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Abstract

The prediction of volatility is of primary importance for business applications in risk management, asset

allocation and pricing of derivative instruments. This paper proposes a novel measurement model which takes

into consideration the possibly time-varying interaction of realized volatility and asset returns, according to

a bivariate model aiming at capturing the main stylised facts: (i) the long memory of the volatility process,

(ii) the heavy-tailedness of the returns distribution, and (iii) the negative dependence of volatility and daily

market returns. We assess the relevance of “volatility in volatility”and time–varying “leverage” effects in the

out-of-sample forecasting performance of the model, and evaluate the density forecasts of the future level

of market volatility. The empirical results illustrate that our specification can outperform the benchmark

HAR–RV, both in terms of point and density forecasts.

Keywords: realized volatility, forecasting, leverage effect, volatility in volatility.

1. Introduction

Market volatility plays a predominant role in applied finance. Starting from the seminal work of Andersen

et al. (2001), during the last decade the possibility of estimating market volatility using intradaily returns

opened the way for a myriad of new applications in risk management, asset allocation and pricing of derivative

instruments. Meanwhile, the properties of realized volatility time series have been deeply investigated in

a series of studies that have documented the long memory feature of the series. In a highly influential

paper, Corsi (2009) proposed the heterogenous autoregressive model (HAR–RV), which accounts for the

long memory via a long autoregression, parsimoniously parameterized in terms of three parameters.

Besides the long memory of volatility, the aspect of “volatility of volatility” is also of interest. Specifi-

cally, there is empirical evidence of time–varying second conditional moment of realized volatility measures.

For instance, Bollerslev et al. (2009) investigate this aspect with reference to the temporal variation of

expected returns. Their results suggest that accounting for volatility of volatility is of primary importance

for forecasting. Other recent applications deal with the concept of “quarticity”, also related to “volatility of

volatility” and its implications in prediction; see for example Bollerslev et al. (2016).
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Interestingly, a number of new contributions that jointly model realized volatility and market returns

have been also proposed. The idea behind these models is to properly account for another important

characteristic of realized volatility that concerns its negative dependence with daily market returns (i.e.

the so called “leverage effect”). The most notable contributions are Shephard and Sheppard (2010) and

Takahashi et al. (2009), respectively. While the multivariate extensions of this framework are nontrivial,

contributions in this direction are due to Hansen et al. (2014), Noureldin et al. (2012) and Janus et al.

(2016).1

In this paper, we propose a new bivariate model of realized volatility and market returns accounting for

the three above well established features. In particular, (i) the conditional mean of the realized volatility

series can show long range dependence, (ii) the volatility of volatility is allowed to vary over time according

to an observation driven process, (iii) the conditional correlation of volatility and asset returns is allowed

to be nonzero and time-varying, and finally (iv) both returns and the realized volatility measure follow an

heavy-tailed distribution. Our specification nests the model with no leverage and a constant volatility of

volatility. Moreover, we consider the alternative specification such that the conditional volatility is short

memory.

We build our new model in a fully observation–driven framework and depart from the Realized Volatility–

Stochastic Volatility (RV–SV) type of models introduced by Takahashi et al. (2009). Indeed, our proposal is

rooted in the recent advances in score–driven (SD) models,2 see Creal et al. (2013) and Harvey (2013). SD

models have been found to offer a good trade–off between flexibility and complexity of time–series models

and to be able to address a series of relevant empirical problems in a variety of fields, while remaining in

a fully observation–driven framework.3 For further details on the SD approach, see the paper of Koopman

et al. (2016) and the papers listed on the associated website www.gasmodels.com.

The forecasting ability of the proposed model is assessed through an extensive empirical application using

publicly available data from the Oxford-Man Institute of Quantitative Finance Realized Library. Namely,

we investigate the usefulness of accounting for the aforementioned features for point and density prediction

of future market volatility. Our results show that the model can outperform the benchmark HAR–RV model,

both in terms of point and density forecasts.

The paper is organized in the following manner. Section 2 introduces the proposed model and details the

estimation procedure. Section 3 details filtering procedure for time–varying parameters. Section 4 reports an

analysis on the shape of the response of future volatility with respect to current shocks. Section 5 reports the

forecasting empirical application. Finally, Section 6 concludes and suggests further possible developments.

1Of remarkable interest are also the working papers of Asai et al. (2016), Hansen et al. (2016) and Lucas and Opschoor

(2016).
2Also known as Generalized Autoregressive Score (GAS) and Dynamic Conditional Score (DCS) models.
3This means that model estimation and inference can benefit from the availability of the likelihood function in closed form.
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2. A new joint model for market returns and realized volatility

Let yt ∈ R and xt ∈ R be the financial return and its associated realized log–volatility measure (logarithm

of the realized variance) at time t ∈ N. Conditional on Ft−1 = σ (yt−s, xt−s, s > 0), the bivariate vector

zt = (yt, xt)
′ is modelled as follows:

zt

∣∣∣Ft−1 ∼ T (µt,Σt, ν) , µt =

 0

µt

 , Σt =

exp(2µt) ct

ct qt

 (1)

where T denotes the bivariate Student’s t distribution with ν degrees of freedom, with probability density

functions (pdf )

p(zt|Ft−1) =
Γ((ν + 2)/2)

Γ(ν/2)(ν − 2)π|Σt|1/2

(
1 +

1

ν − 2
(zt − µt)

′Σ−1t (zt − µt)

)−(ν+2)/2

, (2)

and µt = E(zt|Ft−1), Σt = Var(zt|Ft−1).

