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Abstract

We evaluate the usefulness of satellite-based data on nighttime lights for the prediction
of annual GDP growth across a global sample of countries. Going beyond traditional mea-
sures of luminosity, such as the sum of lights within a country’s borders, we propose several
innovative distribution- and location-based indicators attempting to extract new predictive in-
formation from the night lights data. Whereas our findings are generally favorable to the use of
the night lights data to improve the accuracy of simple autoregressive model-based forecasts,
we also find a substantial degree of heterogeneity across countries on the estimated relation-
ships between light emissions and economic activity: individually estimated models tend to
outperform pooled specifications, even though the latter provide more efficient estimates for
out-of-sample forecasting. The estimation uncertainty affecting the country-specific estimates
tends to be more pronounced for low and lower middle income countries. We conduct boot-
strapped inference in order to evaluate the statistical significance of our results.
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1 Introduction

Forecasts of economic activity are crucial to the decision-making process of policymakers and

market participants in general. A premise for informed economic decisions is to have a proper
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expectation of the future state of the overall market at which the decision-maker is operating. In
practice such a decision-maker is then continuously faced with an intricate forecasting challenge
of finding leading indicators to the variables that are relevant to her/his business. In this paper
we propose and evaluate the usage of satellite-based data on nighttime lights for the prediction of
GDP growth across a global sample of countries. Our main contribution is the design of innovative
measures for the extraction of predictive signals of macroeconomic activity from the richness of
information provided by the night lights dataset.

The use of night lights data has been prominent in the recent economic literature, with ap-
plications that range from the geographical mapping of economic activity (Sutton and Costanza,
2002; Doll et al., 2006; Ghosh et al., 2010), to regional development analysis (Michalopoulos and
Papaioannou, 2013a,b), to the evaluation of the accuracy of national income accounts (Chen and
Nordhaus, 2011; Henderson et al., 2012; Nordhaus and Chen, 2015; Pinkovskiy and Sala-i Martin,
2016); see also Donaldson and Storeygard (2016) for a more general review of applications of
satellite-based data in economics. In order to construct comparative measures of living standards
across countries and regions, these studies have focused either on time averaged relationships,
hence taking advantage mainly of the geographical dimension of the luminosity data variability,
or on the contemporaneous relationship between light emissions and economic activity. Here, in
contrast, we focus on the (lagged) time variations in the intensity of night lights within a country,
evaluating their usefulness to improve the accuracy of forecasts of economic activity.

For that purpose we develop several night lights-based indicators, broadly classified into three
categories: (1) aggregate indicators, including the Sum of Lights (SoL) measure traditionally em-
ployed in the past literature, and a balance indicator tracking the number (instead of the intensity)
of lights that increased/decreased; (ii) distribution-based indicators, such as the median (central
tendency), the kurtosis (fat tails), the skewness (asymmetry), the spatial Gini (inequality), and en-
tropies (diversity) of the measured light intensities; and, (iii) location-based indicators, designed to
focus on the SoL emitted from selected areas instead of the entire country’s territory, such as areas
showing a positive/negative correlation to the country’s past GDP growth, and areas located within
clusters of low/high degrees of entropy. Whereas the underlying reasoning is the same across all
these measures, i.e., exploring the predictive content of the relationship between economic activity
and nighttime light emissions, they are aimed to uncover different aspects of such a relationship
from the signals obtained from the satellite data. Further details about the night lights data sources
and the construction of these indicators are provided in section §2.

We process these measures for a sample of 172 countries at an annual frequency over the period
from 1992 to 2013. We then construct one step ahead GDP growth forecasts based on a benchmark
first-order autoregressive (AR) model, and on AR(1) models augmented by the lagged values of
the night lights indicators. Importantly, here we distinguish between two alternative specifications



with respect to the estimation of these models, namely, a panel and country-individual specifica-
tions. This is in contrast to the previous literature which has usually assumed the existence of a
common relationship between the night lights indicators and GDP growth across countries. Our
estimation results, presented together with details about the model specifications in section §3,
put this assumption into question as we observe wide ranges of parameter estimates under the
individual specifications.

We then proceed with the comparative evaluation of the accuracy of the night lights-based
forecasts relative to the benchmark model forecasts. We consider three exercises with respect
to the sample used for the estimation of the models’ parameters. First, an in-sample evaluation,
where the full sample of data is used for both the estimation and the evaluation of the conditional
predictions. Second, a recursive out-of-sample evaluation, where only data up to the forecasts base
periods are used for the models estimation, starting with forecasts for 2001. Third, in order to
capture the effects of parameter estimation in the recursive exercise, we re-run the out-of-sample
evaluation using parameter estimates obtained with the full sample of data. Our main measure of
evaluation is the forecasts’ root mean square error (RMSE), and the results of these evaluations are
presented in section §4.

Overall, we find evidence favorable to the use of night lights data for GDP growth forecasting,
particularly with individually estimated models, which achieve in-sample accuracy improvements
ranging from 2.9% to 7.2% (cross-country weighted averages) relative to the benchmark model.
Out-of-sample, the performance of the individual specifications deteriorate substantially under the
recursive estimation approach, a result that we attribute to the estimation biases caused by the use
of too small samples at the country-individual level. Interestingly, we find that richer countries tend
to be less prone to the effects of such estimation uncertainty. Among the night lights indicators,
we find that the distribution-based ones tend to be more strongly affected by the cross-country
heterogeneity of model estimates, while those based on the location of lights provide the greatest
improvements to the accuracy of the GDP growth forecasts.

Finally, we also evaluate the statistical significance of our results by conducting bootstrapped
tests of equal predictive accuracy. Particularly, we adopt the Clark and West (2007) test for com-
parison of nested models, simulating the empirical distribution of the test statistics according to
the bootstrap procedure proposed by Clark and McCracken (2012). The results point to relatively
small rejection rates across the countries in our sample, suggesting that this particular sample may
have been too restricted to provide informative comparisons between the evaluated models.

In section §5 we conclude with some remarks.



Figure 1: Snapshot of world stable night lights averaged over the year of 2013.
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Notes: Based on OLS stable lights data obtained from NOAA-NGDC. The averaged night lights intensity
measures are depicted in logarithmic scale after satellite intercalibration (see Appendix A.l) and

normalization of grid cell areas to Earth’s curvature across the latitudinal dimension.

