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Abstract: 
We examine the decision maker’s external environment as a predictor of her judgmental 
effectiveness in detecting regime changes. Relying on two experimental studies, our main task 
employed is one of regime-change detection over time. Our first study looks at the effect of 
different task factors (signal diagnosticity, transition probability, and signal length) on 
judgmental accuracy, particularly with regards to over- and under-reaction. We find 
evidence of systematic over- and under-reaction, further supporting what is known as the 
system-neglect hypothesis (Massey & Wu 2005). We also establish that signal length is a 
significant component in a regime change detection task and show that increasing amounts of 
information are related to increasing conservatism. Yet what has not received adequate 
attention in studies of regime change detection is the effect of the strength or extremeness of 
evidence. We hypothesize that signals that are highly representative of a change having 
occurred (a perception we anchor on streaks) are likely to lead to systematic over-reaction. 
Our second study examines the effect of signal streaks on judgmental effectiveness. We report 
a significant three-way interaction suggesting that streaks tend to govern over-reaction in 
regime change detection tasks. 
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1. Introduction 
 
Detecting a fundamental change in regime is an important aspect of every day decision-
making. Practical examples include a wide range of tasks from detecting the onset of a 
recession, to a structural change in demand, to a change in mood of one’s partner. Each of 
those tasks essentially involves dealing with imperfect signals and incorporating those to 
make an inference about the true state of being, i.e. the current underlying regime or state. 
When detecting the onset of a recession, possible signals may relate to news from the housing 
market, employment data, and other indicators whereas the stability of the environment could 
be inferred upon based on past data about recessions (e.g. the general rate of occurrence, 
cycles). Naturally, given the uncertainties and complexity involved, most reactions to such 
signals will fall into the categories of under-reaction or over-reaction. Under-reaction may for 
example lead a decision maker to miss out on an important change in the market whereas 
over-reaction may lead to false alarms and premature action, e.g. regarding a market 
entrance. Rational as well as irrational reasoning may cause both over- and under-reaction. 
Aspects such as the possible cost and benefits of over- and under-reaction should certainly 
factor into a rational decision and make a universal judgment about the value or threat of 
over- and under-reaction impossible. Yet cognitive processes that affect how individuals, 
perhaps unwittingly, respond to certain features in change detection settings in ways that 
differ from normative prescriptions are potentially very harmful. Resulting errors in (biased) 
judgments may indeed harbor unfavorable and unintended consequences. 
 
The study of regime change detection has for long involved varying environmental 
parameters in order to investigate why and how well individuals respond to changing 
conditions (e.g. see Chinnis and Peterson 1968, 1970). Recently, Massey and Wu (2005) 
have revived the stream on regime change detection and successfully unified previous 
inconsistent findings through their framework of system-neglect. The system-neglect 
hypothesis posits that subjects react primarily to signals they observe and somewhat 
disregard the underlying system that generates those signals, leading to relative over-reaction 
in stable systems and relative under-reaction in unstable systems. This framework manages to 
encompass previous findings and was systematically tested by Massey and Wu (2005) in a 
series of studies. Kremer et al. (2010) found further support for the stability of this pattern in 
time series forecasting tasks. In such task contexts, subjects tended to over-react to forecast 
errors in stable environments and under-react to forecast errors in less stable environments, 
reaffirming that subjects paid too little attention to the underlying environment of their task. 
Massey and Wu’s (2005) system neglect hypothesis regarding over- and under-reaction in a 
non-stationary regime change detection setting is derived in large parts from earlier work by 
Griffin and Tversky (1992). In their studies on over- and under-confidence in stationary 
forecasting settings, Griffin and Tversky (1992) aimed at reconciling previous findings of 
pronounced conservatism (under-confidence) with the common over-confidence 
phenomenon. The occurrence of over-confidence and over-reaction in judgmental behavior 
had frequently been attributed to the representativeness heuristic (Kahneman and Tversky 
1973a, 1973b). Subjects have been shown to predict outcomes of which the experienced 
signal is most representative. Yet representative signals do neither account for the potential 
level of noise in the signal nor for the underlying likelihood (i.e. do not relate to a relevant 
base rate of or take into account the sample size that was used for inference), thereby relying 
on a signal’s representativeness may easily lead to over-reaction. On the other hand, the 
phenomenon of under-reaction has often been termed conservatism (Tversky and Kahneman 
1974). Subjects have been shown to behave conservatively in evaluating the weight of 
information (e.g. sample size). Conservatism may thus lead to under-reaction. Under-reaction 
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has also been attributed to potential problems regarding the proper aggregation of evidence 
with increasing information and the misperception of the impact of pieces of information 
(Rappoport and Summers 1973). 
 