A distinctive feature of our specification is that µt ∈ R, the conditional mean of the realized log–volatility,

enters the expression of the conditional variance of the returns series, so that Var(yt|Ft−1) = exp(2µt). We

set the conditional mean of yt equal to zero, i.e., we assume that financial returns are a martingale difference

sequence with respect to Ft−1. The dynamic model for the evolution of the parameters µt, ρt, and qt, that

will be specified in the next section, implies that they are measurable with respect to Ft−1. For the degrees

of freedom we assume ν > 2. Our specification also implies that both yt and xt, conditionally on Ft−1, are

univariate Student’s t distributed, see Kotz and Nadarajah (2004, pp. 15–16).

The conditional covariance between yt and xt models the leverage effect. It is parameterized as ct =

exp(µt)
√
qtρt, where ρt ∈ (−1, 1) is the time-varying conditional correlation. In the financial econometrics

literature there is no consensus on the definition of the leverage effect. The traditional one dates back at

least to Crane (1959) and relates equity returns to the changes in the level of their volatility, i.e., when

the stock price falls, the future volatility increases and vice-versa. The theoretical background behind this

reasoning has been principally developed by financial economists starting from the seminal work of Black

and Scholes (1973) and grounding on the well–known Modigliani–Miller’s framework, see Black (1976) and

Christie (1982).

Statistical models have incorporated this notion in different ways. In the GARCH framework (Engle,

1982; Bollerslev, 1986) the leverage effect is incorporated as an asymmetric response of the conditional

volatility process to past returns, i.e., when yt < 0, ∂Var(yt|Ft−1)/∂yt−1 is larger than when yt ≥ 0; see,

for example, Nelson (1991), Glosten et al. (1993) and Zakoian (1994). In the stochastic volatility (SV)

framework (Taylor, 1986), the negative covariance between the disturbances of the returns and log-volatility

equations has different implications according as to whether the dynamic model for the log-volatility process

is formulated in contemporaneous form, as in Harvey and Shephard (1996), or in future form, as in Jacquier

et al. (2004). As shown by Yu (2005), only when the covariance is contemporaneous yt is a martingale
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difference sequence and the specification is consistent with the efficient market hypothesis of Fama (1970).

Our definition of the leverage effect is consistent with the arguments of Yu (2005).

3. The dynamic model for the time–varying parameters

Our specification of the updating mechanism of the parameters µt, ρt and qt, is based on the recent Score

Driven (SD) framework introduced by Creal et al. (2013) and Harvey (2013). SD models build a dynamic

updating equation exploiting the information contained in the score of conditional distribution of the data.

This way of introducing time–variation has been proven to be very flexible and has been used in a number

of different applied settings, see for example the paper by Koopman et al. (2016).

It is convenient to formulate a SD updating model for a smooth transformation of the original parameters,

which makes the range of their values unconstrained. Denote θt = (µt, ρt, qt)
′, θt ∈ R×(−1, 1)×R+, and let

θ̃t = (µ̃t, ρ̃t, q̃t)
′ be a transformation of θt, θ̃t ∈ R3, such that Λ(θ̃t) = θt is the continuous Ft−1–measurable

mapping function Λ(·)

Λ :


µt = µ̃t

ρt = (1− exp(−ρ̃t))/(1 + exp(−ρ̃t))

qt = exp(q̃t)

. (3)

The Jacobian matrix, J (θ̃t) = ∂Λ(θ̃t)/∂θ̃t, associated to this transformation is:

J (θ̃t) =


1 0 0

0 υ(ρ̃t) 0

0 0 exp(q̃t)

 , (4)

where υ(ρ̃t) = 2 exp(−ρ̃t)/(1 + exp(−ρ̃t))2.

The updating equation for θt is then:

θt+1 = Λ(θ̃t+1) (5)

θ̃t+1 = (I3 −B)κ + Bθ̃t + A(L)s̃t, (6)

where I3 is the 3×3 identity matrix and s̃t = ∂ log p(zt|Ft−1)/∂θ̃t is the score of the conditional distribution

of zt with respect to the transformed parameters θ̃t. This quantity is recovered via the chain rule as:

s̃t = J (θ̃t)
′st, (7)

where st = ∂ log p(zt|Ft−1)/∂θt, the score of p(zt|Ft−1) with respect to θt, st = (sµt , s
ρ
t , s

q
t )
′, with
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sµt = ηt

[
zyt +

(xt − µt)
qt

− ρt
yt(1 + xt − µt)
qt exp(µt)

]
− 1, (8)

sρt =
ηt
qt

[
(xt − µt)2

qt
− ρt

yt(xt − µt)
exp(µt)

]
− 1

qt
, (9)

sqt = ηt

[
− ρt`t

1− ρ2t
+
yt(xt − µt)
exp(µt)qt

]
+

ρt
1− ρ2t

, (10)

and, setting zyt = y2t / exp(2µt) and zxt = (xt − µt)2/qt,

ηt = 2ξt/(1− ρ2t ), ξt =
ν + 2

2(ν − 2)ωt
, ωt = 1 +

`t
(ν − 2)(1− ρ2t )

, `t = zyt + zxt −
2ρtyt(xt − µt))

exp(µtqt)
. (11)

Note that under correct model specification, st evolves as a martingale difference sequence implying that

E(θ̃t) = κ.

In Equation (5), the matrices A(L) and B and the vector κ = (κµ, κρ, κq)′ determine the evolution of θ̃t

and its long run level, respectively. Depending on the parametrization of A and B we can specify different

updating schemes for θ̃t. Specifically, B determines the response of θ̃t+1 to its previous value and influences

the persistence of the process. In this paper, we specify a diagonal structure for B, i.e. B = diag(bµ, bρ, bq),

which implies that possible autoregressive interactions between parameters are ruled out. Furthermore, in

order to avoid an explosive behaviour of θ̃t, we impose |bj | < 1 for j = µ, ρ, q.