2 Night lights data and indicators

2.1 Sources and issues

Satellite imagery data on night lights are obtained from the Earth Observation Group (EOG) at the
National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center
(NGDC), and come in the form of annual composite images representing the intensity of lights
captured by sensors on-board the Operational Linescan System (OLS). These images are produced
by EOG scientists by averaging cloud-free observations of night lights and cover Earth’s surface
between 75 degrees north and 65 degrees south latitude. The intensity of the night lights radiance
are converted into 6-bit digital number (DN) values, ranging between 0 and 63, and allocated over
a global grid of 30 arc second cells according to their geographic location. We use the stable lights
version of the data, which focus on persistent lighting sources obtained through the application of
a background noise filtering algorithm (Elvidge et al., 2003). An illustrative snapshot is presented
in figure 1.

The night lights annual composites cover the period between 1992 and 2013, and are based
on data from a total of six satellites, some of which operating simultaneously; hence, for some
years two composite images have been produced, in which cases we adopt their average after in-
tercalibration. The intercalibration is necessary because the OLS has no on-board calibration of



the visible band while the sensors performance degrade over time, not to mention the evolution
in sensors specifications across the launched instruments. These factors are particularly important
for the comparison of night light emissions over time, and in order to account for them we adopt
the regression-based intercalibration procedure proposed by Elvidge et al. (2009), which takes an
area with little changes of light brightness over time (Sicily) as reference to estimate re-scaling pa-
rameters across the satellite-year composites. Details on this procedure are provided in Appendix
Al

There are a few other important issues that are known to affect the night lights data. First,
the annual composite images are based on averaged cloud-free! observations, the availability of
which can vary substantially across countries depending on weather conditions: from a minimum
average (across the country’s cells) of 3.27 cloud-free data points, observed in Iceland during the
year of 1999, to a maximum of 103.24, observed in Mauritius during 2010. This restriction is
particularly relevant for Nordic countries, as the averaged statistics in figure 2a indicate. Second,
sensor saturation, caused by signals exceeding the sensor’s detection range, interfere in the mea-
surement of brighter sources of light. These signals are recorded with the highest DN value in the
OLS scale (i.e., 63), or “top-coded”, and tend to be more frequently observed in the more densely
populated countries; see figure 2b. Third, as evidenced in figure 2c, the focus on stable lights leads
to a substantial increase in the fraction of unlit pixels, particularly in the more sparsely populated
countries, which can affect measures based on the the distribution lights.

Another important aggregation issue relates to the area underlying each cell in the gridded
dataset. Due to Earth’s curvature, the area covered by each pixel depends on its latitude, e.g.:
0.85km? at equator, 0.37km? at S65°, and 0.22km? at N75°. That is important for the aggregation
of night lights at the country level because the closer the detected lights (and their changes) are
to equator, the higher are their amplitude on the ground; to make these pixels comparable (and
aggregable), we re-scale the gridded light intensity measures by multiplying them by their latitude-
implied area’.

Before the computation of the night lights indicators (detailed below), the global composite
images need to be processed for the extraction of light intensity measures within the countries
borders. For that purpose we use the Database of Global Administrative Areas, GADM version
2.8 (http://gadm.org/), which contains definitions of 256 countries/territories borders across the

globe. This sample reduces to 188 countries after matching the records to those of the International

Data points are also discarded when any of the following features are present: sunlight and glare (scattered sunlight
penetration into the telescope), moonlight, and lighting from the aurora (see Elvidge et al., 2003).

Further issues are known to affect the spatial resolution of the night lights data, though of secondary importance
for our purposes: the spatial precision of the night lights data is affected by “blooming” effects, i.e., a tendency to
overestimate the true extent of lit area on the ground (see Doll, 2008); also, there is some overlap between pixels
because the value assigned to each of them is based on an on-board smoothing algorithm that averages blocks of
pixels from a finer resolution image (see Elvidge et al., 2004).
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Figure 2: Averaged statistics of night lights data for selected countries.

(a) Cloud-free observations. (b) Fraction of top-coded pixels. (c) Fraction of unlit pixels.
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Notes: The statistics are averaged over the sample period 1992-2013 for each country in our sample (see
text for excluded countries). Countries are denoted by their ISO alpha-3 code, listed in Appendix
A3.

Monetary Fund’s (IMF) World Economic Outlook (WEQ) database, which is our source of data on
countries GDP. Our sample of countries is finally reduced to 172 countries after excluding those
with a population smaller than 100,000, a large fraction of top-coded pixels (>40%), and Equatorial
Guinea for having most of its lights coming from gas flares. A list of the countries included in our

sample is presented in Appendix A.3.

2.2 Night lights indicators

The geolocated time series data on night lights provides a potentially rich source of predictive
information on economic activity. Naturally, there are several possible ways to extract this infor-
mation, and different measures can be constructed on the basis of the night lights data to capture
the evolution and geographical spread of economic activity. Here we distinguish between three
major classes: (i) aggregate indicators; (ii) distribution-based indicators; and, (iii) location-based
indicators.

Aggregate indicators have been the focus of most of the past literature looking at the relation-
ship between economic activity and night light emissions (e.g., Ghosh et al., 2010; Chen and Nord-
haus, 2011; Henderson et al., 2012; Pinkovskiy and Sala-i Martin, 2016). Particularly, a country’s
Sum of Lights (SoL) is obtained by simply summing up the light intensity DNs observed within

that country’s borders. Under the hypothesis that more (less) lights means more (less) produc-
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tion, here we use SoL growth rates (log changes for every growth rate throughout the paper) as a
predictor for GDP growth.

One potential weakness of the SoL indicator is that it does not account for the number of pixels
that have actually increased/decreased within the country’s borders. I.e., an increase in SoL. may be
due to a large DN increase in a single location, whereas lights remained constant or even decreased
slightly in the rest of the country. To capture this feature we propose the use of a Balance indicator,

calculated as

I
B =——, 1
"T L+ D, )
where [; (D) stands for the number of pixels within the country’s borders showing a DN increase

(decrease) in relation to the previous year. Notice B; € [0, 1] and B, % /> when I, % D;.

