary negative binomial model may be more appropriate than non-

stationary Poisson model.

In this report, we consider observation driven Poisson as well as negative

binomial correlation model for non-stationary count data. The forecasting func-

tions based on Poisson and negative binomial correlation models are constructed

and their forecasting performances are examined through a simulation study.

The proposed forecasting methodology is illustrated by forecasting future counts

for the U.S. polio count data.
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2 Forecasting Based on Existing Models For

Time Series of Counts

2.1 Correlated Random Effects Based Marginal Models

Let yt (t = 1, · · · , T ) be the count response recorded at time t and xt (t =

1, · · · , T ) be the corresponding p × 1 vector of covariates. Further let β =

(β1, · · · , βp)
′

be the p-dimensional vector of regression effects. Zeger (1988) and

Davis et al (2000) have considered a sequence of correlated random effects {θt}

such that conditional on θt, yt ∼ P (µ∗
t ), i.e., yt has the Poisson distribution

given by

f(yt | θt) =
e−µ∗

t µ∗
t
yt

yt!
, (2.1)

where µ∗
t = µtθt with µt = ex

′

tβ and θt = eγt (say), so that E(Yt | θt) = var(Yt |

θt) = µ∗
t . Next by using

E(θt) = 1, var(θt) = c > 0, ρθ(l) = α−1E(θt − 1)E(θt+l − 1) (2.2)

they modelled the unconditional means, variances and correlations of the obser-

vations with

E(Yt) = µt, var(Yt) = µt + cµ2
t

ρy(l) =
ρθ(l)

{1 + (cµt)−1}
1
2 {1 + (cµt+l)−1}

1
2

(2.3)

It is clear from (2.3) that ρy(l) heavily depends on the correlations ρθ(l) of

the random effects. Consequently, this approach of modelling the correlations

of the observations has some major limitations. For example, in practice, it

is almost impossible to identify the correlations of the random effects which

hampers the estimation of the correlations of the count observations. To be

specific, even if one estimates ρy(ℓ) by the method of moments using directly

the sample lag ℓ auto-correlation, in some cases it becomes impossible to know

whether this is a valid estimate. This is because, under this approach, the range

of lag correlation of the responses depends on the value of the corresponding lag

correlation of the random effects which is however unknown. To make it clear,

suppose that the random effect θt marginally follow the log-normal distribution,

i.e., γt ∼ N(−σ2/2, σ2) and p = 1. It then follows that

ρy(l) =
eτγ(l) − 1

µ−1 + (eσ2−1)
,
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where τγ(l) = cov(γt, γt+l) and µ = eβ1 . Consequently, it can be shown [Davis

et al (2000)] that

0 ≤ ρy(l) ≤
eτγ(l) − 1

eσ2−1
≤
τγ(l)

σ2
= ργ(l). (2.4)

The above range relationship (2.4) indicates that when one estimate ρy(l) by

sample lag l correlation ρ̂y(l), it is not possible to know whether it is a valid

estimate until one knows ργ(l). But ργ(l) is not known in practice. Furthermore,

it is not easy to interpret such correlations defined in (2.3) of the observations,

whereas in the Gaussian time series set up, ρy(l) has closed form expressions

and they are easy to interpret.

2.1.1 Forecasting

Zeger (1988) and Davis et all (2000) did not discuss the forecasting aspects. In

fact, as this is a marginal approach, finding the conditional mean of yt for given

yt−1 does not appear to be easy. To be specific, to find the conditional mean, i.e.,

the forecasting function, one will require the joint distribution of the correlated

random effects θ1, . . . , θt, . . . , θT . Let g(θ1, . . . , θT ) be the joint density of these

random effects so that θt marginally has the gamma distribution with mean 1

and variance c = 1/c1, that is,

gt(θt) = {c1
c1/Γ(c1)}θt

c1−1e(−c1θt).

Note that finding such a joint density function is, however, not easy. If g(.) is

available, one then finds the joint distribution of yt and yt−1 as

f(yt, yt−1) =

∫

θ1

. . .

∫

θt

. . .

∫

θT

e−(µ∗

t +µ∗

t−1)µ∗
t
ytµ∗

t−1
yt−1

yt!yt−1!
g(θ1, . . . , θt, . . . , θT )∂θ1 . . . ∂θt . . . ∂θT ,

(2.5)

and compute the forecasting function E(Yt|yt−1) from the conditional distribu-

tion

f(yt|yt−1) = f(yt, yt−1)/f1(yt−1)

where the marginal density of yt−1 is obtained from (2.1) as

f1(yt−1) =

∫

θt−1

f(yt−1|θt−1)gt−1(θt−1)∂θt−1.

It is clear from the above description that in this random effects based marginal

approach, the computation for the forecasting function is extremely difficult.

5



Consequently, we do not pursue this procedure any further for the purpose of

forecasting.

2.2 Dynamic Models Through Past Observations Based

Random Effects

In this approach, similar to Zeger (1988), yt conditional on θt still has the

distribution given by (2.1), i.e.,

f(yt | θt) =
e−µ∗

t µ∗
t
yt

yt!
,

with µ∗
t = µtθt with µt = ex

′

tβ and θt = eγt . As far as the distribution of θt

is concerned, Harvey and Fernandes (1989) [see also Settimi and Smith (2000,

p. 139-140)] assumed that the random effect θt conditional on the past count

response yt−1 follows a gamma distribution G(at, bt) given by

g (θt | yt−1) =
e−btθtθat−1

t

Γ(at)b
−at

t

, θt > 0, (2.6)

whereas the random effects have the marginal distributions given by

g (θt−1 | yt−1) =
e−b∗t θt−1θ

a∗

t −1
t−1

Γ(a∗t )b
∗
t
−a∗

t
, θt−1 > 0, (2.7)

such that at = wa∗t−1 and bt = wb∗t−1, where w > 0 is a scale parameter.

It then follows that

f (yt | yt−1) =

∫ ∞

0

f (yt | θt) g (θt | yt−1) dθt

=

∫ ∞

0

e−µtθt(µtθt)
yt

yt!

e−btθtθat−1
t

Γ(at)b
−at

t

dθt

=
bat

t µt
yt

Γ(at)yt!

Γ(yt + at)

(bt + µt)yt+at

=
Γ(yt + at)

Γ(at)yt!

(

bt
µt

)at
(

1 +
bt
µt

)−(yt+at)

=
Γ(yt + at)

Γ(at)yt!