As for the lag polinomial matrix A(L), we consider the specification

A(L) = diag
(
aµ(1− L)−d, aρ, aq

)
. (12)

which implies that µt has an ARFIMA(1,d,0) representation with memory parameter d. To enforce weak

stationarity of θ̃t one assume d < 1/2. A key stylized fact of log–realized volatility is the long memory

property of the process. This is well known from the seminal contribution of Corsi (2009) and further

developments, see for instance Proietti (2016). Our way of introducing long memory in the evolution of

µt follows the approach of Janus et al. (2016). The transformed correlation and volatility of volatility

parameters follows a first order autoregressive evolution.

Given a bivariate time–series of financial returns and realized log–volatilities {(yt, xt)′, t = 1, . . . , T}

model parameters ξ = (κµ, κρ, κq, aµ, aρ, aq, d, bµ, bρ, bq, ν)′ are estimated via numerical maximization of the

likelihood function:

ξ̂ = argmax
ξ∈Ξ

T∑
t=1

log p(zt|Ft−1; ξ), (13)

where we have highlighted the dependence of p(zt|Ft−1) from ξ. In the implementation of (13), we set the

presample values of µt e equal to its unconditional mean an truncate the binomial expansion of the fractional

polynomial (1− L)−d at lag 1, 000.

5



4. The News Impact Curve

Understanding the reaction of the conditional volatility process to past observations is of primary impor-

tance for policy makers and market participants. In the financial econometrics literature, the News Impact

Curve (NIC), introduced by Engle and Ng (1993) for GARCH models, is the key tool used to investigate

this important aspect. The NIC plots the volatility at time t + 1 against a shock which hits the system at

time t. The leverage effect implies an asymmetric reaction of the volatility to past shocks, so that the NIC

for models that incorporate this feature is asymmetric. As stated before, GARCH models incorporate the

leverage effect in a rather simplistic way, that is, estimating an additional parameter which increases the

volatility proportionally to some function of the past negative shock, as for example the approaches of Nelson

(1991) and Glosten et al. (1993). Differently, as we reported in the previous section, SV models incorporate

leverage effect through a correlation parameter between the disturbances that affect the measurement and

state equations of the state space formulation. Unfortunately, for SV models the NIC is hard to derive since

p(yt|Ft−1), and its moments, are not available in closed form. Solutions exploiting computational intensive

simulation techniques are available (Takahashi et al., 2013), but rarely implemented.

Our framework provides an easy way to derive the NIC and shed lights about the three different sources

of variation of the conditional volatility process: i) the level of leverage, via ρt; ii) the fatness of the tail of

the conditional distribution, measured by tail index ν; iii) the volatility of volatility component, qt. The

three drivers influence the NIC in different ways and offer intuitive insights about the volatility structure,

namely:

i) The correlation between yt and xt determines the asymmetric behaviour of the volatility response.

This is consistent with the usual interpretation of the leverage effect. However, as it will be clear later,

the direction of the asymmetry also depends on the realization of the realized log–volatility at time t,

xt.

ii) The degree of freedom parameter helps in robustifying the update, that is, if ν is low, large shocks

are tapered, so that they exert little influence on tomorrow’s volatility. This mechanism is well–

known in the Score Driven literature and several authors have pointed out its benefit from an applied

perspective, see e.g., Creal et al. (2013), Harvey (2013), and Harvey and Luati (2014). The reasoning

behind this behaviour is that, if there is statistical evidence of fat–tails, extreme observations are

treated as realizations from the tails of the distribution, and hence, they do not imply a strong signal

in terms of increased volatility.

iii) The volatility of volatility influences the amplitude of the update. The signal is increased if the

volatility of volatility is high and reduced if it is low.
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To illustrate the behaviour of the NIC we simplify our model assuming that µ̃t is short memory (d = 0),

so that A(L) = A = diag(aµ, aρ, aq); as in Engle and Ng (1993), we start by setting the unrestricted

parameters θ̃t to their unconditional level, i.e. ρ̃ = κρ/(1− bρ), q̃ = κq/(1− bq), and µ̃ = κµ/(1− bµ), and

denote by ρ, q, µ, their transformation via Λ(·). Differently from the NIC defined in Engle and Ng (1993),

in our case we observe two “shocks” hitting the system and letting the conditional volatility level to be

updated from σt = exp(µt) to σt+1 = exp(µt+1). Formally, given the vector of new observations at time t,

zt = (yt, xt)
′, the NIC is defined as:

NIC(yt, xt;µ, ρ, q, ν) = σ exp(aµsµt ), (14)

where σ = exp(µ) and sµt , defined in (8), is evaluated at (µ, ρ, q).

We now graphically investigate the different shapes of the NIC with respect to different values of model

parameters and new observations. Figure B.1 displays NIC(yt, xt; 0, ρ, 1, ν) as a function of yt for the

following selected values of xt: i) xt = −5.5, implying that realized volatility decreases, ii) xt = 0 (no

changes in volatility) iii) xt = 5.5 (increase in volatility). The results are reported for different values of

ρ: panels (a), (b) and (c) refer to the case of a negative correlation between yt and xt (ρ = −0.7). Panels

(d), (e) and (f) refer to the case of no correlation between yt and xt (ρ = 0). Panels (g), (h) and (i) are

relative to the case of positive correlation between yt and xt (ρ = 0.7). We consider the sensitivity to the

degree of freedom parameter ν in Figure B.1, which considers the following cases: very fat tails ν = 3 (black,

continuous), moderate fat tails ν = 6 (red, dashed), and relatively thin tails ν = 9 (green, dotted).

[Insert Figure B.1 about here.]