Our second class of indicators goes beyond the aggregate to focus on the distribution of light
intensity measures®. First, based on the country’s distribution of DNs in a given year, we calculate
some standard descriptive statistics: the DNs median, capturing the central tendency in the coun-
try’s night lights profile; the DNs kurtosis, which focus on the tails of the distribution of lights,
increasing with the frequency of extreme DN values; and the DNs skewness, as a measure of the
asymmetry of the distribution of lights within the country, increasing (decreasing) as the mass of
the distribution gets more concentrated on the left (right) tail. An illustration of these measures for
the case of Spain, 2013, is presented in figure 3.

Another dispersion measure that received attention in the literature is the Spatial Gini coef-
ficient (Henderson et al., 2012), which is calculated on the basis of the cumulative shares of the
pixels DN relative to the country’s SoL.. As with the income Gini, the Spatial Gini decreases (in-
creases) towards zero (one) as the distribution of lights become more (less) equally distributed over
the country’s territory.

We experiment with two further indicators based on the application of the concept of entropy
to image processing (see Gonzalez et al., 2004, p. 287). The entropy is a statistical measure of
randomness, which in the present context can be used to characterize the diversity of night lights

intensity measures over a country’s territory, and is calculated as
n
E= —ij log,, pj, ()
j=1

where p; stands for the probability of observing a pixel with DN value in the range of bin j,
obtained from the DNs histogram with n (= 64) bins. The use of the logarithm in the base n

ensures that £ € [0, 1], and the DNs entropy is seem to increase with the diversity of observed

3 All the distribution-based indicators are calculated after excluding unlit pixels so as to make these measures less
sensitive to country-specific geographical conditions (see figure 2¢). The exclusion of top-coded pixels was found to
have no major effect on the indicators, hence we kept them in.
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Figure 3: Night lights distribution-based indicators for Spain-2013.

(a) Snapshot of night lights. (b) Histogram and distribution-based indicators.
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Notes: The snapshot image is produced according to figure 1 notes, though “turning off” the lights outside
the country’s borders. The histogram excludes unlit pixels. See the text for details on the calculation
of the indicators.

night lights*. As an alternative, we also calculate the DNs block entropy, which is based on the
frequencies of 3 x 3 blocks of pixels®, hence capturing the diversity of clustering patterns in the
distribution of lights.

Finally, in our third class of indicators we develop two location-based measures, both attempt-
ing to improve the aggregate SoL indicator by focusing on specific pixels instead of the entire
country’s territory. Here the idea is to decompose a country’s SoL by dividing its pixels according
to a given criterion. Our first of such criteria is again based on the concept of block entropy, here
adopted to distinguish between pixels with respect to their surrounding diversity of light intensi-
ties. For that purpose, local entropies are calculated based on a 9 x 9 neighborhood around each
pixel, and then used to divide the country’s pixels in two groups of low and high entropy pixels
according to their median. Based on this classification we then obtain a first decomposition of the
country’s total SoL into the High/Low entropy SoL indicators.

A second location-based indicator is similarly constructed by classifying the country’s pixels
according to their past correlation with economic activity. This is done by constructing pixel-by-
pixel time series of light intensity changes, and then calculating their correlations with the country’s

aggregate times series of GDP changes. We again distinguish between two sets of pixels leading

4Mathematically we have that as p; — 1 (for any j), E — 0, while as p; — 1/n (for all j), E — 1.

>The number of possible “block states” (n) is given by the number of pixel states to the power of 9 (pixels per
block), which would require the infeasible computation of a histogram with 64° bins under the original 64-states
scale. To make this feasible the DN values are first re-classified into a ternary system (low, medium, high intensity),
so that n = 3°.



to two new indicators: Positive/Negatively correlated pixels SoL; these can be further special-
ized to account only for pixels with statistically significant correlations. Importantly, the pixels
correlations are (re-)calculated recursively according to the data availability, i.e., the classification
used in a given year is based only on the night lights and GDP data from that year and before;
other than enforcing the information restrictions required for a proper forecasting evaluation, this
recursive approach also propitiates the tracking of regional changes in the lights predictive signals
for economic activity. An illustration of these location-based indicators is presented in figure 4 for

the case of France.

3 Forecasting approach

3.1 Models

In order to construct forecasts for GDP growth we estimate both pooled and individual countries

model specifications. As a benchmark we adopt a simple AR(1) model, as given by

Vit = G + PYir—1 + Op + €y, (3)

for the pooled specification, and
Yir = G + Biir—1 + €, 4)
for the individual specification, where y;; stands for country ¢’s (= 1,...,172) GDP growth rate

for year t (= 1992, ...,2013), ozgl) and ¢; for country and time fixed effects, respectively.
The night lights-based forecasts are obtained by augmenting the benchmark models with the

6

night lights indicators discussed in the previous section®. Letting x;;, stand for a vector k of

indicators, the augmented models are given by
Vit = Qi + Brlit—1 + OxXpii—1 + Opt + Exits )

/
Yip = Qg ; + Brilit—1 + Ok iXpit—1 + €xit, (6)

for the pooled and individual specifications, respectively, where the parameter vectors 6y ;) have
dimensions conformable to the number of combined indicator measures. For most cases Xy, ; ; 1S
univariate, i.e., containing only one indicator series at a time; the only exceptions are for the cases

of the location-based indicators, where two SoL. growth measures are produced according to the

®Models including only the night lights indicators, i.e., without the AR(1) term, yield poor forecasting performance
relative to the benchmark, which is not surprising considering the relevance of persistence in the GDP series.



Figure 4: Night lights location-based indicators for France.

(a) Snapshot of night lights. (b) Local entropies.

FRA -2013 FRA - 2013

ow enlropy
[—_High entropy

Latitude
Latitude

Longitude Longitude
(c) Correlated pixels. (d) Sum of Lights time series.
FRA - 2013
S1 : ., 6m
50
Sm |
49
" 4m’m@_@_@\%
v 47
E 3m
Z 46
3
45 2m |
44
Im
43
42 (0] s s e e B B s s B B B B B S S O B
92 94 9 98 00 02 04 06 08 10 12
4 -2 0 2 4 6 8
Longitude Total —O— Low entr. —O— High entr.

—®— Pos. corr. —®— Neg. corr.