(

1

1 + bt

µt

)yt
(

1 −
1

1 + bt

µt

)at

. (2.8)
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The form stated in (2.8) is matched with that in Jowaheer and Sutradhar (2002)

and accordingly denoted by NB
(

at,
µt

bt

)

which may be used for forecasting lag

1 future count. More specifically, lag 1 forecasting function is given by

E (Yt | yt−1) =
at

bt
µt =

a∗t−1

b∗t−1

µt = r∗t (2.9)

with its variance as

V (Yt | yt−1) = r∗t +
1

at
r∗t

2 =
a∗t−1

b∗t−1

µt +
1

w

a∗t−1

b∗t−1
2µ

2
t , (2.10)

implying that w is an overdispersion parameter.

2.2.1 Estimation of Parameters

Note that under the assumption that the initial response y0 follows a suitable

distribution, say f∗(y0), one may derive the exact likelihood as

L = f∗
( y0)f(y1|y0)f(y2|y1, y0) . . . f(yT |yT−1, . . . , y1, y0), (2.11)

which requires the modelling of f(yt|yt−1, . . . , y1, y0). It is clear from (2.5) that

Harvey and Fernandes (1989) avoided the modelling for this general conditional

distribution, by considering a lag 1 type dependence of θt on yt−1. This yields

the log-likelihood function given by

L(w, β) = log

T
∏

t=1

f (yt | yt−1)

=
∑

[

logΓ(yt + at) − logΓ(at) − log(yt!) + atlog

(

bt
µt

)

− (yt + at)log

(

1 +
bt
µt

)]

(2.12)

which must be maximized to estimate the parameters involved. To be specific,

using the recurrence relation at = wa∗t−1 and bt = wb∗t−1 such that a∗0 = b∗0 =

0, the log-likelihood function (2.12) was maximized by Harvey and Fernandes

(1989) to estimate w and β.

2.2.2 Predictive Distribution and Forecasting:

Note that

θt | yt−1 ∼ G (at, bt) ,
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where at = wa∗t−1 and bt = wb∗t−1. When yt becomes available, the predic-

tive distribution of θt given yt is obtained by using the well-known Bayesian

approach. More specifically it can be shown that

g(θt|yt) = [f(yt|θt)g(θt|yt−1)]/f(yt|yt−1)

=
e−θt(µt+bt)θt

yt+at−1

Γ(yt + at)(µt + bt)−(yt+at)
, (2.13)

implying that

θt | yt ∼ G (a∗t , b
∗
t ) ,

where a∗t = at + yt and b∗t = µt + bt, with at = wa∗t−1, and bt = wb∗t−1.

Note that it follows by (2.6) and (2.7) that

E (Yt+1 | yt) = µt+1E(θt+1|yt)

= µt+1E(θt|yt)

= µt+1
a∗t
b∗t

= µt+1[yt + wa∗t−1]/[µt + wb∗t ]

= µt+1[

t−1
∑

j=0

wjyt−j ]/[

t−1
∑

j=0

wjµt−j ] = r∗t+1 (2.14)

with its variance as

V (Yt+1 | yt) = r∗t+1 +
1

a∗t+1

r∗t+1
2. (2.15)

2.2.3 Forecasting Performance : An Application to the U.S Polio

Count Data

Forecasting counts in biomedical science is an important problem for future

health planning. Zeger (1988) and Davis et al (2000) analyzed a time series

of counts (see Figure 1) on the the monthly number of cases of poliomyeli-

tis reported by the U.S. Centers for Disease Control for the years 1970-1983.

Here total number of observations is T = 168. These authors however did not

consider the forecasting issues, rather, they dealt with modelling the data and

estimation of the parameters of the model. Now to examine the performance

of the forecasting function (2.14) due to Harvey and Fernandes (1989), we have

decided to fit their model to this data set of length say T = 160 and then
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forecast the count for time points T + 1 = 161, in order to see whether the

forecasting function is able to forecast the true observation y161. This we repeat

by changing the forecasting origin to T = 161, . . . , 167.

For the purpose, we first attempt to fit Harvey and Fernandes (1989) random

effects based dynamic model to this count series of length with first T = 160

observations. As far as the time dependent covariates are concerned, we have

used the same regression variables as in Zeger (1988). Consequently, we have

regressed the monthly number of polio cases on a linear trend as well as sine,

cosine pairs at annual and semi-annual frequencies to reveal the evidence of

seasonality. More specifically, we use

xt = [1, t
′

/1000, cos(2πt
′

/12), sin(2πt
′

/12), cos(2πt
′

/6), cos(2πt
′

/6)]
′

,

where t
′

= (t− 73) is used to locate the intercept term at January 1976, for t =

1, · · · , 160. Note that the mean and variance of the 168 polio counts were found

to be 1.33 and 3.48 respectively. This indicates the presence of overdispersion,

and fitting the non-stationary negative binomial counts model appear to be

appropriate.

In this approach, we attempt to maximize the log likelihood function (2.12)

to estimate the regression parameter β and the overdispersion parameter w.

Note that by assuming a∗0 = b∗0 = 0, we first write a1 = wa∗0 = 0 and b1 =

wb∗0 = 0. Next for t = 2, . . . , T , at and bt may be expressed as

at =

t−1
∑

j=1

wjyt−j, and bt =

t−1
∑

j=1

wjµt−j ,

where µt = ex′

tβ . By using these relationships in (2.12), we attempt to solve the

log likelihood estimating equations for β and w, respectively, given by

∂logL

∂β
=

T
∑

t=2

[

{
at

bt

∂bt
∂β

} − {
at + yt

bt + µt
}
∂(µt + bt)

∂β

]

= 0, (2.16)

and

∂logL

∂w
=

T
∑

t=2

[

∂at

∂w
{g1(at + yt) − g1(at) + logbt − log(bt + µt)} +

∂bt
∂w

{
at

bt
−
at + yt

bt + µt
}

]

= 0,

(2.17)

with

∂µt

∂β
= µtxt,

∂bt
∂β

=

t−1
∑

j=1

wjµt−jxt−j ,
∂at

∂w
=

t−1
∑

j=1

jwj−1yt−j , and
∂bt
∂w

=

t−1
∑

j=1

jwj−1µt−j ,
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and, for example,

g1(at) =
∂Γ(at)

∂at
≃ logat −

1

2at
−

1

12a2
t

+
1

120a4
t

(Abramowitz and Stegun (1965)).