Griffin and Tversky (1992) reconciled these findings in a common framework, arguing that 
individuals focus primarily on aspects that are related to the strength or extremeness of 
evidence (as related to the representativeness heuristic) and generally much neglect the 
weight or credence of evidence. Whereas the weight of evidence can be thought of as an 
underlying base rate or sample size, the strength of evidence relates to the extremeness of a 
certain piece of evidence. Supported by a number of studies they showed that when weight is 
high and strength is low individuals suffer from under-confidence. To the contrary, in settings 
where strength is high and weight is low individuals display over-confidence (see Figure 1). 
 

 
Low weight High weight 

Low strength 
 

Under-confidence 

High strength Over-confidence 
 

Figure 1 

The notion of the interplay between the strength and weight of evidence has strongly 
influenced the inception of Massey and Wu’s (2005) system-neglect hypothesis and the 
interpretation of its tests rests on its assumptions. Yet in experimentally studying the system 
neglect hypothesis, existing research by Massey and Wu (2005) has operationally focused on 
subjects’ apparent disregard of the weight of evidence concept, which was varied through 
changing the characteristics of the signal generating system. Massey and Wu (2005) have 
varied two environmental parameters, namely diagnosticity and transition probability. 
Diagnosticity relates to the amount of information (indicative of a given regime) inherent in a 
signal (versus noise) whereas the parameter transition probability serves as a gauge of 
stability of the current regime. In their (2005) studies, subjects had for example to judge the 
probability of a switch from one regime, an urn filled with a certain distribution of red and 
blue balls, to a second (absorptive) regime, an urn with a symmetric (opposite) distribution of 
red and blue balls compared to the first urn. The diagnosticity parameter was operationalized 
as the relative proportion of red versus blue balls in the urns’ distributions. A higher 
diagnosticity is given when the distributions approach extreme values (e.g. almost only red 
balls in the first urn and therefore almost only blue balls in the second urn). An alternative 
way to think of the diagnosticity parameter is as the strength of correlation between a signal 
and the urn it originates from. 
 
When it comes to judging the probability of a switch from a first regime to a second, Massey 
and Wu (2005) argued that in settings where signal diagnosticity is high (i.e. precise signals) 
and the transition probability from the first to the second regime is high (i.e. an unstable first 
regime) the weight of evidence for a switch is the highest. Therefore, relative under-reaction 
when compared to all other settings should be expected. (The system-neglect hypothesis is 
silent about absolute levels of over- and under-reaction.) On the other hand, when signal 
diagnosticity is low and the transition probability is low, the weight of evidence pertaining to 
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a switch is the lowest and thus most relative over-reaction should be seen in such a setting. 
Figure 2 shows this prediction graphically. 