Notes: The snapshot image is produced according to figure 3 notes. See the text for details on the calculation
of the indicators.

10



decomposition of a country’s pixels in a given year: high and low entropy pixels; positive and
negatively correlated pixels. Figures with the time/cross-country dispersion of all these variables
are presented in Appendix A.2.

One important issue on the estimation of these models using a global sample of countries is the
likely presence of outliers to the estimated relationships, mostly due to country-specific disruptive
events such as wars and armed conflicts. Such outliers can introduce substantial biases in the
estimation of the model parameters. To deal with this issue we adopt a two-stages estimation
approach for outliers detection. First, we estimate the panel model specifications with all available
observations and derive their corresponding residuals. Outliers are then detected based on the
statistical significance (p-value smaller than 0.1%) of each disturbance. In the second stage we
obtain the final estimates of the models, both panel and individual specifications, excluding the
detected outliers from the sample.

The estimates of the panel models, (3) and (5), are reported in table 1. Overall, the estimates
of the autoregressive parameter are robust to the inclusion of the night lights indicators, remaining
statistically significant and close to the benchmark estimates on most cases’. In terms of statis-
tical significance, the evidence is not strongly favorable to the night lights indicators: except for
some distribution-based measures, there is no statistically significant relationship detected between
(lagged) night lights and GDP growth after accounting for the persistence of the latter. However,
these results do not preclude the existence of such relationship contemporaneously, where in fact
we find results similar to the past literature®.

The assumption of a common relationship between the night lights indicators and GDP growth
is put into question when we look at the estimates for the country-individual model specifica-
tions. Namely, we observe a wide range of individual parameter estimates: figure 5 presents the
distributions of the deviations of these individual estimates from those obtained under the panel
specifications. Although these estimates tend to be centered around the panel ones, it is clear that
they are overly dispersed to justify the pooling. Hence, it seems important to also consider this

alternative on the evaluation of the predictive performance of the night lights-based forecasts.

3.2 Evaluation exercises

In order to evaluate the quality of the night lights indicators as predictors of annual GDP growth we

conduct three exercises, differing mainly with respect to the sample used for the estimation of the

7 An exception is the case of the correlated pixels indicators, under which the AR(1) estimate is seem to decrease to
almost half of the benchmark estimate; further inspection reveals that this effect is due to the reduced sample available
for this indicator.

8The panel estimates of the contemporaneous relationships between the night lights indicators and GDP growth,
both with and without the autoregressive term, are reported in Appendix A.2.
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Table 1: Panel estimates of forecasting models.

Estimates N.Obs. .

Model AR(1) Night lights (¢ — 1) [outliers] %" B

AR(1) benchmark 0.288%#%* - 3598 0.335
(0.015) - [36]

Aggregate night lights indicators:

+ SoL growth 0.273%%** 0.581 3321 0.340
(0.016) (0.386) [34]

+ Balance 0.274% %% 0.288 3321 0.339
(0.016) (0.402) [34]

Distribution-based night lights indicators:

+ DN median 0.278%** -0.194%%* 3457 0.343
(0.015) (0.090) [38]

+ DN kurtosis 0.276%*%* 0.043%* 3456 0.342
(0.015) (0.018) [39]

+ DN skewness 0.275%*%* 0.446%** 3456 0.342
(0.015) (0.166) [39]

+ DNss spatial gini 0.278%** -0.072%** 3458 0.341
(0.015) (0.027) [37]

+ DNs entropy 0.275%%%* -0.046%** 3456 0.343
(0.015) (0.016) [39]

+ DN block entropy 0.279%** -0.012 3457 0.341
(0.015) (0.274) [38]

Location-based night lights indicators:

+ SoL grw. (low/high entropy) 0.259%%* 0.295 -0.237 3150 0.354
(0.016) (0.192)  (0.472) [33]

+ SoL. grw. (+/- corr. pixs.) 0.157%** 0.046 -0.302 2787 0.358
(0.018) (0.262)  (0.247) [24]

+ SoL grw. (+/- corr. pixs.25%) 0.165%** -0.065 -0.116 2621 0.367
(0.019) (0.106)  (0.100) [21]

+ SoL grw. (+/- corr. pixs.5%) 0.164%%*%* 0.028 -0.099 2179 0.383
(0.020) (0.080)  (0.078) [14]

Notes: The estimates are obtained by regressing real GDP growth on the corresponding night lights

indicator lagged values, plus a constant, an autoregressive term, and country and year fixed ef-
fects. Models are estimated by least squares in two stages: first, with all available observations;
second, excluding outliers, as defined in the text. The values inside parentheses are country-
clustered robust standard errors. ***, ** and * stand for 1%, 5%, and 10% levels of statistical
significance, respectively. The last two correlated pixels indicators are restricted to pixels with

correlations statistically significant at 25% and 5% levels of significance.
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Figure 5: Distributions of individual estimates.
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Notes: Boxplots are based on the normalized individual countries estimates of the coefficient associated to
the corresponding night lights indicator (lagged) in the model specification augmented by an AR(1)
term, i.e., parameter(s) 6y ; in (6). The individual coefficient estimates (9“) are normalized by the
panel estimates (9k) according to (é;” — ék) /&, where ¢ is the estimated standard error of the
panel estimate. The filled circles represent the mean estimates. Shaded areas represent approximate
95% confidence intervals for the medians, which are pictured as vertical lines inside the interquartile
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the interquartile range), are not presented.
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model parameters. More formally, under the model specifications described above, the construc-
tion of one step ahead conditional GDP growth forecasts, ¥ ; ++1, can be generically expressed as
given by’

. . . S
yf,i,tﬂ = Oé}?,i + 51?(,@%‘,1& + 040y Xkits (7N

where the superscript S is introduced to denote the sample used in the estimation of the model
parameters, and the (, ) subscript distinguishes between the panel and individual countries speci-
fications.