Note however that starting with small initial values for the components of β

vector as well as with a small value for w, we attempted to obtain the solutions

of the above two equations (2.16) and (2.17) for β and w, but the equations did

not yield any convergent solutions. This happened as this polio data appears

to have a few large counts (see Figure 1) such as yt = 9, 14, 7, 8 at time points

t = 7, 35, 113, 114 respectively. Thus, this approach of Harvey and Farnendes

(1989) does not appear to be a suitable approach to deal with other than low

counts. This became evident from a re-analysis by replacing

[Insert Figure 1 about here]

these moderately large values by the mean 1 of the rest of the data. In this case,

the log likelihood equations (2.16)-(2.17) yielded the estimates of the regression

effects as

β̂1 = 0.25, β̂2 = −3.62, β̂3 = −0.01, β̂4 = −0.48, β̂5 = 0.20, β̂6 = −0.17

and the estimate for overdispersion parameter w as ŵ = 0.90. These likelihood

estimates for the modified data appear to be close to the estimates found by

Zeger (1988, col. 2, Table 3, p. 627) except for β2 and β6. When these estimates

were used in the forecasting function (2.14) for one step ahead forecast we

obtained forecasted values (after rounding to an integer)

ỹ161 = 0, ỹ162 = 1, ỹ163 = 1, ỹ164 = 1, ỹ165 = 1,

whereas true counts were

y161 = 0, y162 = 1, y163 = 2, y164 = 1, y165 = 0,

respectively, showing that the forecasting function may work well for low counts.

Note that as this approach appears to encounter difficulties with larger counts,

in our simulation studies to be reported later we will not include this approach

for comparison, rather, we will concentrate to the forecasting performance of

the proposed model based approach for various sets of larger counts data.
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2.3 Log-linear Dynamic Models

Note that as opposed to the parameter-driven models discussed in Sections 2.1

and 2.2, there exists an alternative log-linear dynamic model given by

f(yt | y1, · · · , yt−1) =
e−µ∗

t µ∗
t
yt

yt!
, (2.18)

(Davis et al (2003)) where µ∗
t = µtθt with ARMA (r,q) model for logθt, i.e.,

logθt = γt = φ1γt−1 + · · · + φrγt−r + et + ψ1et−1 + · · · + ψqet−q, (2.19)

for example, where

et =
yt − µt

µt
−λ

, λ ∈ (0, 1]. (2.20)

Note however that as (2.19) is an auto-regression model for a sequence of ran-

dom effects γt with errors defined based on the past observations, we prefer to

call this model a log-linear dynamic (LLD) model, whereas Davis et al (2003)

have referred to (2.18)-(2.20) as an observation-driven (OD) model. Further

note that even though the LLD model (2.18)-(2.20) allows negative and pos-

itive autocorrelations ρy(l) among count responses y1, · · · , yt, · · · , yT , they are

however neither easy to compute nor easy to interpret. The estimation of the

parameters involved in this model (2.18)-(2.20) is also not easy.

2.3.1 Forecasting

Similarly to Zeger (1988), Davis et all (2003) also did not deal with the fore-

casting issues. Note that this LLD model is quite similar to that of the ran-

dom effects based marginal model of Zeger (1988). The main difference be-

tween the two models is that in (2.1), the distribution of the random effects

{θt = eγt}, whether multivariate gamma or multivariate log-normal , is inde-

pendent of yt (t = 1, . . . , T ), whereas γt in Davis et all (2003) is defined as a

function of the responses in their standardized form and {θt = eγt} are assumed

to have log-normal type distributions. Similar to Zeger, the computation for

the forecasting function appears to be complicated. Hence we do not pursue

this approach any further for the purpose of forecasting.
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2.4 Observation-driven Stationary Poisson Correlation Mod-

els

For simplicity, in this sub-section and also in the next sub-section, we confine

our discussion to the auto-regressive order 1 (AR(1)) case. The models for

other correlation structures such as MA(1), equi-correlations, ARMA(1,1) may

be developed similarly (Sutradhar (2003)).

Following Al-Osh and Alzaid (1987), and McKenzie (1988) [see also Freeland

and McCabe (2004, p. 227-34)], one may write the Poisson auto-regressive

dynamic model in the form

yt = ρ ∗ yt−1 + dt, (2.21)

where it is assumed that

yt−1 ∼ P (µ·), dt ∼ P (µ·(1 − ρ)) (2.22)

and dt and yt−1 are independent. In (2.22), µ· is the constant Poisson mean

parameter defined as µ· = ex′

·β which is time independent. Also in (2.21), for

given count yt−1,

ρ ∗ yt−1 =

yt−1
∑

j=1

bj(ρ), (2.23)

where bj(ρ) stands for a binary variable with pr(bj(ρ) = 1) = ρ and pr(bj(ρ) =

0) = 1− ρ. This operation in (2.21) is known as the so called binomial thinning

operation. It can be shown that

yt ∼ P (µ·) (2.24)

so that for the stationary data, i.e., for time independent covariates xt = x· for

all t = 1, . . . , T, one writes

E(Yt) = var(Yt) = µ· = ex
′

·
β (2.25)

Furthermore, it can be shown that

ρy(l) = corr(Yt, Yt−l) = ρl, (2.26)

where 0 < ρ < 1.
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2.4.1 Forecasting

It may be shown from (2.21)-(2.23) that for µ· = exp(x′·β), the conditional

distribution of yt given yt−1 has the form given by

ft|t−1(yt|yt−1) = exp{−µ·(1 − ρ)}

×

min(yt−1,yt)
∑

k=0

yt−1!ρ
kµ·yt−k(1 − ρ)yt−1+yt−2k

k!(yt−1 − k)!(yt − k)!
, (2.27)

see Freeland and McCabe (2004, Section 3, p. 428), also McKenzie (1988).

Note that to develop the forecasting function, it is not necessary to derive the

conditional distribution (2.27) . This is because by using (2.21) and (2.23)

directly, the forecasting function can be written as

E(Yt+1|yt) = E





yt
∑

j=1

bj(ρ)



+ E(dt+1)

= µ· + ρ(yt − µ·), (2.28)

with

var(Yt+1|yt) = ρ(1 − ρ)yt + (1 − ρ)µ·

= µ+ ρ(yt − µ) − ytρ
2. (2.29)

Next, when the forecasting for lag 1 future count is made by (2.28), there

occurs a forecasting error defined as

et(1) = yt+1 − E(Yt+1|yt), (2.30)

which by (2.21), (2.23) and (2.28) may be expressed as

et(1) =

yt
∑

j=1

bj(ρ) + dt+1 − [µ· + ρ(yt − µ·)].