The effects of ρ and ν on the NIC are very evident from Figure B.1. As expected, ρ determines the

levels of asymmetry of the NIC, while ν its behaviour when extreme observations are considered. Looking at

panels (d), (e) and (f), we observe that NIC is symmetric in the case ρ = 0. The value of xt determines the

level of the curve: for values of yt near zero, the model increases (decreases) the volatility if xt > 0 (xt < 0)

compared to the case xt = µ. The cases ρt = 0.7 and ρt = −0.7 provide interesting insights about the

relation between the volatility level at time t+ 1 and the observations (yt, xt)
′. Since in these cases returns

and volatility are correlated, the concordance between their sign also influences the update.4 Intuitively,

if we observe that sign(ytxt) = +1 and the correlation is negative, this is a signal of increased uncertainty

since such event is less likely than sign(ytxt) = −1 if ρ < 0. The model translates this unlikely event in an

increase of the volatility as it is evident from panels (a) and (c). Differently, as shown by panels (g) and

(i), if ρ > 0 the opposite holds. Panels (b) and (h) are more difficult to interpret and there is no a clear

reasoning explaining the asymmetric behaviour of NIC in that circumstances.

4Actually it is the sign of the difference between yt and xt from their averages which we assume to be zeros in both cases.
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Figure B.2 displays NIC(y, xt; 0, ρ, 1, ν) as a function of xt, for selected values of the remaining argu-

ments. For returns we consider the following cases: i) a large negative return, yt = −7; ii) zero return,

yt = 0; and iii) a large positive return, yt = 7. As before, results are reported for different values of ρ and

ν. Again, ρ determines the asymmetry of the curve, while ν its behaviour with respect to extreme values

of yt and xt. The symmetric case is still recovered when ρ = 0. The robustness of the filter is evident from

all the plots. Specifically, we note that panels (b), (e) and (h) are consistent with Figure 1 of Harvey and

Luati (2014), where the authors study the robustness of Score Driven filters for location models. In our

framework their results are extended to the case when scale and location are simultaneously updated.

The main conclusions of this graphical analysis is that our specification generates a flexible and inter-

pretable NIC and that asymmetric response is not only due to the correlation parameter ρt, but also to the

state of the system via the levels of xt, yt and the sign of their product.

[Insert Figure B.2 about here.]

5. Empirical application

Our empirical application deals with the ability of our model to predict realized log–volatility. For our

analysis we use the very well–known Oxford-Man Institute’s realized library, see Gerd et al. (2009), which is

freely available at http://realized.oxford-man.ox.ac.uk/data, from which we collect the daily returns

and the realized log–volatility series for 21 equity indices listed in the data set. In order to be robust to

possible microstructure noise present in the data, xt is the logarithmic transformation of the realized kernel

volatility measure, proposed by Barndorff-Nielsen et al. (2008). The length of the time series ranges from

T = 3605 to T = 4272 and covers the period from 3 January 2000 to 11 October 2016. Financial returns

have been demeaned to be consistent with the specification given in (1).

Table A.1 presents some descriptive statistics. Columns two to five report the sample correlation be-

tween financial returns and their associated realized log–volatility for sub-periods of 4 years. The empirical

correlations are almost always negative suggesting the presence of leverage effect for the considered time

series. Furthermore, the correlation is heterogeneous across financial indices.

[Insert Table A.1 about here.]

The last four columns report the empirical standard deviation of the realized log–volatility series across

different years. Still we observe heterogeneity across financial returns and moderate evidence of time–

variation. For all the series we observe higher values of the empirical standard deviation during the turbulent

period 2008/2011.
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5.1. Full sample analysis

We first report a full sample analysis of the different nested specifications of our model, arising, for

instance, by constraining d = 0, or imposing the ρt and/or qt are time invariant (setting aρ = bρ = 0 and/or

aq = bq = 0, respectively).

We label our encompassing specification Score Driven Fractional Integrated Realized Volatility (SDFIx)

model. The specification enforcing d = 0 will be labelled Score Driven Realized Volatility (SDx). In both

cases, nested versions recovered by imposing constraints on the coefficients of the system matrices A and

B are indicated with the –j label, j = ρ, q. For example, the SDx model featuring a time invariant ρ is

denoted by SDx–ρ.

Table A.2 lists the 6 different model specifications we define. All the specifications are estimated by

maximum likelihood using the full available sample. Model selection is carried out using the Bayesian

Information Criterion (BIC).

[Insert Table A.2 about here.]

Table A.3 reports the BIC for the specifications listed in Table A.2. The specification which is choosen most

often according to BIC is SDx–ρ, i.e. the model without fractional integration and time–invariant correlation.

Exceptions are the IXIC2 series (the NASDAQ Composite index) and the RUT2 series (the RUSSELL 2000

index) for which the specification with lower BIC is SDx, i.e. the most general model without fractional

integration. Selection according to AIC (not reported) suggest a different story and provides mixed evidence

across different specifications.

[Insert Table A.3 about here.]

[Insert Figure B.3 about here.]

Figure B.3 illustrates the filtered parameters for the SDx model estimated on the IXIC2 series. The period

starts on 3 January 2000 and ends 11 October 2016. Blue and red vertical bands indicate periods of US

and European recessions (usually associated with periods of financial turmoil). Panel (a) depicts the filtered

log–volatility level µt and compares it with the observed realized log–volatility. The robustness of the SD

filter is evident from the plot. Indeed, the filtration does not seem to be affected by the extreme observations

which are present in the data. Volatility has increased considerably during the years 2008 – 2009, which are

characterised by the Global Financial Crisis (GFC). For observing levels of volatility comparable to those

of the GFC, we need to get back to the early 2000 Dot–com bubble. Panel (b) reports the filtered volatility

of volatility parameter, qt. We find that the volatility of volatility oscillates between a long run average

of about 0.24 and presents higher values when also the volatility level is high. Finally, panel (c) reports

the correlation coefficient associated with the leverage effect, ρt = cor(yt, xt). Interestingly, the estimated
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correlation coefficient is almost zero during the GFC and negative during the recovery phase. This finding

may suggest that the leverage effect is more pronounced during tranquil periods. However, for most series

there is no substantive evidence for a time varying correlation.