 
Low transition probability High transition probability 

Low diagnosticity 
Over-reaction 

 

(lowest weight of evidence)  

High diagnosticity 
 

Under-reaction 
 

(highest weight of evidence)
Figure 2 

However, what is missing from the current framework is the fact that decision makers are 
usually presented with several pieces of information at the same time when making a 
judgment. Previous research in the field of regime change detection has not investigated the 
impact of varying amounts of information at hand (Chinnis and Peterson 1968, 1970; Massey 
and Wu 2005; Kremer et al. 2010). Most recent studies (Massey and Wu 2005; Li et al. 2009; 
Kremer et al. 2010) focused only on single point sequences and others (Chinnis and Peterson 
1968, 1970) held the amount of information constant throughout their studies. Varying the 
amount of information per signal introduces an important factor that much increases the 
ecological validity of the task. It further builds on previous research that has repeatedly 
linked increasing amounts of information (e.g. sample size) with increasing conservatism in 
likelihood judgments (Peterson et al. 1965, Slovic and Lichtenstein 1970). The amount of 
information at hand has equally been related to the concept of diagnosticity (e.g. Peterson et 
al. 1965; Slovic and Lichtenstein 1970, p. 71) as well as the weight of evidence (Griffin and 
Tversky 1992). Then, when making a judgment about whether a change from one regime to 
another has occurred, using signals for inference, signal length can be regarded as an 
analogue to the concept of sample size as discussed in previous research and thus the amount 
of information at hand. A signal that includes more information (in quantity) carries a higher 
weight of evidence and represents a higher level of diagnosticity to the decision maker. 
Therefore, with increasing amounts of information at hand when judging the likelihood of 
regime changes, relatively more under-reaction should be witnessed. Yet both whether this is 
the case and if so how strong the effect of varying amounts of information in a change 
detection setting is remain to be tested. Our first study sets out to investigate the role of 
varying amounts of information by varying signal length and its effect on under- and over-
reaction in a regime change detection setting. 
 
Furthermore, what previous research on the system-neglect hypothesis (Massey & Wu 2005, 
Li et al. 2009) has merely assumed as the weight of evidence’s counterpart in determining 
behavior leading to over- or under-reaction is the effect of the strength or extremeness of 
evidence and its effect in a regime change detection setting. The concept of the strength of 
evidence has not been explicitly measured. In a regime change detection setting the strength 
of evidence may relate to the extremeness of a certain signal. Signals that are highly 
representative of a change having occurred are likely to lead to systematic over-reaction. An 
interaction between the effect of the weight and the strength of evidence further seems very 
likely and ought to be investigated for a better understanding of systematic patterns of over- 
and under-reaction in a non-stationary setting. 
 
Massey and Wu (2005) have treated a diagnosticity parameter as part of a gauge for the 
weight of evidence. Yet we argue that the actual, realized (as opposed to probabilistic 



Federspiel, Seifert & Newman                                              SAS/IIF Final Grant Report 

June 2013 5

diagnosticity parameter that Massey and Wu (2005) used in creating sequences) distribution 
of signals could however be thought of as a gauge for the strength of evidence. One facet of 
the actual signal distribution that has previously received much attention outside of the 
regime change setting is the effect of streaks in data (Gillovich et al. 1985). Perceived streaks 
in perfectly random data relate to people’s misperceptions of chance and yet point to streaks 
as being seen as representative of the underlying generating mechanism. For example, in one 
of Gillovich et al.’s (1985) study, individuals causally interpreted streaks in sports as “hot 
hands”. A number of recent studies have implicitly investigated perceptions of randomness 
and the effect and perception of streaks. Reimers and Harvey (2011) showed once more that 
individuals seem to perceive positive autocorrelation in factually uncorrelated time series and 
Kremer et al. (2010) found support for a belief in illusionary trends akin to both the 
gambler’s fallacy and the hot-hand effect in a time series forecasting task. Streaks may very 
well be perceived to be representative of a certain system and as such provoke a stronger 
reaction leading to over-reaction. It is then plausible to assume that streak perception plays a 
significant role in regime change detection since it is representative of the perceived strength 
of evidence concept which previous research has assumed to be the deciding behavioral 
influencer. Our second study sets out to directly test the effect of streak perception and its 
interplay with the other environmental background parameters such as transition probability 
and signal diagnosticity. 
 