Consequently, the variance of the forecast error can be computed as

var(et(1)) = var [E(et(1)|yt)] +E [var(et(1)|yt)]

= E [var(Yt+1|yt)]

= µ·(1 − ρ2). (2.31)
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2.5 Observation-driven Stationary Negative Binomial Cor-

relation Models

To obtain correlated negative binomial count data, one may follow Lewis (1980)

and McKenzie (1986) [see also Jowaheer and Sutradhar (2002)], and relate yt

with yt−1 by

yt = αt ∗ yt−1 + dt, (2.32)

where, for given probability 0 < αt < 1 and count yt−1, the symbol ∗ indicates

the binomial thinning operation, so that αt ∗ yt−1 is the sum of yt−1 binary

variables with probability αt. That is,

zt = αt ∗ yt−1 =

yt−1
∑

j=1

bj(αt), (2.33)

where bj(αt) denotes the jth binary variable, with probability of success αt, i.e.

pr{bj(αt) = 1} = αt = 1 − pr{bj(αt) = 0}. It then follows that

[zt|yt−1, αt]∼Bi(yt−1, αt),

independently for all t. Next, under the assumption that αt∼Be{ρ/c, (1−ρ)/c},

independently for all t, with 0 ≤ ρ ≤ 1, that is,

f(αt) =
Γ(1/c)

Γ{(1 − ρ)/c}Γ(ρ/c)

∫

α
ρ/c−1
t (1 − αt)

(1−ρ)/c−1dαt,

one obtains the mean and the variance of αt as

E[αt] = ρ, and var[αt] = [ρ(1 − ρ)c]/(1 + c).

This yields the conditional mean and variance of zt given yt−1 as

E(zt|yt−1) = Eαt
(yt−1αt) = ρyt−1, (2.34)

and

var(zt|yt−1) = Eαt
[var(zt|yt−1, αt] + varαt

[E(zt|yt−1, αt)]

= Eαt
[αt(1 − αt)yt−1] + varαt

[αtyt−1]

= ρ(1 − ρ)yi,t−1

[

1 + cyi,t−1

1 + c

]

(2.35)
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Furthermore, suppose that in (2.32),

yt−1∼NeBi(1/c, cµ.), and dt∼NeBi{(1 − ρ)/c, cµ.}, (2.36)

all variables being independent, with µ. = exp(x′·β), where x· is the p×1 vector

of time independent covariates. Here

E[dt] = (1 − ρ)µ·, and var(dt) = (1 − ρ)µ·[1 + cµ·].

Now by applying (2.33) and (2.34), it follows from (2.32) that

E(yt) = µ·, and var(yt) = µ· + cµ2
· . (2.37)

By similar calculations it follows from (2.32) that

E(ytyt−ℓ) = ρℓ(µ· + cµ2
· ) + µ2

· , (2.38)

yielding the lag ℓ auto-correlation as ρℓ = ρℓ.

2.5.1 Forecasting

Now by using the conditional expectation of zt+1 given yt from (2.34) into

(2.32), one obtains the conditional expectation of Yt+1 given yt, and hence the

forecasted value of yt+1 as

ỹt+1 = E[Yt+1|yt]

= Eαt+1
E[Yt+1|yt, αt+1]

= Eαt+1
[(1 − ρ)µ· + ytαt+1]

= (1 − ρ)µ· + ρyt

= µ· + ρ(yt − µ·), (2.39)

where µ· = µt for all t = 1, . . . , T.

Note that as E(αt) = ρ, and var(αt) = [ρ(1 − ρ)c]/(1 + c), the conditional

variance of Yt+1 given yt may be derived as

var[Yt+1|yt] = varαt+1
E[Yt+1|yt, αt+1] + Eαt+1

var[Yt+1|yt, αt+1]

= varαt+1
[(1 − ρ)µ· + ytαt+1]
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+Eαt+1

[

ytαt+1(1 − αt+1) + (1 − ρ){µ· + cµ2
· }
]

=
ρc(1 − ρ)

1 + c
y2

t + Eαt+1
[(1 − ρ)µ·(1 + cµ·) + ytαt+1(1 − αt+1)]

= (1 − ρ)µ·(1 + cµ·) + ρyt(1 − ρ)

(

1 + cyt

1 + c

)

(2.40)

Next similar to (2.30), the one-step ahead forecasting error is given by

et(1) = yt+1 − E(Yt+1|yt),

which by (2.32), (2.33) and (2.39) may be expressed as

et(1) =

yt
∑

j=1

bj(αt+1) + dt+1 − [µ· + ρ(yt − µ·)].

It then follows that

E[et(1)|yt] = Eαt+1
E[et(1)] = 0.

Consequently, the variance of the forecast error can be computed as

var(et(1)) = var [E(et(1)|yt)] +E [var(et(1)|yt)]

= E [var(Yt+1|yt)]

= (1 − ρ)[µ· + cµ2
· ] + ρ(1 − ρ)[µ· + cµ2

· ]

= (1 − ρ2)[µ· + cµ2
· ] (2.41)

which reduces to the variance of the forecasting error (2.31) under the Poisson

model when c→ 0.

3 Proposed Observation-driven Non-stationary

Correlation Models

In this section, we deal with the forecasting of a future count for non-stationary

Poisson and negative binomial time series data. As far as the models for the non-

stationary counts are concerned, we provide them in Section 3.1 for the Poisson

data and in Section 3.2 for the negative binomial data. These models may be

treated as a generalization of the stationary models considered by McKenzie
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(1986, 1988), Al-Osh and Alzaid (1987), and Freeland and McCabe (2004), for

example. For modelling non-stationary negative binomial time series data, we

also refer to Mallick and Sutradhar (2004).

3.1 Observation-driven (OD) Non-stationary Poisson Mod-

els

Note that the stationary Poisson correlation model was discussed in Section 2.4.

Recall from (2.21) that the Poisson auto-regressive dynamic model has the form

given by

yt = ρ ∗ yt−1 + dt. (3.1)

In (3.1), we assume that

yt−1 ∼ P (µt−1), dt ∼ P (µt − ρµt−1), (3.2)

whereas in the stationary case it was assumed in (2.21)-(2.22) that

yt−1 ∼ P (µ·), dt ∼ P ((1 − ρ)µ·).