First, we evaluate the models’ in-sample predictive performance. To that purpose we con-
struct GDP growth forecasts for every year in the period from 1993 to 2014, i.e., with t =
{1992, ...,2013} in (7), using model parameters estimated with our full sample of data, i.e., with
S = {1992,...,2013} in (7). Naturally, this is not a realistic forecasting exercise considering
that data beyond the forecast base period is normally not available to a forecaster estimating the
forecasting model. To approach this issue we propose a second exercise to evaluate recursive out-
of-sample (Oo0S) forecasts. Namely, we restrict our evaluation to annual forecasts for the period
from 2001 to 2014, constructed with model estimates based on an augmenting recursive sample;
under the notation of (7), while ¢ = {2000, ...,2013}, S; = {i}'_,yq,- Finally, in order to assess
the effects of parameter estimation in the comparison between the in-sample and the OoS assump-
tions, we propose a third exercise where forecasts for the same OoS period are constructed on
the basis of the full-sample model estimates; i.e., the full-sample QoS forecasts are obtained for
t = {2000, ...,2013} with S = {1992, ...,2013}.

Our main measure of evaluation is the forecasts’ root mean squared errors (RMSE), calculated
as usual for each country and model specification. We then construct the night lights RMSE ratios
in relation to the AR(1) benchmark RMSE, where values below one indicate the former outper-
formed the benchmark, and vice versa. Considering that we have a total of 172 countries in our
sample, we synthesize our evaluation by averaging the RMSEs across countries, using the coun-
tries GDPs (in PPP terms) as weights. A similar weighted averaging is applied to summarize the

RMSE ratios, except that these are averaged geometrically.

4 Forecast evaluation

4.1 Averaged statistics

The averaged results for the in-sample evaluation are presented in table 2, where we observe that

the usefulness of the night lights data depends on whether the forecasting model was estimated

Notice the time fixed effects from the panel model specifications, (3) and (5), are not used for the computation of
conditional forecasts but only included during model estimation in order to improve identification.
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Table 2: In-sample evaluation statistics.

Model Panel Individual Sample
RMSE Ratio RMSE Ratio Countries Forecs.
AR(1) benchmark 2.508 - 2.376 - 172 3666
Aggregate night lights indicators:
+ SoL growth 2.502  0.995 2.310 0.971 172 3526
+ Balance 2.500  0.995 2.310 0971 172 3526
Distribution-based night lights indicators:
+ DNs median 2.516  1.006 2.305 0.963 172 3666
+ DN kurtosis 2.502  0.999 2.292  0.958 172 3666
+ DNs skewness 2.507 1.002 2.292  0.958 172 3666
+ DNis spatial gini 2.505 1.000 2.306  0.966 172 3666
+ DN entropy 2.528 1.016 2.306  0.967 172 3666
+ DNs block entropy 2.505  0.999 2.267 0.950 172 3666
Location-based night lights indicators:
+ SoL grw. (low/high entropy) 2.500 0.994 2.234  0.928 172 3508
+ SoL grw. (+/- corr. pixs.) 2513 1.024 2237  0.946 170 2975
+ SoL grw. (+/- corr. pixs.25%) 2503 1.018 2.233  0.948 163 2781
+ SoL grw. (+/- corr. pixs.5%) 2491  1.017 2.234  0.950 147 2284

Notes: Statistics are based on forecasts over the period from 1993 to 2014. The reported RMSEs are
weighted cross-country averages of the individual RMSEs using the countries GDPs (in PPP
terms) as weights. The ratios are also first computed individually, relative to the corresponding
benchmark specification, and then geometrically averaged using countries GDPs as weights.
All model specifications contain an AR(1) term. Panel specifications are estimated with country
and year fixed effects, where the latter are not used to compute forecasts.

pooling all the countries together or individually. Here the evidence is strongly in favor of the
individual estimation, on average yielding in-sample predictions about 9% more accurate than the
panel estimated models. Across the night lights indicators, the location-based ones stand out,
with accuracy improvements reaching up to 7.2% (low/high entropy indicator) in relation to the
benchmark model.

One criticism to the in-sample evaluation of forecasts is that it may not provide reliable as-
sessments of how the forecasts will perform under a more realistic context, i.e., before the actual
value for the forecasted variable becomes available. Because the model estimates will carry infor-
mation about the forecasting targets, the use of the same sample for model estimation and forecast
evaluation can distort the quality assessment in favor of the model-based forecasts. In order to
validate the robustness of our results to this issue, we now focus on the results obtained under our

out-of-sample evaluation exercises, presented in table 3.
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One first observation from the results in table 3 is that the recursive estimation of the individ-
ual models lead to a substantial deterioration of these models’ performances relative to their panel
estimated counterparts. Whereas this could put into question our in-sample conclusions, favoring
the individually estimated models, these results seem to be driven mainly by parameter estimation
errors, due to the small samples available for the first recursive estimations. E.g., the first individ-
ual recursive forecasts, for the year 2001, are based on model estimates obtained using, at best,
merely 9 data points, from 1992 to 2000, for each individual country; compare that to the (about)
1,500 observations used under the panel estimation and it is not surprising that the recursive OoS
exercise strongly favored the latter. Estimation uncertainty seems to be behind the performance
deterioration of the location-based indicators too, considering that these models require estimation
of one additional parameter in relation to the others.

In order to shed further light on this issue, we also compare the forecasts performance un-
der a full-sample OoS exercise, i.e., with forecasts computed from model estimates based on the
full sample of data, but keeping the focus on the OoS evaluation sample from 2001 to 2014. As
expected, these results are in line with our in-sample conclusions. Namely, the individually esti-
mated models are generally favored against the panel estimation approach, and the location-based
indicators provide the best performing forecasts.

The superior performance of the individually estimated models is consistent with our earlier
findings with respect to the heterogeneity of the parameter estimates on the relationships between
GDP growth and the night lights indicators. Although the out-of-sample performance of this ap-
proach can be substantially affected by small sample biases, our results suggest that the benefits of
allowing for country-individual forecasting models outweighs the accuracy losses due to estima-

tion biases.

4.2 Cross-country distribution

The averaged statistics can conceal the cross-country heterogeneity of performances too. Partic-
ularly, the averages can be affected by large outliers that push the evaluation measures towards a
direction that does not reflect the majority of the results. To approach this issue we now focus on
the distribution of results across countries. In figure 6 we present some selected figures on the (log)
RMSE ratios for the models augmented with the SoL aggregate and location-based indicators'©,
Overall, the distribution of forecasting performances across countries reported in figure 6 con-
firm our findings with the averaged statistics. Namely, the individual models achieve higher
improvement rates than the panel ones under the in-sample and the full-sample OoS exercises,

whereas the opposite is observed under the recursive OoS evaluation. We also find that the SoLL

10Similar results for the remaining model specifications are reported in Appendix A.2.