 
2. General experimental design 
 
2.1 Experimental task 
 
Our experimental task was based on Massey and Wu (2005) and required subjects to visually 
inspect 10 consecutive signals on a computer screen as well as to judge whether the signal 
originated from one of two possible “regimes”. In particular, for each signal, subjects were 
asked to state their probability belief that the signal indicated a switch from one regime to 
another regime. The two regimes were represented by two urns filled with symmetric 
distributions of either more red or green balls (e.g. 60% red & 40% green in urn A, versus 
40% red & 60% green in urn B) and for ease of interpretation these were labeled the red and 
green urn, respectively. For each game, we used a fixed probability (e.g. 5%) of a switch 
from the red to the green urn. Each signal consisted of several balls drawn from either the red 
or the green urn. The sequences always started in the red urn and were absorptive in case of a 
change (i.e. once a switch to the green urn had occurred, a switch back to the red urn was 
impossible). The absorptive characteristic of the green urn somewhat simplified the task 
which otherwise would likely become too cognitively challenging for subjects. An absorptive 
system is arguably also a realistic assumption for environments that generally have low 
likelihoods (e.g. 5%) of change from one state to another. If this restriction had not been 
imposed, the vast majority of randomly generated sequences would indeed not have exhibited 
more than one switch over 10 signals. The distributions and switch probabilities always 
remained constant throughout a given sequence. The two urns were always labeled and all the 
information (i.e. respective urn distributions, the probability of a switch with each new signal, 
and the full history of previous signals) was always shown to subjects during the task (see 
Figure 3 for an example screen shot). Each sequence to be judged was represented by a 
unique draw of balls from one of the urns and our experimental conditions related to 
variations in either the likelihood of a switch or the distribution of red and green balls in each 
of the two urns, or both. Consistent with previous studies, we referred to the ratio of red 
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versus green ball as the diagnosticity of the two urns whereas we defined the likelihood of 
switching between the urns as the transition probability parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 

In order to generate a signal, we sampled a sequence of red or green balls from one of the 
urns. Each signal can be understood as the result of a Bernoulli process with uneven success 
probability reflecting the ratio of the two types of balls in each urn. As balls were drawn 
independently and replaced after each trial, the order of red and green balls in our signals 
should not have had any effect in judging its probability of having come from one regime or 
the other. Given this setup, we informed participants that all parameters would remain 
constant throughout a sequence. Our research design allowed us to analyze if subjects’ 
judgments may have been influenced by their subjective perception of streaks among the 
presented signals. Specifically, we could achieve this by calculating the probability of a 
specific signal having come from one regime or the other, pretending that order mattered. A 
more detailed description of the operationalization of this parameter is described in part 4.2 
below. As noted above, a high likelihood for a particular streak to have come from one 
regime was likely seen as representative of that regime, and thereby hypothesized to lead to 
over-reaction. 
 
The task was computer-based, conducted via Microsoft Excel and created using Virtual Basic 
for Applications (VBA). 
 
2.2 Payment formula 
 
Subjects were paid based on their judgmental accuracy according to the same following 
symmetrical quadratic scoring formula as used by Massey & Wu (2005). 
 

	 	 2 ∗  
 
Participants were paid a maximum of x per judgment and a minimum of -x depending on 
their accuracy in indicating whether the system had switched or not. The error term was 
calculated by comparing the accuracy of the probability judgment to the actual state of the 
system. For example, if a subject stated the probability of the current signal to come from the 
green urn (i.e. a switch is assumed to have occurred) to be 0.6 and indeed a switch had 
occurred, his error is 0.4 (= 1 – 0.6). Assuming for the same case that a switch had not 
occurred, the subject’s error had been 0.6 (= 0.6 – 0). X varied between €0.05 in experiment 1 
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and $0.1125 in experiment 2. In experiment 2 subjects were additionally paid a flat fee of $1 
regardless of their performance. 
 