In (3.1), dt and yt−1 are independent. Now by using the binomial thinning

operation (2.23), it follows from (3.1) and (3.2) that

yt ∼ P (µt) (3.3)

so that

E(Yt) = var(Yt) = µt = ex
′

tβ (3.4)

Furthermore, it can be shown that

ρy(l) = corr(Yt, Yt−l) = ρl

√

µt−l

µt
. (3.5)

Note that for the stationary case where µt = µt−l = µ· = ex.
′

β (say), the

non-stationary correlation in (3.5) reduces to the stationary correlation given

by ρy(l) = ρl [McKenzie (1988, p.823-24), Sutradhar (2003, p.385-86)]. For the

non-stationary case, it follows from (3.2) that for µt − ρµt−1 to be non-negative

ρ must satisfy the range 0 < ρ < µt

µt−1
. Consequently, even though in the

stationary case ρ has the range 0 < ρ < 1, in the non-stationary case, ρ must

satisfy the range restriction

0 < ρ < min

[

1,
µt

µt−1

]

, t = 2, · · · , T. (3.6)
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3.1.1 Forecasting

By using the model (3.1), we first write

yt+1 =

yt
∑

j=1

bj(ρ) + dt+1, (3.7)

which for given yt by (3.2) yields the forecasting function as

E(Yt+1|yt) = µt+1 + ρ(yt − µt). (3.8)

Note that for given yt, the conditional variance of the future observation yt+1

can easily be calculated, which has the formula given by

var(Yt+1|yt) = ρ(1 − ρ)yt + [µt+1 − ρµt]

= µt+1 + ρ(yt − µt) − ρ2yt. (3.9)

Next it follows from (3.7)-(3.9) that the variance of the one step ahead

forecasting error et(1) = yt+1 − E(Yt+1|yt), has the formula given by

var(et(1)) = var[E(et(1)|yt] + E[var(et(1)|yt)]

= E[var(Yt+1|yt)]

= µt+1 − ρ2µt. (3.10)

3.2 Observation-driven (OD) Non-stationary Negative Bi-

nomial Models

Recall from Section 2.5 that the negative binomial correlation model is given by

yt = αt ∗ yt−1 + dt, (3.11)

with αt∗yt−1 =
∑yt−1

j=1 bj(αt), where bj(αt) is a binary response with Pr [bj(αt) = 1] =

αt, where αt ∼ Be{ρ/c, (1 − ρ)/c}. Now unlike the stationary model discussed

in Section 2.5, we assume that in (3.11), yt−1 ∼ NeBi(1
c , cµt−1) which reflects

the non-stationarity of the count responses. As far as the distribution of dt is

concerned, we assume that

dt ∼ NeBi(ψ1, ψ2), (3.12)
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with

ψ1 =
(µt − ρµt−1)

2

c(µ2
t − ρµ2

t−1)
, and ψ2 =

c(µ2
t − ρµ2

t−1)

(µt − ρµt−1)

(Mallick and Sutradhar (2004)). Similar to (2.36), the first two moments of this

distribution are given by

E[dt] = ψ1ψ2 = [µt − ρµt−1]

var[dt] = ψ1ψ2(1 + ψ2) = [µt − ρµt−1] + c[µ2
t − ρµ2

t−1] (3.13)

In general, by using the distribution of yt−1 given above, it can be shown that

yt ∼ NeBi

(

1

c
, cµt

)

, (3.14)

where µt = ex
′

tβ.

Furthermore, by using the relationship yt = αt ∗ yt−1 + dt (3.11), one may

derive the correlation structure for non-stationary AR(1) type negative binomial

counts as follows. As αt’s are independent with E(αt) = ρ, for all t = 1, · · · , T ,

it then follows that E(YtYt−1) = ρvt−1 +µtµt−1, where vt = var(Yt) = µt +cµ2
t ,

yielding lag-1 correlation ρy(1) = ρ
√

vt−1

vt
. Also E(YtYt−2) = ρ2vt−2 + µtµt−1,

yielding lag-2 correlation ρy(2) = ρ2
√

vt−2

vt
. By similar calculation, one may

show that, for l = 1, · · · , T − 1, the lag-l autocorrelation is given by

ρy(l) = ρl

√

vt−l

vt
. (3.15)

Thus the non-stationary negative binomial counts exhibit a non-stationary cor-

relation structure which reduces to the Gaussian AR(1) type autocorrelation

structure for the stationary negative binomial model. As far as the range re-

striction of ρ is concerned, it is clear that for ψ1 and ψ2 in (3.12) to be positive,

ρ must satisfy

0 < ρ < min

{

1,
µt

µt−1
,
µ2

t

µ2
t−1

}

, t = 2, · · · , T. (3.16)

Further, it is interesting to note that if µt = µ· is used for all t = 1, · · · , T ,

(3.11)-(3.12) yields the distributions of yt−1 and dt as yt−1 ∼ NeBi
(

1
c , cµ·

)

,

dt ∼ NeBi
(

1−ρ
c , cµ·

)

. These special distributional assumptions were used in

McKenzie (1986) and Jowaheer and Sutradhar (2002) to derive the correlation

model for stationary negative binomial data.
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3.2.1 Forecasting

By using the model (3.11), we first write

yt+1 =

yt
∑

j=1

bj(αt) + dt+1, (3.17)

which for given yt yields the forecasting function as

E(Yt+1|yt) = Eαt
[ytαt] + [µt+1 − ρµt]

= µt+1 + ρ(yt − µt), (3.18)

as E(αt) = ρ.

Note that the forecasting function in (3.17) is the same as the forecasting

function (3.8) under the non-stationary Poisson model. Further note that as

var(αt) = [ρ(1 − ρ)c]/(1 + c), for given yt, one may compute the conditional

variance of the future observation yt+1 as

var(Yt+1|yt) = Eαt
[var(Yt+1|yt, αt)] + varαt

[E(Yt+1|yt, αt)]

= Eαt
[ytαt(1 − αt) + (µt+1 − ρµt) + c(µ2

t+1 − ρµ2
t )]

+varαt
[ytαt + µt+1 − ρµt]

=
ρ(1 − ρ)

1 + c
yt[1 + cyt] + [(µt+1 − ρµt) + c(µ2

t+1 − ρµ2
t )](3.19)

This conditional variance reduces to (2.40) for the stationary case where µt = µ·

for all t = 1, . . . , T. Next by (3.17)-(3.18) we compute the variance of the one

step ahead forecasting error et(1) = yt+1 − E(Yt+1|yt). The formula for this

variance is given by

var(et(1)) = var[E(et(1)|yt] + E[var(et(1)|yt)]

= E[var(Yt+1|yt)]

= ρ(1 − ρ)[µt + cµ2
t ] + [(µt+1 − ρµt) + c(µ2

t+1 − ρµ2
t )].(3.20)

4 Estimation of Parameters

As the forecasting functions contain unknown parameters of the model, in this

section, we propose a generalized quasilikelihood (GQL) approach for the esti-
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mation of the parameters of both non-stationary Poisson and negative binomial

mixed models. This approach yields consistent estimators for the respective

parameters. Note that we do not provide any estimating formulas for the sta-

tionary models as they are special cases of the respective non-stationary models.