5.2. Out-of-sample predictive analysis

Our aim is to predict the one step ahead log–volatility measure and investigate if including different

features such as: i) fractional integration, ii) time–varying leverage effect, and iii) time–varying volatility of

volatility is of any help. To this end, we perform a classical forecasting analysis using the recursive method of

forecasting (Marcellino et al., 2006). Specifically, for each series we consider the first S = 2000 observations

as the in sample period, and then we compute one step ahead rolling forecasts for the last H = T − S

observations. The estimation window is of fixed length. The model parameters are estimated using only the

data belonging to the in sample period and updated each time a new observation becomes available until

the end of the sample. Since the lengths of the series are different, also the lengths of the out of sample

period, H, varies across the series, ranging between H = 1605 and H = 2272.

The predictive performances of the specifications listed in Table A.2 are compared with that of the

HAR–RV model by Corsi (2009), which represents a valid benchmark for realized volatility series. The

HAR–RV estimates a constrained autoregressive model of order 22, parsimoniously parameterized in terms

of 3 coefficients. Specifically, the model is defined as:

xt = β0 + β(d)xt−1 + β(w)x
(w)
t−1 + β(m)x

(m)
t−1 + ηεt, (15)

where εt
iid∼ N (0, 1) and:

x
(w)
t−1 =

1

5

5∑
s=1

xt−s (16)

x
(m)
t−1 =

1

22

22∑
s=1

xt−s, (17)

are the weekly and monthly simple moving averages of the log–volatility.

The SDFIx model and nested specifications defined in Table A.2 provide the one step ahead conditional

distribution of the bivariate vector (yt+1, xt+1)′, which is defined in (1). Starting from the joint distribution

of (yt+1, xt+1)′ we straightforwardly compute the marginal distribution of xt+1 conditionally on Ft. Also

HAR–RV provides the one step ahead distribution of xt+1, which is Gaussian with mean x̂t+1 = β̂0 +

β̂(d)xt−1 + β̂(w)x
(w)
t−1 + β̂(m)x

(m)
t−1 and variance η̂2, where β̂0, β̂

(d), β̂(w), and η̂2 are the ordinary least squares

estimates of β0, β
(d), β(w), and η2, respectively.

Since all the models provide the full distribution of xt+1, we compare the predictive ability of different

models both in terms of point and density forecasts. The point forecasts are evaluated via the mean square

error (MSE), H−1
∑H
h=1(x̂T+h − xT+h)2. The calibration and accuracy of the one-step-ahead predictive
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densities are assessed via the Continuous Ranked Probability Score (CRPS), introduced by Matheson and

Winkler (1976). The CRPS is a proper scoring rule,5 defined as:

CRPSt+1 =

∫
R

[F (z | Ft)− I{xt+1 < z}]2 dz, (18)

where F (z | Ft) is the one step ahead cumulative density function (cdf ) evaluated in z. Evidently, the CRPS

measures the distance between the predicted cdf, F (xt+1 | It), and the empirical cdf represented as a step

function in xt+1. Averaging the CRPS over the out–of–sample period provides the quantity at the base of

our comparative analysis. Models with lower averaged CRPS are preferred. Analytical solutions of (18) are

generally not available. However, if the predictive distribution is Gaussian, as in HAR–RV, with mean µ

and variance σ2, for an ex–post realization xt+1 CRPS is given by:

CRPSt+1 = σ

[
2φ

(
xt+1 − µ

σ

)
+
xt+1 − µ

σ

(
2Φ

(
xt+1 − µ

σ

)
− 1

)
− 1√

π

]
, (19)

where φ(·) and Φ(·) are the pdf and cdf of a standard Gaussian distribution, respectively. For the SDFIx

model and nested specifications CRPS can be approximated via:

CRPSt+1 =
1

2
Epx [|X −X ′||Ft]− Epx [|X − xt||Ft] , (20)

where X and X ′ are independent copies of a random variable with pdf px(·) conditional on Ft, that is, the

one step ahead predicted distribution delivered by the model.

5.2.1. Point forecast results

Table A.4 lists the MSE evaluated over the out of sample period for models listed in Table A.2. Results

are reported relative to the HAR–RV model.

[Insert Table A.4 about here.]

Results clearly favour the new SDFIx model against the HAR–RV. Specifically, the SDx–ρ is preferred 13

times over 21 and is the best performing model providing gains over the benchmark in the order of around

15%. After SDx–ρ, the SDFIx–ρ specification is preferred 6 times, suggesting that for some models the

definition of fractional integrated dynamics helps in forecasting the one step ahead realized log–volatility.

Finally, for HSI2 and NSEI, the SDx model reports the lowest MSE. Interestingly, for the Asian indices the

inclusion of time–varying correlation helps in the forecast. We can conclude that a time-varying leverage

does not result in improved volatility point forecasts for equity indices. Fractional integration is important

for some series, but results are mixed. Overall, the improvements over the benchmark are very evident and

5Given a random variable y ∈ R with continuous probability density function f , the scoring rule S(f, y) is said to be proper

if and only if Ef [S(f, y)] =
∫
R f(y)S(f, y)dy ≤

∫
R f(y)S(g, y)dy = Ef [S(g, y)] for all density functions f and g.
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of high magnitude. Results are statistically significant according to the test of Diebold and Mariano (1995)

(not reported) computed at the 1% confidence interval.