 
 
 
2.3 Normative model 
 
Based on the information that could be extracted from the signals, Bayesian estimates could 
be computed that served as a normative benchmark to subjects’ judgments. We were 
particularly interested in examining deviations from this Bayesian benchmark, which would 
indicate the degree of relative over- and under-reaction in subjects’ probability estimates. 
 
Let  denote the diagnosticity level that stands for a given distribution of red and green balls 
in either the red ( ) or the green ( ) urn and  and  the respective probabilities of 
drawing a red or a green ball (in this example out of the red urn). Let g denote the number of 
green balls in a given signal and r denote the number of red balls in a given signal. G denotes 
the green urn. R denotes the red urn.  denotes the history of previous signals at t and  
denotes the transition probability parameter. As per Bayes Theorem the posterior likelihood 
that a switch to the green urn has occurred given the previous history of signals can be stated 
as 
 

|

	 0	; 	

0	; 	
| 	

| 	 | ∗ 1

, 

 
where 

| ∗ , 
and 

| 	 ∗ . 
 
The proper, normative Bayesian revision per signal can then be defined as 
 

Δ | | | . 
 
Further, let  denote the empirical probability judgment at t, then 
 

Δ , 
 
defines the change in empirical judgments per given signal, which allows us to derive our 
variable of interest which is empirical under- or over-reaction as compared to the Bayesian 
standard. It can then simply be stated as 
 

Δ Δ | . 
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3. Experiment 1 
 
The first experiment was carried out to check for the robustness of the system neglect 
hypothesis whilst extending the realism and ecological validity of the decision context by 
varying the amount of information (signal length) at hand. 
 
3.1 Participants 
 
Participants were students recruited on campus of a leading European business school for an 
experimental study advertised as related to decision making. A total of 41 participants 
completed the experiment. The average age was 30 years old (with a standard deviation of 6 
years) and 41.5% were female. 
 
3.2 Design 
 
The experiment was administered as a within-subjects design. The task factors under 
investigation were three different levels of a diagnosticity parameter (the urns’ distributions: 
52/48, 60/40 and 68/32 – e.g. representing 68% red & 32% green in the red urn and vice 
versa in the green urn for the last case), two different probability levels of a switch (3.5%, 
15%), and three different signal lengths (5, 8, or 11 balls). Sequences were randomly created 
using the respective parameters and sequences were presented in random order. Each 
condition consisted of 10 signals and each subject completed a total of 36 sequences resulting 
a total of 14,760 probability judgments. 
 
3.3 Procedure 
 
The experiment took place in a computer lab on campus. Subjects were assigned seats, 
briefed on how to access and run the experiment via Microsoft Excel and began the task at 
the same time. The task was not timed, subjects were free to stop at any time and to leave 
once finished. Once started, the experiment began with detailed instructions on the statistical 
process underlying the creation of the different sequences. (See appendix 1 for detailed 
instruction examples and screen shots.) Notably, subjects were explicitly told that all 
parameters were always constant per any given sequence. Subjects were told that their task 
was to estimate the probability that the last signal had come from the green urn (i.e. a switch 
having occurred). Subsequently subjects received detailed instructions on the payment 
formula and were told that their compensation was performance based. They were provided 
with a range of possible payouts as well as with a rough estimate of how long they should 
expect to complete the task. Thereafter, subjects went through a practice trial for which their 
performance was not recorded. The practice trial consisted of one complete sequence and was 
accompanied by instructions that repeated the nature of the statistical process underlying the 
sequences and guidelines on how to navigate the task. Only after completing the practice trial 
subjects proceeded to the actual 36 sequences. Further, with each new sequence, subjects 
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were first shown a single sample signal stemming from the red urn. They were informed of 
their overall progress and payouts as proxy of judgmental accuracy after each sequence. 
 