4.1 GQL Estimation Approach For Non-stationary Pois-

son Mixed Model

The GQL approach exploits the mean vector and the covariance structure of the

data. To be specific, let y = (y1, · · · , yt, · · · , yT )
′

be the T -dimensional vector

of all responses that follow the non-stationary Poisson mixed model (NSPMM)

discussed in Section 3.1 . Under this model, the marginal means, variances and

lag ℓ correlations are given by (3.4) and (3.5). Let µ = (µ1, · · · , µt, · · · , µT )
′

be

the mean vector of y, where by (3.4), µt = ex
′

tβ . Furthermore, let Σ = (σtt′ ) be

the T × T covariance matrix of y, where

σtt′ =











µt, if t = t
′

ρ|t−t
′ |µt, if t < t

′

. (4.1)

It then follows that for known ρ, one may write the GQL estimating equation

(Sutradhar (2003, Section 3.1)) for β as

∂µ′

∂β
Σ−1(y − µ) = 0, (4.2)

which may be solved iteratively by Newton-Raphson iterative technique. To be

specific, (4.2) is solved for β iteratively by using

β̂(r + 1) = β̂(r) +

[

(

X
′

AΣ−1AX
)−1

X
′

AΣ−1(y − µ)

]

[r]

, (4.3)

whereA = diag(µ1, · · · , µt, · · · , µT ), X = (x
′

1, · · · , x
′

t, · · · , x
′

T )
′

with xt = (xt1, xt2, · · · , xtp)
′

,

and [.]r denotes the fact that the expression within the brackets is evaluated at

β̂(r). Let β̂GQL denote the solution obtained from (4.3).

Note that for the estimation of β by (4.3), it was assumed that the ρ param-

eter is known. As this stationary correlation parameter is however unknown in

practice, we may estimate this parameter consistently by using the well known

moment method. For this, we first observe that E(Yt−µt)(Yt−1−µt−1) = ρµt−1

for t = 2, . . . , T. Consequently, the stationary lag-1 correlation parameter ρ may
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be estimated by equating the lag-1 correlation with its sample counterpart. This

provides the moment equation of ρ as

ρ̂ =

∑T
t=2 ỹtỹt−1
∑T

t=1 ỹ
2
t

T
∑T

t=2 [µt−1/µt]
1/2

, (4.4)

where ỹt = yt−µt√
vt

with vt = var(yt) = σtt = e(x
′

tβ).

Note ρ̂ obtained by (4.4) is consistent as it is obtained from an unbiased

moment estimating equation. The performance of the GQL estimation approach

is examined through a simulation study in Section 6. The performance of the

forecasting function (3.8) is also examined by a simulation study in the same

section. The forecasting approach based on GQL estimation methodology is

illustrated in Section 5 by re-analyzing the US polio data that was analyzed

earlier by Zeger (1988) and Davis et al (2000).

4.2 GQL Approach For the Estimation of the Parameters

of Non-stationary Negative Binomial Mixed Model

Under the non-stationary negative binomial mixed model (NSNBMM) discussed

in Section 3.2, the means and variances are given by µt = e(x
′

tβ) and vt =

var(yt) = µt + cµ2
t respectively. The formula for lag ℓ correlation is given by

(3.15).

Similar to the NSPMM, we write the GQL estimating equation for β as

∂µ′

∂β
Σ−1(y − µ) = 0, (4.5)

where µ is the same vector as in the Poisson case, but Σ matrix is now given by

σtt′ =











vt, if t = t
′

ρ|t−t
′ |vt, if t < t

′

. (4.6)

where vt = µt + cµ2
t .

Note that the estimating equation (4.5) requires the over-dispersion parame-

ter c and the stationary correlation parameter ρ to be known. These parameters

are however unknown in practice, which may be consistently estimated by using

the well-known method of moments. To be specific, as E(Yt − µt)
2 = vt =

µt + αµ2
t , with µt = ex

′

tβ , one obtains the moment equation of c as

ĉ =

∑T
t=1

[

(yt − µ̂t)
2 − µ̂t

]

∑T
t=1 µ̂

2
t

, (4.7)
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where µ̂t = ex
′

tβ̂GQL .

As far as the moment estimation of ρ is concerned, we first observe that

E(Yt − µt)(Yt−1 − µt−1) = ρ[µt−1 + cµ2
t−1]. Consequently, the stationary lag-1

correlation parameter ρ may be estimated by equating the lag-1 correlation with

its sample counterpart. This provides the moment equation of ρ as

ρ̂ =

∑T
t=2 ỹtỹt−1
∑T

t=1 ỹ
2
t

T
∑T

t=2 [vt−1/vt]
1/2

, (4.8)

where ỹt = yt−µt√
vt
, with vt = µt + cµ2

t .

Note that both ĉ and ρ̂ obtained by (4.7) and (4.8) respectively are consistent

as they are obtained from unbiased estimating equations. Further note that

under the present NSNBMM, ρ̂ must satisfy the range restriction

0 < ρ̂ < min

[

1,
µ̂t

µ̂t−1
,
µ̂2

t

µ̂2
t−1

]

, t = 2, . . . , T.

5 Forecasting Polio Counts By Using OD Non-

stationary Poisson and Negative Binomial Mod-

els

Recall from Section 2.2.3 that after replacing several large counts by the mean

of the other observations, the dynamic model due to Harvey and Fernandes

(1989) were applied to make one step ahead forecast for the future polio counts.

This replacement however appears to be arbitrary. In this section, we first fit

the observation driven non-stationary Poisson and negative binomial models to

the U.S. polio count data with first T = 160 unmodified/original observations.

These models are introduced in Sections 3.1 and 3.2, respectively.

Starting with small initial values for the regression and correlation parame-

ters, we applied the GQL iterative procedure described in Section 4.1 for under

the Poisson model. More specifically, having chosen starting values of zero for

correlation and small values for regression parameters, we used (4.3) to obtain

a convergent estimate of β. We then used this first step β estimate in (4.4) for

ρ. Note that these first step estimates are in fact 1-cycle based estimates.