17



Figure 6: Log RMSE ratios across countries.

(a) Forecasts based on AR(1) plus SoL growth model.
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(b) Forecasts based on AR(1) plus SoL growth in high/low entropy pixels model.
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(c) Forecasts based on AR(1) plus SoL growth in pos./neg. correlated pixels model.
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Notes: Each bar represents the logarithm of the ratio between the RMSE of the night lights based forecasts
and that for the forecasts obtained with benchmark AR(1) model for each country. Hence, negative
(positive) values indicate countries for which the use of night lights data was (dis)advantageous. The
countries are presented in the vertical axis and sorted within each panel in ascending order according
to their corresponding log RMSE ratios under the individually estimated specifications (in blue).

individual ones.

The evaluations obtained under the panel specifications are presented (in red) stacked on top of the
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indicator distinguishing between pixels with low/high entropy achieves the best performance, im-
proving the forecasts of up to 90% of the countries in the sample. Another inference from these
results is that the country-specific individual and panel performances are, generally, positively cor-
related, e.g.: the average cross-country correlation between individual and panel log RMSE ratios
for the aggregate and location-based indicators amounts to approximately 0.78, 0.46, and 0.70, for
the in-sample, the recursive OoS, and the full-sample OoS evaluations, respectively; interestingly,
the in-sample average correlation decreases to 0.19 for the distribution-based indicators, suggest-
ing a greater impact of heterogeneity for this type of indicators.

Finally, it is interesting to look at how the usefulness of the night lights data may depend on
the country’s level of income. In figure 7 we present the countries RMSE ratios, for the forecasts
based on the individual model with the SoL low/high entropy indicator, grouped according to the
World Bank income classification. Whereas the improvement rates reported above are found to
be fairly equally distributed across the income groups, the correlation between in-sample and OoS
performances looks stronger for the higher income countries. Hence, our in-sample assessments
may be considered to provide a more reliable guidance on the OoS potential of the night lights
indicators for countries with higher income than for those classified under the lower middle and

low income groups.

4.3 Statistical tests

Our analysis has so far been based on direct comparisons of sample accuracy measures of the
forecasts derived from different modeling assumptions and night lights indicators. One important
question is how these comparisons stand in statistical terms, i.e., when a model is found to outper-
form (or not) the benchmark, how much confidence can we put on this being evidence that would
transcend the sample used for the evaluation? To attempt to answer this question we now conduct
statistical tests comparing the predictive accuracy of the night lights-augmented forecasts to those
obtained under the AR(1) benchmark model.

One traditional test for the hypothesis of equal predictive accuracy is the Diebold and Mariano
(1995, DM) test, which is based on the mean difference in sample average losses (here assumed
to be the squared forecast error). However, one important disadvantage of the DM test is that it
does not account for parameter estimation uncertainty, an issue that is of great relevance in our
application. Besides, our comparative evaluation involves so-called nested models, i.e., the night
lights-augmented specifications, egs. (5) and (6), would converge to the benchmark specifications,
eqgs. (3) and (4), under the null hypothesis that the night lights indicators are irrelevant to GDP
growth predictions (for further discussion on these issues, see Elliott and Timmermann, 2016, Ch.

17). To account for these features we follow the approach suggested by Clark and West (2007, CW)
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Figure 7: Countries RMSE ratios grouped by income level.
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Notes: The RMSE ratios refer to forecasts obtained with the model augmented by the SoL growth
in high/low entropy pixels, estimated individually for each country. Values below (above) one
indicate countries for which the use of the night lights indicator was (dis)advantageous. The
countries are grouped according to their World Bank income classification and sorted within
each group in ascending order according to their corresponding in-sample RMSE ratios.
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for comparison of nested models, also adapting the inference to finite sample biases by simulating
the empirical distribution of the test statistics according to the bootstrap procedure proposed by
Clark and McCracken (2012)'!12,

The statistical tests for predictive improvement are again conducted separately for each country,
model, pooling assumption, and evaluation sample. In order to synthesize these results we adopt
two approaches. First, we look at the hit-rates, defined as the cross-country frequency of rejections
of the null hypothesis of equal predictive accuracy at the 10% level of significance; hence, the
higher the hit-rate of a model’s forecasts, the stronger the statistical evidence is in favor to that
model’s improvement against the benchmark.

The hit-rates for the bootstrapped CW test are presented in table 4, also including the Max-t
reality check proposed in Clark and McCracken (2012) as an extension for multiple-model compar-
isons. As expected, these hit-rates are much smaller than the improvement rates observed above,
based solely on the sample RMSEs. Whereas this indicates caution should be taken in extrap-
olating our assessments beyond our sample, some of our previous inferences are corroborated.
Namely, the underperformance of the panel specifications in forecasting in-sample is observed for
most cases, particularly across the distribution-based indicators. Also, the OoS performance of
the individual specifications is again found to be affected by parameter estimation uncertainties, as
indicated by the mostly higher hit-rates under the full-sample OoS setup against the recursive one.

As a second approach to synthesize our cross-country results we combine the bootstrapped p-
values associated to the CW tests according to the Fisher’s method from meta-analysis (see Hedges
and Olkin, 1985, Ch.3). In short, this method is used to combine the significance of several tests,
assumed to be independent'?, for the same hypothesis. The resulting combined p-values are pre-
sented in table 5, and provide a clearer picture on the statistical significance of the improvements
achieved with the use of the night lights data to forecast GDP growth. First, we notice that the hy-
pothesis of equal predictive performance can be generally rejected for the individually estimated
models under the in-sample and the full-sample OoS exercises. Second, whereas most of the

distribution-based indicators show robustness to the estimation issue affecting the recursive esti-

Tn short, Clark and McCracken (2012) propose the use of a wild fixed regressor bootstrap procedure to approx-
imate the asymptotic critical values in the comparison of forecasts based on nested models. There are only two
differences in our application: (i) considering that we have a panel of countries, in order to preserve the cross-country
correlations we use the same random resampling across the countries on each bootstrap replication; and, (ii) we use the
benchmark (restricted) model to obtain the bootstrapped residuals instead of the unrestricted specification, including
all night lights indicators, considering that this would be infeasible for the individually estimated models; according
to Clark and McCracken (2012), this makes little difference in practice.