3.4 Results 
 
On average the task took subjects 1h and 15 minutes to complete and the average payment 
was €11.94. All of the 14,760 judgments were used in the analysis. To investigate the 
statistical effects of diagnosticity, transition probability and signal length a repeated-measures 
ANOVA was run. To check for statistical effects across conditions, we averaged the 
differences between the respective empirical and Bayesian changes per signal (the average of 
Δ Δ |  per condition). We found main effects of diagnosticity, F(2, 162) = 117.33, 
p < 0.000,  = 0.59, transition probability, F(1, 81) = 398.19, p < 0.000,  = 0.83, and 
length, F(2, 162) = 34.07, p < 0.000,  = 0.30, all of which were in the predicted direction 
(see Figure 6 in appendix 2.1). We found interactions between diagnosticity and transition 
probability, F(2, 162) = 67.08, p < 0.000,  = 0.45, diagnosticity and length, F(4, 324) = 
22.95, p < 0.000,  = 0.22, and transition probability and length, F(2, 162) = 12.86, p < 
0.000,  = 0.14 (see Figure 7 in appendix 2.2). We further found a significant three-way 
interaction between diagnosticity, transition probability and length, F(4, 324) = 28.84, p < 
0.000,  = 0.26 (see Figure 4). 
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3.5 Discussion 
 
As predicted, the amount of information available to subjects when making their judgments 
had a pronounced effect on its own and further in combination with the other two factors in 
determining relative over- and under-reaction. Our findings seem to confirm that the length 
of the signal in a regime change detection setting of this kind maps well with the notion of 
information at hand and previous findings that relate increasing amounts of information at 
hand to increasing conservatism (e.g. Slovic and Lichtenstein 1970). An increase in the 
amount of information to derive a judgment updating the likelihood of a switch can indeed be 
regarded as another manifestation of signal diagnosticity. As such, it ties into and potentially 
much alters the weight of evidence. In this sense, results from our first experiment further 
support the system-neglect hypothesis (Massey and Wu 2005), testing it in a novel, more 
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Figure 4 – Error bars represent one standard error 
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complex and realistic setting. Subjects exhibited a pronounced disregard for changes in the 
weight of evidence offered to them when judging the likelihood of a regime change. We 
witnessed increasing conservatism with increasing levels of signal diagnosticity and with 
decreasing stability of the system (increasing transition probabilities). In relative terms, most 
over-reaction was exhibited in settings where the weight of evidence was lowest and most 
relative under-reaction was exhibited in settings where the weight of evidence was highest. 
Nonetheless, what until this point has not been explicitly tested is the effect of the strength of 
evidence in a regime change detection setting. It has been assumed as the counterpart to the 
weight of evidence, i.e. factors such as those discussed above, yet it has not been directly 
measured. 
 
 
4. Experiment 2 
 
Our second experiment aims to measure the effect of the strength of evidence and investigate 
its interplay with changes in the weight of evidence. As discussed, our measure for the 
strength of evidence are streaks within signals of either red or green balls, which may likely 
be perceived to be representative of the red or the green urn, respectively, and thus of a 
regime change in the case of the latter. 
 
4.1 Participants 
 
A total of 110 participants completed the online-based experiment. The mean age was 34 
years old (with a standard deviation of 10 years) and 42.7% were female. Participation was 
location restricted to participants who were located in the USA. Amazon Turk provides 
access to a very large and very diverse base of subjects. In fact, Paolacci et al. (2010) as well 
as Buhrmester et al (2011) have shown evidence for its US subject base to be much more 
representative of the US population as a whole as compared to traditional university subject 
pools. Also, Horton et al. (2011) have replicated traditional experimental findings such as 
choice reversals through framing which provides further support for its validity as sampling 
source. 
 