[Insert Table 1 about here]

23



We have continued this cycle of iterations until convergence for estimates of

all parameters. It was found that the convergence was achieved in 5 cycles of

iterations. These converged results are shown in column 2 of Table 1. The

standard errors of the estimates under the Poisson model are given in column

3 of the same table.

We have also fitted the negative binomial correlation model to this polio

counts data set. More specifically, similar to the Poisson case, the regression,

overdispersion, and the correlation parameters were iteratively obtained by solv-

ing (4.5), (4.7) and (4.8). The convergent estimates along with their standard

errors are given in columns 6-7 in Table 1. The regression and the correlation

estimates under the two models appear to be close to each other, the standard

errors are being slightly larger under the negative binomial model, as expected.

Next, to examine the performances of the forecasting function (3.8) under the

correlated Poisson model and of (3.18) under the correlated negative binomial

model, we have computed these functions by using the estimates of β and ρ under

the respective models. For forecasting origin T = 160, 161, 162, 163, and 164

the one step ahead forecasted (OSAF) values along with corresponding true

values are shown in columns 5 and 4 under the Poisson model and in columns

9 and 8 under the negative binomial model. It is clear that the forecasting

functions under these two models yielded the same forecasted values. In fact,

these forecasts are same as those produced by the dynamic model used by Harvey

and Fernandes (1989) ( see Section 2.2.3). Nevertheless, we recommend the

use of the proposed observation driven (OD) Poisson and negative binomial

correlation models based forecasting function in forecasting the future counts.

This is mainly because, unlike the dynamic model, the OD correlation models

do not appear to encounter any problems in fitting low as well as larger counts.

In the next section, we verify this observation through a simulation study by

forecasting one step ahead count for various count pattern data.

6 Observation Driven Correlation Models Based

Forecasting : A Simulation Study

As compared to the existing models due to Zeger (1988), Davis et all (2003),

Harvey and Fernandes (1989) ( see also Settimi and Smith (2000)), the pro-

posed observation driven (OD) Poisson and negative binomial models (see also
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Freeland and McCabe (2004)) are discrete analogues of the well known Gaus-

sian auto-regressive models, for fitting the time series of counts. The existing

dynamic model (DM) due to Harvey and Fernandes (1989) as well as the pro-

posed OD models were fitted to the U.S. polio count data before making any

forecasts. As opposed to the OD models, the DM appear to have serious prob-

lems in fitting time series with moderately large or larger counts. Now to make

sure about the fitting and forecasting performances of the proposed OD models

based approaches, in this section, we conduct a simulation study involving time

series of counts with low, moderately large and large counts.

To generate a time series of counts of length T = 100 under non-stationary

Poisson model (3.1) and negative binomial model (3.11), we have first chosen

a non-stationary regression model with µt = e(x
′

tβ), where for simplicity, a two

dimensional (p = 2) β = (β1, β2)
′ is considered along with x′t = (xt1, xt2) with

xt1 = 1 for all t = 1, . . . , T but xt2 was chosen to be time dependent as

xt2 =























0.01 for t = 1

xt−1,2 + 0.01 for t = 1, . . . , T/4

xt−1,2 + 0.05 for t = T/4 + 1, . . . , 3T/4

xt−1,2 + 0.10 for t = 3T/4 + 1, . . . , T

For the simulations under the Poisson model, we have chosen three sets of

parameter values: (1) β1 = 0.5, β2 = 0.5, (2) β1 = −0.5, β2 = 0.5, and (3) β1 =

0.5, β2 = −0.5. The first set of parameter values generated large counts with

non-stationary Poisson means ranging from 1.66 to 23.93. Similarly, the second

and the third sets of parameter values generated Poisson counts with means

ranging from 0.61 to 8.80, and 1.64 to 0.11, respectively. Note that for the third

set, counts were generated in decreasing order. In each case, we have considered

two values of correlation parameter, namely ρ = 0.5 and 0.8. Under the negative

binomial model, we have chosen two sets of parameter values, namely, (1) β1 =

0.0, β2 = 0.1, and (2) β1 = 0.0, β2 = 0.4. These values along with the chosen

covariate values generated counts with means ranging from 1.0 to 1.7 and 1.o to

8.5, respectively. As far as the overdispersion parameter is concerned, we have

generated data with three selected values of c = 0.20, 0.50, 1.00. With regard

to the correlation parameter, we have chosen ρ = 0.5 and ρ = 0.9. To have a

feel about the

[Insert Figures 2 and 3 about here]
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magnitude of the generated counts, we have displayed the true non-stationary

mean values in Figure 2 for the Poisson case with first set of regression param-

eter values, and in Figure 3 for the negative binomial case with second set of

parameter values.

The GQL estimates of the parameters were obtained following the formulas

given in Section 4. We have conducted 500 simulations. The simulated means

and standard errors for the estimates of each parameter value are given in Table

2 for the Poisson model and in Table 3 for the negative binomial model.

[Insert Tables 2 and 3 about here]

It is clear from the Table 2 that the GQL approach performs extremely well

in estimating both β and ρ parameters under the Poisson mixed model. The

GQL approach also estimate these parameters very well (see Table 3) under

the negative binomial model. As far as the estimation of the overdispersion

parameter c for negative binomial model is concerned, the moment approach

as a part of the GQL approach appears to underestimate this parameter. A

clustered GQL approach (see Mallick and Sutradhar (2004)) may be used to

improve this estimate but we have not included this approach in this report for

simplicity.

Next to examine the forecasting performances of the forecasting functions

(3.8) for the Poisson model and of (3.18) for the negative binomial model, we

have generated 101 counts but fitted the models to the first T = 100 counts

and forecasted the one step ahead forecast at time point T = 101, under each

simulation. The simulated means, standard errors of the true counts y101, fore-

casted counts ỹ101, and of the corresponding forecasting errors, are shown in

columns 7-9 in Table 2 under the Poisson model and in columns 9-11 in Table

3 under the negative binomial model. It is clear from the tables that the sim-

ulated means of the true counts are quite close to the simulated means of the

forecasted counts indicating that the proposed forecasting functions works very

well in forecasting a future count. When the counts are large, the forecasting

errors appear to have larger standard errors as compared to the cases with time

series of small counts, as expected. To have a feel about the differences between

true counts and their forecasted counterparts, we have displayed the simulated

counts in Figure 4 for 50 simulations under the Poisson model and in Figure

5 under the negative binomial model. The differences between the true and

forecasted counts appear to be negligible.
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[Insert Figures 4 and 5 about here]

7 Conclusion

As opposed to the random effects based parameters driven models of Zeger

(1988) and Davis et al (2000, 2003), and the random effects based dynamic

model of Harvey and Fernandes (1989)[see also Settimi and Smith (2000)], in

this report, we have introduced a simple observation driven correlation models

for both non-stationary time series of Poisson and negative binomial counts.