In order to track the relative performance of the predictors over the out-of sample test period, as in Paye

(2012), we compute the forecast error quadratic loss differential:

∆SEi,t+1 = (xt+1 − x̂HAR,t+1)2 − (xt+1 − x̂i,t+1)2, (21)

where x̂HAR,t+1 is the forecast of HAR–RV and x̂i,t is the forecast of model i, with i indexing the models

listed in Table A.2. Figure B.4 displays the series of cumulative ∆SEi,t+1 for i = {SDFIx,SDFIx−ρ}.

Periods where the plot line slopes upward represent periods in which model i outperform the HAR–RV

benchmark. Conversely, downward–sloping segments indicate periods of outperformance of the benchmark.

We can see that SDFIx and SDFIx–ρ outperform the benchmark over the entire period. For some series like

AORD2, GSPTSE, HSI2 and RUT2 we observe periods where the plot displays downward–sloping segments.

Nevertheless, these are not related to the phase of the business cycle. Finally, the comparison between SDFIx

and SDFIx–ρ also suggests that the leverage effect does not play a relevant role in improving the forecasting

performance.

[Insert Figure B.4 about here.]

5.2.2. Density forecast results

Table A.5 reports the average CRPS over the test period for the models considered in Table A.2; the

results are relative to the CRPS score of the HAR–RV model.

[Insert Table A.4 about here.]

Consistently with the MSE results, SDx models and nested specifications provide better results than the

HAR–RV benchmark for all the series considered. The accuracy gains are generally around 7%. The

SDx–ρ is still preferred most of the times (10 out of 21), however, for density predictions the results are

more heterogeneous across the rival specifications. Indeed, we observe that for IBEX2, the most general

specification, SDFIx, reports the lowest average CRPS.

Similar to the point forecast analysis we compute the loss differential in terms of CRPS with respect to

the benchmark. To this end, we define the ∆CRPS as follow:

∆CRPSt+1 = CRPSHAR,t+1 − CRPSi,t+1, (22)

where CRPSHAR,t+1 is the CRPS associated to the HAR–RV model and CRPSi,t+1 to model i. Figure B.5

displays the series of cumulative ∆CRPSt+1 for i = {SDFIx,SDFIx−ρ}. The interpretation of upward– and

downward–sloping segments is unchanged. The plot is very similar to the point forecast analysis, that is,

SDFIx and SDFIx–ρ outperform the benchmark over the full out of sample period and there is no particular

gain in accommodating a time-varying correlation.
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6. Conclusive remarks and possible extension

We have proposed a new model for a bivariate time series consisting of financial returns and realized log–

volatility measures. The model is able to replicate several new features in a coherent framework such as: i)

long memory or persistence of the volatility process, ii) the presence of time–varying leverage effect, and iii)

the time–varying volatility of volatility. We have studied in details the shape of the News Impact Curve, and

have shown that the new model is able to represent the leverage effect as usually intended in the literature.

However, in our framework the definition of the leverage effect also depends on the concordance between

the signs of financial return and its realized log–volatility measure as well as on the level of correlation.

Finally, the empirical evidence has provided strong support in favour of our proposal. An extensive

forecast analysis based on the Oxford-Man Institute’s realized library data set has shown that from both

point and density forecasting perspectives, our specifications could outperform a valid and solid univariate

predictor of realized volatility. The exercise has also revealed that the conditional correlation between

returns and log-realized variance is a stable feature.

As a direction for future research we foresee extensions that can encompass additional stylized facts,

such as skewness. An interesting proposition is to consider a skewed-t distribution for our bivariate system.
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Appendix A. Tables

Correlation Volatility of Volatility

Series 2000/2003 2004/2007 2008/2011 2012/2016 2000/2003 2004/2007 2008/2011 2012/2016

AEX -0.09 -0.17 -0.14 -0.18 0.46 0.35 0.49 0.40

AORD2 -0.05 -0.16 -0.13 -0.13 0.39 0.43 0.49 0.37

BVSP -0.08 -0.21 -0.08 0.01 0.31 0.35 0.50 0.32

DJI2 -0.07 -0.13 -0.09 -0.15 0.37 0.32 0.56 0.40

FCHI2 -0.07 -0.14 -0.13 -0.14 0.38 0.35 0.45 0.36

FTSE2 -0.09 -0.12 -0.10 -0.13 0.41 0.38 0.48 0.33

FTSEMIB -0.11 -0.21 -0.15 -0.18 0.43 0.35 0.47 0.35

FTSTI -0.01 -0.15 0.02 -0.03 0.29 0.27 0.46 0.22

GDAXI2 -0.14 -0.22 -0.09 -0.18 0.41 0.34 0.49 0.37

GSPTSE -0.01 -0.26 -0.16 -0.15 0.36 0.35 0.52 0.39

HSI2 -0.14 -0.16 -0.03 -0.09 0.34 0.38 0.44 0.32

IBEX2 -0.11 -0.14 -0.09 -0.19 0.36 0.35 0.40 0.35

IXIC2 -0.06 -0.20 -0.09 -0.21 0.42 0.31 0.52 0.36

KS11 -0.05 -0.21 -0.13 -0.10 0.35 0.36 0.50 0.31

MXX -0.05 -0.11 -0.06 -0.10 0.47 0.39 0.45 0.29

N2252 -0.01 -0.10 -0.09 -0.14 0.29 0.37 0.49 0.43

NSEI -0.09 -0.29 -0.15 -0.16 0.40 0.42 0.49 0.33

RUT2 -0.08 -0.16 -0.09 -0.17 0.39 0.35 0.51 0.39

SPX2 -0.07 -0.12 -0.10 -0.18 0.38 0.35 0.56 0.41

SSMI -0.03 -0.18 -0.07 -0.22 0.45 0.29 0.47 0.33

STOXX50E -0.10 -0.21 -0.13 -0.16 0.44 0.36 0.46 0.43

Table A.1: Columns two to five report the empirical correlation coefficient between daily financial returns and their associated

realized log–volatility measure across different years. The last four columns report the standard deviation of the log–volatility

across different years. Data is obtained from the Oxford-Man Institute’s realized library Gerd et al. (2009) freely available at:

http://realized.oxford-man.ox.ac.uk/data. The first column reports the ticker associated to the equity index as found in the

data set.
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With Fractional Integrated Dynamics

SDFIx The most general specification defined in Section 2.