12Results based on the theoretical distribution of the test statistics are reported in Appendix A.2, and tend to show
higher rejection rates, on average, than those obtained under the bootstrapped tests.

13 Although the independence assumption may be questionable for our cross-country application, for practical pur-
poses we adopt the method in its simplest form. Besides, the random resampling adopted in the bootstrapping proce-
dure (see footnote (11)) is expected to account for the cross-country dependence between the test statistics.
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Table 4: Hit-rates on bootstrapped CW tests for predictive improvement.

Predictor In-sample OoS recursive OoS full-sample
Panel Indiv. Panel Indiv. Panel  Indiv.

Aggregate night lights indicators:

+ SoL growth 14.0% 15.1% 18.0% 13.4% 17.4% 21.5%
+ Balance 11.6% 15.7% 18.0% 12.8% 209% 19.2%
Distribution-based night lights indicators:

+ DNs median 93% 15.7% 14.0% 14.0% 14.0% 13.4%
+ DN kurtosis 10.5% 19.2% 13.4% 17.4% 163% 21.5%
+ DNs skewness 11.0% 22.7% 11.6% 17.4% 12.8% 20.3%
+ DNis spatial gini 151% 19.2% 192% 12.2% 192% 10.5%
+ DN entropy 12.8% 19.2% 157% 12.8% 14.5% 14.5%
+ DN block entropy 35% 163% 151% 15.1% 198% 18.0%

Location-based night lights indicators:
+ SoL grw. (low/high entropy) 145% 15.1% 174%  9.3% 17.4% 16.3%

+ SoL grw. (+/- corr. pixs.) 253% 10.6% 153% 10.6% 247% 15.3%
Averages 12.8% 16.9% 15.8% 13.5% 177% 17.1%
Max-t reality check 11.6% 13.4% 14.5% 9.9% 145% 12.2%

Notes: Hit-rates refer to the cross-country frequency of rejections of the Clark and West (2007) (CW)
one-sided test for equal predictive accuracy in nested models, at the 10% level of significance
computed using 1,000 bootstrap replications according to the Clark and McCracken (2012)
method for nested model reality checks. The Max-t reality check refers to multiple-model vari-
ant of the CW test. Samples and exercises are equivalent to those reported in tables 2 and 3.
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Table 5: Fisher’s combined p-values of bootstrapped CW tests.

Predictor In-sample OoS recursive OoS full-sample
Panel Indiv. Panel Indiv. Panel  Indiv.
Aggregate night lights indicators:
+ SoL growth 31% 0.4% 0.0% 8.9% 0.0%  0.0%
+ Balance 26.5% 1.3% 0.0% 3.6% 0.0%  0.0%
Distribution-based night lights indicators:
+ DN’ median 41.9% 0.0% 0.0% 1.4% 1.3% 1.2%
+ DN kurtosis 13.8% 0.0% 0.1% 0.0% 00%  0.0%
+ DN skewness 74%  0.0% 04%  0.5% 0.1%  0.0%
+ DN spatial gini 0.0% 0.0% 0.0%  8.0% 0.0% 1.1%
+ DN entropy 17.5% 0.0% 1.3%  2.5% 1.0%  0.2%
+ DN block entropy 83.6% 0.2% 6.1% 1.0% 0.0% 0.1%

Location-based night lights indicators:
+ SoL grw. (low/high entropy) 25%  3.7% 0.0% 52.6% 00% 02%

+ SoL grw. (+/- corr. pixs.) 0.0% 1.8% 0.0% 84.3% 0.0% 0.9%
Averages 19.6% 0.7% 0.8% 16.3% 0.2% 0.4%
Max-t reality check 43.6% 1.8% 11.2% 46.1% 5.5% 1.6%

Notes: The reported p-values are drawn from a x? distribution based on the Fisher’s statistic,
—2 " Inp;, combining the bootstrapped p-values for the CW tests across the countries (same
tests behind hit-rates reported in table 4).

mation of the individual specifications, these indicators show a poor in-sample performance with
the panel specifications; this finding is consistent with our earlier observation that the relation-
ship between the distribution-based night lights indicators and GDP growth is subject to a greater

degree of heterogeneity across countries.

5 Concluding remarks

In this paper we evaluated the usefulness of satellite-based data on nighttime lights for the predic-
tion of annual GDP growth across a global sample of 172 countries over the period from 1993
to 2014. For that purpose we have developed several night lights-based indicators, classified
into three broad categories: (i) aggregate indicators; (ii) distribution-based indicators; and, (iii)
location-based indicators. In order to evaluate the predictive content of such measures, we have
constructed forecasts based on an AR(1) GDP growth model augmented by the lagged values of
the night lights indicators. We have also considered two alternatives with respect to the estimation
of the relationship between these night lights indicators and GDP growth, namely, a panel and

country-individual specifications.
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Overall, we have found evidence favorable to the use of night lights data for GDP growth
forecasting. Importantly, our results indicate a substantial degree of heterogeneity across countries
estimates, and that these effects are relevant for the use of night lights as predictors of GDP growth.
Namely, we have found that the individually estimated models tend to outperform the pooled spec-
ifications, even though the former are subject to stronger estimation biases due to the use of smaller
samples. These biases have been particularly harmful under an out-of-sample forecast evaluation
exercise. Across the countries, estimation uncertainty was found to be more relevant in out-of-
sample forecasting for low and lower middle income countries, potentially due to a less stable
relationship between night lights and economic activity in these countries.