4.2 Design 
 
The experiment was administered using a mixed design. The task factors under investigation 
were two different levels of a diagnosticity parameter (the urns’ distribution: 60/40 and 
68/32), two different probability levels of a switch (5% and 20%), both of which were 
administered as between-subject factors and two different streak probability ratios (high or 
low) that were administered as within-subject factor. Signal length was now held constant at 
8 balls. For this experiment we first randomly created a number of sequences using the 
respective diagnosticity and transition probability parameters. We then chose one random 
sequence of each of the four parameter combinations and manually altered the location of red 
and green balls in each signal in order to create two derivate sequences, one of which 
maximized the occurrence of streaks of green balls and another minimized it. (Keep in mind 
that the system created all signals and sequences without memory, i.e. with replacement, and 
this thus does not matter for judging the likelihood of a regime change.) The eight different 
conditions were then split into four pairs of two that were randomly administered. Each 
condition again consisted of 10 signals and each subject completed two sequences, resulting 
in a total of 2,200 probability judgments. The streak probability ratios were computed by 
taking the order of the individual balls per signal into account. The variable was computed as 
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the average ratio per sequence between the probability of a given streak in a signal, assuming 
that the signal was drawn from the green urn, and the probability of a given streak in a signal, 
assuming that the signal was drawn from the red urn. (See appendix 3 for a detailed account 
of the streak probability ratio factor.) 
 
4.3 Procedure 
 
The experiment took place online via Amazon’s Mechanical Turk platform on which a link to 
the task was provided. The actual experiment was then carried out on Qualtrics in which the 
task was embedded. The instructions and the procedure were identical to the ones of the first 
experiment and differed only with respect to x in the payment formula and the number of 
overall sequences to be judged. 
 
4.4 Results 
 
The average completion time was 17 minutes. The average performance based pay was $1.24 
and the average payment was $2.24 (including the $1 flat fee). To investigate the statistical 
effects of diagnosticity, transition probability and the streak probability ratio a mixed effects 
ANOVA was run. Diagnosticity and transition probability were both entered as between-
subjects factors whereas the streak probability ratio was entered as a within-subject factor. To 
check for statistical effects across conditions, we averaged the differences between the 
respective empirical and Bayesian changes per signal (the average of Δ Δ |  per 
condition). Once more, we found main effects of diagnosticity, F(1, 106) = 61.41, p < 0.000, 

 = 0.37, and transition probability, F(1, 106) = 59.66, p < 0.000,  = 0.36, both of which 
were in the predicted direction (see Figure 8 in appendix 2.3). We did not find a significant 
main effect for the streak probability ratio, F < 2. Moreover, we found a significant 
interaction between diagnosticity and transition probability, F(1, 106) = 11.96, p < 0.001,  
= 0.10 (see Figure 9 in appendix 2.4), and furthermore a significant three-way interaction 
between diagnosticity, transition probability and the streak probability ratio, F(1, 106) = 4.61, 
p < 0.034,  = 0.04 (see Figure 5). 
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Figure 5 – Error bars represent one standard error 

 
4.5 Discussion 
 
Our second experiment has found further support for the effect of the weight of evidence, in 
that we replicated previous patterns of increasing relative conservatism with an increase in 
the weight of evidence. However, we did also find a significant interplay between the 
strength of evidence, measured by the streak probability ratio, and the weight of evidence. 
Although we failed to find a significant main effect of perceived streaks (whilst directionally 
it behaved as expected) it significantly increased relative over-reaction in situations of 
otherwise high weight of evidence (in our case highly unstable systems and high 
diagnosticity). Also, it needs to be noted that given our task design and our explicit 
instructions it was arguably much harder to find a significant belief in streaks. Subjects were 
clearly told that balls were sampled with replacement, which made the order of balls 
irrelevant when it came to judge the likelihood of a switch. Importantly, our task was also 
highly abstract and did not at all offer any rationale for a causal belief in human agency 
behind the creation of the sequences. Recent research on the belief in hot hands by Burns and 
Corpus (2004) found support for differences in the belief in hot hands to stem from how 
random subjects regarded the underlying system creating the sequence. For example, streaks 
in the case of basketball are likely regarded as less random than streaks in the case of a 
roulette wheel. Our evidence seems to indicate that our subjects still shared a causal 
perception that streaks were non-random and indicative of a certain system even though the 
instructions clearly indicated otherwise. 
 