SDFIx–q SDFIx with constant volatility of volatility, qt = q.

SDFIx–ρ SDFIx with constant correlation, ρt = ρ.

Without Fractional Integrated Dynamics

SDx SDFIx with dµ = 0 and dq = 0.

SDx–q SDx with constant volatility of volatility, qt = q.

SDx–ρ SDx with constant correlation, ρt = ρ.

Table A.2: List of model specifications. Starting from the most general Score Driven Fractional Integrated Realized Volatility

(SDFIx) model, nested specifications are recovered by applying constraints to the system matrices of the dynamic equation (5).
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With Fractional Integrated Dynamics Without Fractional Integrated Dynamics

Index SDFIx SDFIx–q SDFIx–ρ SDx SDx–q SDx–ρ

AEX -27759.92 -27738.81 -27770.96 -27770.36 -27747.17 -27787.08

AORD2 -27577.62 -27576.06 -27590.10 -27591.34 -27584.40 -27606.31

BVSP -21773.42 -21781.35 -21783.07 -21789.97 -21789.68 -21799.65

DJI2 -26760.76 -26704.14 -26775.51 -26777.44 -26712.48 -26792.19

FCHI2 -26932.65 -26904.10 -26949.40 -26948.30 -26912.46 -26965.02

FTSE2 -29589.02 -29587.17 -29605.39 -29605.72 -29595.51 -29622.09

FTSEMIB -26055.62 -26043.79 -26071.28 -26072.32 -26052.14 -26087.98

FTSTI -28774.05 -28697.24 -28786.90 -28790.58 -28705.50 -28803.42

GDAXI2 -26558.99 -26528.92 -26579.47 -26575.05 -26537.27 -26589.69

GSPTSE -24446.28 -24457.88 -24460.39 -24462.66 -24466.07 -24476.77

HSI2 -25852.87 -25846.55 -25865.49 -25865.30 -25854.81 -25879.17

IBEX2 -26686.75 -26653.52 -26701.11 -26700.88 -26661.87 -26717.53

IXIC2 -26071.18 -26053.94 -26032.47 -26087.87 -26062.29 -26049.15

KS11 -26876.77 -26876.19 -26883.11 -26888.12 -26884.51 -26899.05

MXX -22884.82 -22889.40 -22900.63 -22901.13 -22897.74 -22914.89

N2252 -25420.06 -25396.65 -25437.27 -25434.13 -25404.96 -25449.47

NSEI -23100.72 -23082.87 -23116.25 -23117.10 -23091.06 -23132.55

RUT2 -22334.58 -22262.54 -22320.96 -22351.26 -22270.88 -22337.65

SPX2 -26296.62 -26268.81 -26295.53 -26308.23 -26277.15 -26310.96

SSMI -30423.29 -30414.71 -30436.91 -30439.95 -30423.05 -30453.59

STOXX50E -25406.86 -25357.14 -25430.25 -25423.10 -25365.49 -25439.50

Table A.3: BIC evaluated over the full sample for the model specifications defined in Table A.2. Sample sizes vary across the

series and range from T = 3605 to T = 4272 covering the period from 3 January 2000 to 11 October 2016. Gray cells indicate

models with lower BIC values, and hence preferred from a likelihood perspective.
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Index SDFIx SDFIx–q SDFIx–ρ SDx SDx–q SDx–ρ HAR–RV

AEX 0.854 0.854 0.853 0.853 0.853 0.853 1.000

AORD2 0.950 0.950 0.950 0.950 0.950 0.950 1.000

BVSP 0.896 0.895 0.895 0.896 0.896 0.896 1.000

DJI2 0.903 0.903 0.898 0.903 0.903 0.898 1.000

FCHI2 0.858 0.858 0.858 0.857 0.857 0.857 1.000

FTSE2 0.845 0.845 0.844 0.846 0.846 0.846 1.000

FTSEMIB 0.850 0.850 0.848 0.850 0.850 0.848 1.000

FTSTI 0.879 0.879 0.876 0.878 0.878 0.876 1.000

GDAXI2 0.874 0.874 0.874 0.873 0.873 0.872 1.000

GSPTSE 0.912 0.912 0.912 0.912 0.912 0.912 1.000

HSI2 0.949 0.950 0.949 0.947 0.947 0.948 1.000

IBEX2 0.811 0.811 0.811 0.810 0.810 0.810 1.000

IXIC2 0.827 0.827 0.811 0.827 0.827 0.811 1.000

KS11 0.846 0.845 0.846 0.843 0.843 0.843 1.000

MXX 0.930 0.929 0.926 0.931 0.931 0.928 1.000

N2252 0.873 0.873 0.872 0.873 0.873 0.872 1.000

NSEI 0.830 0.830 0.831 0.829 0.829 0.830 1.000

RUT2 0.909 0.909 0.903 0.908 0.908 0.902 1.000

SPX2 0.882 0.882 0.871 0.883 0.883 0.873 1.000

SSMI 0.845 0.845 0.840 0.845 0.845 0.840 1.000

STOXX50E 0.861 0.860 0.861 0.860 0.860 0.860 1.000

Table A.4: Mean squared error evaluated over the out of sample period for models listed in Table A.2. Results are reported

relative to the HAR–RV model of Corsi (2009). A value lower than 1 indicates outperformance with respect to the benchmark.