The proposed model may be treated as a generalization of the stationary model

considered by Freeland and McCabe (2004). The performances of the proposed

one step ahead forecasting functions are examined through a simulation study

and it is shown that they perform quite well. The proposed forecasting method-

ology is also illustrated by re-analyzing the time series of U.S. polio counts,

earlier analyzed by Zeger (1988) and Davis et al ( 2000).
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Table 1: Proposed observation-driven Poisson and negative binomial correlation

models based GQL parameter estimates and one step ahead forecasted values

at time point T for U.S polio count data (Zeger, 1988).

Poisson Model Negative Binomial Model

GQLE OSAF GQLE OSAF

Parameters EST SE TRUE FORECAST EST SE TRUE FORECAST

Intercept (β1) 0.19 0.09 – – 0.19 0.13 – –

Trend×10−3 (β2) -5.89 1.94 – – -5.02 2.83 – –

cos(2πt/12)(β3) -0.19 0.12 – – -0.19 0.18 – –

sin(2πt/12)(β4) -0.51 0.13 – – -0.46 0.19 – –

cos(2πt/6)(β5) 0.12 0.11 – – 0.11 0.16 – –

sin(2πt/6)(β6) -0.40 0.11 – – -0.37 0.16 – –

c – – – – 0.85 – – –

ρ 0.23 – – – 0.22 – – –

T=161 – – 0 1 – – 0 1

T=162 – – 1 1 – – 1 1

T=163 – – 2 1 – – 2 1

T=164 – – 1 1 – – 1 1

T=165 – – 0 0 – – 0 0
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Table 2: Simulated GQL estimates and one-step ahead forecasts for Poisson

counts with both monotonic increasing and decreasing mean patterns for T =

100 and selected values of longitudinal correlation parameter, based on 500

simulations.

Simulated estimates and one-step ahead forecast

Regression Parameters ρ β̂1 β̂2 ρ̂ y101 ỹ101 ê100(1)

β1 = 0.5, β2 = 0.5 0.50 SM 0.50 0.50 0.47 23.82 23.94 -0.12

µ1 = 1.66, . . . , µ101 = 23.93 SSE 0.16 0.04 0.10 4.72 3.28 4.45

0.80 SM 0.45 0.51 0.75 23.98 24.16 -0.17

SSE 0.24 0.07 0.07 5.35 4.85 3.33

β1 = −0.5, β2 = 0.5 0.50 SM -0.52 0.50 0.45 8.76 8.75 0.01

µ1 = 0.61, . . . , µ101 = 8.80 SSE 0.27 0.07 0.10 2.89 2.05 2.70

0.80 SM -0.56 0.51 0.75 8.62 8.71 -0.09

SSE 0.44 0.11 0.08 2.88 2.61 1.87

β1 = 0.5, β2 = −0.5 0.50 SM 0.48 -0.54 0.44 0.15 0.13 0.02

µ1 = 1.64, . . . , µ101 = 0.11 SSE 0.24 0.20 0.11 0.40 0.19 0.34

0.80 SM 0.50 -0.62 0.72 0.11 0.12 -0.01

SSE 0.42 0.40 0.13 0.33 0.28 0.22
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Table 3: Simulated GQL estimates and one-step ahead forecasts for negative

binomial counts with two monotonic increasing mean patterns for T = 100 and

selected values of overdispersion and longitudinal correlation parameters, based

on 500 simulations.

Simulated estimates and one-step ahead forecast

Regression Parameters ρ c β̂1 β̂2 ρ̂ ĉ y101 ỹ101 ê100(1)

β1 = 0.0, β2 = 0.1 0.50 0.20 SM -0.03 0.10 0.44 0.14 1.67 1.79 -0.12

µ1 = 1.0, ·, µ101 = 1.7 SSE 0.29 0.11 0.11 0.14 1.53 0.92 1.41

0.50 SM -0.04 0.10 0.44 0.41 1.76 1.75 0.01

SSE 0.32 0.13 0.12 0.27 1.75 1.04 1.69

1.00 SM -0.03 0.09 0.43 0.85 1.71 1.76 -0.05

SSE 0.36 0.14 0.13 0.48 2.09 1.29 1.92

0.75 0.20 SM -0.06 0.09 0.68 0.16 1.60 1.69 -0.08

SSE 0.41 0.16 0.09 0.14 1.38 1.23 1.07

0.50 SM -0.05 0.09 0.68 0.40 1.83 1.87 -0.04

SSE 0.46 0.18 0.09 0.34 1.84 1.62 1.20

1.00 SM -0.05 0.09 0.67 0.81 1.94 1.96 -0.04

SSE 0.56 0.24 0.11 0.59 2.31 1.92 1.78

β1 = 0.0, β2 = 0.4 0.50 0.20 SM -0.04 0.41 0.45 0.16 8.56 8.65 -0.07

µ1 = 1.0, ·, µ101 = 8.5 SSE 0.26 0.08 0.10 0.11 4.87 2.98 4.83

0.50 SM -0.04 0.40 0.43 0.41 8.41 8.68 -0.26

SSE 0.29 0.10 0.11 0.21 6.36 4.17 6.38

1.00 SM -0.05 0.40 0.44 0.83 7.56 8.65 -1.09

SSE 0.35 0.13 0.13 0.39 7.39 5.25 7.41

0.75 0.20 SM -0.04 0.39 0.69 0.13 8.49 8.44 0.05

SSE 0.37 0.12 0.09 0.12 4.97 4.00 3.80

0.50 SM -0.07 0.41 0.68 0.38 8.63 8.75 -0.12

SSE 0.43 0.14 0.10 0.23 6.23 4.97 4.40

1.00 SM -0.07 0.38 0.67 0.80 8.15 8.54 -0.39

SSE 0.49 0.18 0.12 0.46 8.53 7.29 5.72
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Figure 1: U.S. polio count data from January 1970 to December 1983.
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Figure 2: Non-stationary Poisson mean pattern with β1 = β2 = 0.5.

34



Time

M
ea

n

0 20 40 60 80 100

2
4

6
8

Figure 3: Non-stationary negative binomial mean pattern with β1 = 0, β2 = 0.4.
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Figure 4: Simulated true and forecasted Poisson counts.
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Figure 5: Simulated true and forecasted negative binomial counts.
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