 
5. Conclusion 
 
Our research ties into a long stream of research on regime change detection. We carried out 
two experiments, the first of which investigated the effect of varying amounts of information 
at hand when judging the likelihood of a regime change whereas the second investigated the 
effect of streaks on perceived likelihoods of regime changes. As in previous research, our 
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subjects did not fully neglect relevant environmental parameters in judging the likelihoods of 
regime changes and yet notably deviated from the normative judgments of a perfectly 
Bayesian agent. Both of our studies have found further support for the system-neglect 
hypothesis (Massey and Wu 2005) and yet we have identified further relevant factors that 
significantly moderate relative over- and under-reaction in a regime change detection setting. 
We found novel support for both increasing relative conservatism with increasing amounts of 
information at hand as well as increasing relative over-reaction with an increase in apparent 
streaks in the data. Theoretically the amount of information strongly ties into the concept of 
the weight of evidence, whereas the apparent belief in streaks being representative of a 
regime change relates well to the concept of the strength or extremeness of evidence (Griffin 
and Tversky 1992). Both the belief in streaks and the effect of varying amounts of 
information are factors that are commonly involved in situations of regime change detection 
in practice. Whilst further factors remain to be investigated it is important to find ways to de-
bias judgments in regime change detection settings since depending on the associated costs 
and benefits of over- and under-reaction the consequences of over- or under-reaction can be 
dire. 
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Appendices 
 
1. Instructions and screen shots 
 
1.1 Instruction example screen shots of experiment 2 
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1.2 Trial example screen shot of experiment 1 
 

 
 
 
 
2. Estimated marginal means 
 
2.1 Experiment 1: Main effects 
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Figure 6 – Error bars represent one standard error 

 
2.2 Experiment 1: Two-way interactions 
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Figure 7 – Error bars represent one standard error 

 
2.3 Experiment 2: Main effects 
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Figure 8 – Error bars represent one standard error 

 
2.4 Experiment 2: Two-way interactions 
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Figure 9 – Error bars represent one standard error 

 
 
3. Variable computation 
 
3.1 Streak probability ratio 
 
We calculated the streak probability ratio factor by computing the ratio between (1) the 
probability of a given streak in a signal, assuming that the signal was drawn from the green 
urn, and (2) the probability of a given streak in a signal, assuming that the signal was drawn 
from the red urn. Even though the order of balls was normatively irrelevant when judging the 
likelihood of a regime change (balls were drawn with replacement) we were still able to 
compute such ratio for descriptive purposes taking into account the order of balls in a signal. 
 
Consider the following example: In a signal of 8 balls the probability of seeing 5 green balls 
in a row (for example r-g-g-g-g-g-r-r) can be calculated by multiplying (1) the number of 
possible permutations of 5 green balls in a row divided by all possible permutations at length 
8 by (2) the respective likelihood of seeing 5 green balls in a signal (e.g. 5 * 0.6, assuming 
that the balls have come from the green urn with a diagnosticity level of 40% red and 60% 
green balls). 
 
We manipulated the order of balls in the previously at random crated sequences given certain 
diagnosticity and transition probability levels to create two sequences for each combination 
of the other factors. One of the two newly created sequences maximized the streak 
probability ratio (averaged over all signals per sequence) whereas the second sequence 
minimized the streak probability ratio. When the streak probability ratio was entered as a 
factor in our analysis, the former sequence represented the “high” level whereas the latter 
represented the “low” level. As such, this allowed us to tap into possible causal beliefs that 
associated apparent streaks (as opposed to diagnosticity levels) with a given underlying 
system. 
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