Gray cells indicate models with lower value across the different specifications.
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Index SDFIx SDFIx–q SDFIx–ρ SDx SDx–q SDx–ρ HAR–RV

AEX 0.922 0.921 0.921 0.921 0.921 0.921 1.000

AORD2 0.978 0.978 0.978 0.978 0.977 0.978 1.000

BVSP 0.943 0.943 0.943 0.944 0.944 0.943 1.000

DJI2 0.950 0.950 0.948 0.950 0.950 0.948 1.000

FCHI2 0.920 0.920 0.920 0.919 0.919 0.919 1.000

FTSE2 0.915 0.916 0.915 0.916 0.916 0.916 1.000

FTSEMIB 0.919 0.919 0.918 0.918 0.918 0.917 1.000

FTSTI 0.936 0.936 0.936 0.937 0.936 0.935 1.000

GDAXI2 0.928 0.928 0.928 0.928 0.928 0.928 1.000

GSPTSE 0.955 0.955 0.955 0.955 0.954 0.955 1.000

HSI2 0.964 0.964 0.964 0.963 0.963 0.962 1.000

IBEX2 0.890 0.891 0.891 0.891 0.891 0.891 1.000

IXIC2 0.905 0.906 0.897 0.906 0.906 0.897 1.000

KS11 0.915 0.915 0.915 0.915 0.915 0.915 1.000

MXX 0.961 0.961 0.958 0.961 0.962 0.960 1.000

N2252 0.930 0.930 0.930 0.930 0.930 0.930 1.000

NSEI 0.909 0.909 0.909 0.908 0.908 0.909 1.000

RUT2 0.951 0.951 0.948 0.950 0.950 0.947 1.000

SPX2 0.941 0.941 0.935 0.941 0.941 0.935 1.000

SSMI 0.915 0.915 0.912 0.915 0.915 0.912 1.000

STOXX50E 0.920 0.920 0.920 0.920 0.920 0.920 1.000

Table A.5: Average Continuous Ranked Probability Score evaluated over the out of sample period for models listed in Table A.2.

Results are reported relative to the HAR–RV model of Corsi (2009). Gray cells indicate the minimum values across the rival

specifications.
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Figure B.1: News Impact Curve with respect to yt (horizontal axis) and selected values of xt (RVt): i) decrease of log–

volatility xt = −5.5, ii) no changes in volatility xt = µ, iii) increase in volatility, xt = 5.5. Models’ parameters are fixed at

their unconditional level similar to what is usually found in empirical applications with financial returns in percentage points:

µt = µ = 0, qt = q = 1. The system matrix that premultiplies the score is fixed to A = 0.01 × I3. Panels (a), (b) and

(c) report the case of negative correlation between yt and xt (ρ = −0.7). Panels (d), (e) and (f) report the case of absence

of correlation between yt and xt (ρ = 0). Panels (g), (h) and (i) report the case of positive correlation between yt and xt

(ρ = 0.7). NICs are displayed for different values of the degree of freedom parameter, ν = 3 (black, continuous), ν = 6 (red,

dashed), ν = 9 (green, dotted). The horizontal axis indicates the financial return at time t, yt, while the vertical axis indicates

the corresponding volatility level at time t+ 1, σt+1 = exp(µt+1). The orange horizontal line is reported as a benchmark and

indicates the volatility level observed in the case of (yt, xt)′ = (0, µ)′ and ρ = 0.
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Figure B.2: News Impact Curve with respect to xt (horizontal axis) and selected values of yt: i) large negative return, yt = −7,

ii) zero return, yt = 0, iii) large positive return, yt = 7. Models’ parameters are fixed at their unconditional level similar to

what is usually found in empirical applications with financial returns in percentage points: µt = µ = 0, qt = q = 1. The system

matrix that premultiplies the score is fixed to A = 0.01 × I3. Panels (a), (b) and (c) report the case of negative correlation

between yt and xt (ρ = −0.7). Panels (d), (e) and (f) report the case of absence of correlation between yt and xt (ρ = 0).

Panels (g), (h) and (i) report the case of positive correlation between yt and xt (ρ = 0.7). NICs are displayed for different

values of the degree of freedom parameter, ν = 3 (black, continuous), ν = 6 (red, dashed), ν = 9 (green, dotted). The horizontal

axis indicates the financial return at time t, yt, while the vertical axis indicates the corresponding volatility level at time t+ 1,

σt+1 = exp(µt+1). The orange horizontal line is reported as a benchmark and indicates the volatility level observed in the case

of (yt, xt)′ = (0, µ)′ and ρ = 0.
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Figure B.3: Filtered parameters for the SDx model estimated on the IXIC2 (the NASDAQ Composite index) series. The period

starts on the 3 January 2000 and ends the 11 October 2016. Panel (a) depicts the filtered log–volatility level µt (solid line) and

the observed realized log–volatility (gray points). Panel (b) reports the filtered volatility of volatility, qt. Panel (c) reports the

correlation coefficient ρt = cor(yt, xt). Blue and red vertical bands indicate periods of US and European recessions according

to the OECD and FRED Recession Indicators, respectively.
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Figure B.4: Time series plot of the cumulative squared error difference between the SDFIx and HAR–RV models (black solid

line) and SDFIx–ρ and HAR–RV models (red dashed line). Blue and red vertical bands indicate periods of US and European

recessions according to the OECD and FRED Recession Indicators, respectively. The series STOXX50E is not reported for

space reasons, but is qualitatively similar to other plots.
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Figure B.5: Time series plot of the cumulative CRPS difference (∆CRPS) between the SDFIx and HAR–RV models (black solid

line) and SDFIx–ρ and HAR–RV models (red dashed line). Blue and red vertical bands indicate periods of US and European

recessions according to the OECD and FRED Recession Indicators, respectively. The series STOXX50E is not reported for

space reasons, but is qualitatively similar to other plots.
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