Another major contribution of this paper was the development and evaluation of new measures
attempting to explore the richness of information provided by the night lights dataset. Interestingly,
we have found that the forecasts based on the distribution-based night lights indicators are more
strongly affected by country-wise heterogeneity. Finally, our location-based indicators, designed
to focus on the night lights emitted from selected areas instead of the entire country’s territory,
were found to provide the greatest improvements to the accuracy of the GDP growth forecasts. We

hope these measures can uncover further useful relationships in future research.
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A Appendix

A.1 Intercalibration of night lights data

The night lights data consist of a total of 34 global composite images coming from six different
satellites operating over the period between 1992 and 2013. For comparative purposes, these data
require intercalibration in order to adjust for varying sensor conditions. Here we follow the ap-
proach proposed by Elvidge et al. (2009), where a second order polynomial regression is estimated
across the satellite-year composites over Sicily, and then used to adjust the global composites ac-

cordingly. The regression specification is given by
DN, = ¢o + ¢1DN,p, + 92 DN? (8)

where p stand for the pixel, s for the satellite-year composite to be re-scaled, and r (= F152006)
for the reference satellite-year composite, which was selected so as to maximize the average fit
of the regressions. The dispersion of the data used for estimation and the parameter estimates are

presented in figure 8 and table 6, respectively.

A.2 Supplementary results

Results supplementary to those in the main text are presented here.

The time series and cross-section dispersion of the night lights variables used in this study are
presented in Figures 9-12.

A summary of panel estimates on the relationship between the night lights indicators and GDP
growth is presented in table 7, while the distributions of the corresponding individual estimates are
depicted in figure 13.

The distributions of log RMSE ratios between the night lights-based forecasts and the bench-
mark forecasts are presented in Figures 14, 15, 16, for the in-sample, recursive OoS, and full-
sample OoS exercises, respectively.

Hit-rates for the DM tests of equal accuracy are presented in table 8, while hit-rates for the
CW test based on theoretical p-values (instead of bootstrapped as in the main text) are presented
in table 9.
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Notes: The DNs observed over Sicily from each satellite-year composite are plotted (y-axis) against
their corresponding DN values for the reference satellite F152006 (x-axis). The black line de-

picts the fitted values according to equation (8).
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Table 6: Intercalibration regression estimates.

Sat.  Year oo 01 b2 R?>  N.Pixs.

10 1992 -1.8913 1.2378 -0.0042 0.904 29796
10 1993 -1.0148 1.2210 -0.0039 0.926 33413
10 1994 -0.4652 1.1417 -0.0031 0.932 30561
12 1994 -0.7232 0.8819 0.0013 0.929 28980
12 1995 -0.2319 0.9166 0.0004 0.938 32207
12 1996 -0.1864 0.9556 0.0002 0.937 30016
12 1997 -0.4029 0.8706 0.0015 0.939 31979
121998 0.1048 0.7470 0.0027 0.951 32436
121999 04627 0.6816 0.0035 0.940 31268
14 1997 -1.4670 1.3965 -0.0064 0.935 31695
14 1998 -0.1328 1.2448 -0.0048 0.933 30864
14 1999 -0.2841 1.1501 -0.0029 0.950 33353
14 2000 0.5327 1.0149 -0.0012 0.943 32084
14 2001 -0.0964 1.0062 -0.0009 0.958 32844
14 2002 0.6088 0.8688 0.0009 0.954 31427
14 2003 0.1951 0.9600 -0.0002 0.959 33361
15 2000 0.1642 0.7380 0.0029 0.939 33651
15 2001 -0.4642 0.7937 0.0027 0.956 33059
15 2002 0.1410 0.6751 0.0042 0.960 32359
15 2003 -0.3656 1.1889 -0.0031 0.966 33340
15 2004 0.0403 1.0301 -0.0009 0.976 31080
15 2005 0.0837 0.9788 0.0001 0.970 33509
15 2006 0.0000 1.0000 0.0000 1.000 33877
15 2007 0.5517 0.9891 0.0002 0.966 31159
16 2004 -0.2095 0.9014 0.0007 0.958 31752
16 2005 -0.5565 1.1083 -0.0021 0.970 33618
16 2006 -0.4076 0.8657 0.0020 0.970 31893
16 2007 0.4299 0.6412 0.0046 0.972 32308
16 2008 0.2339 0.7200 0.0033 0.966 32271
16 2009 03699 0.7898 0.0022 0.962 28894
18 2010 1.8024 0.2926 0.0092 0.931 31117
18 2011 1.6726 0.4687 0.0062 0.936 31245
18 2012 1.6511 0.3815 0.0078 0.954 32151
18 2013 1.5803 0.4479 0.0064 0.957 32181

Notes: The estimates refer to equation (8) and are based on
Sicily’s night lights data.
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Median DN

Balance

Cross-country dispersion of variables over time (1 of 2).

Figure 11

SoL growth
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SoL growth (low entropy)

DNs block entropy

Cross-country dispersion of variables over time (2 of 2).

Figure 12
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Table 7: Summary of panel estimates on relationship between night lights and GDP growth.

Estimates on night lights indicators

Model Lagged (no AR) Contemp. (no AR) Contemp. (with AR)
Aggregate night lights indicators:
+ SoL growth 1.432%%% 2.658%** 1.766%%**
(0.390) (0.413) (0.389)
+ Balance 1.235%%* 2.99]#%* 2.049%#%*
(0.404) (0.412) (0.398)
Distribution-based night lights indicators:
+ DNs median -0.256** -0.116 -0.016
(0.122) (0.121) (0.097)
+ DN kurtosis 0.070%** 0.049* 0.014
(0.026) (0.025) (0.019)
+ DNs skewness 0.743%% 0.559%* 0.204
(0.231) (0.225) 0.172)
+ DN spatial gini -0.064* -0.013 -0.045*
(0.037) (0.036) (0.027)
+ DN entropy -0.080%** -0.066%** -0.034%*
(0.021) (0.021) (0.016)
+ DNs block entropy -0.164 0.051 -0.253
(0.343) (0.359) (0.284)
Location-based night lights indicators:
+ SoL grw. (low/high entropy) 0.237  0.198 -0.219  1.903%*** -0.067 0.799
(0.179)  (0.460) (0.193)  (0.491) (0.202)  (0.487)
+ SoL grw. (4/- corr. pixs.) 0.159 -0.129 0.597#*  0.979%** 0.609%*  (0.852%**
(0.262) (0.249) (0.263)  (0.248) (0.262)  (0.246)
+ SoL grw. (+/- corr. pixs.25%) -0.059  -0.135 0.142 -0.173%* 0.151 -0.195%
(0.104) (0.102) (0.104)  (0.104) (0.105)  (0.101)
+ SoL grw. (+/- corr. pixs.5%) 0.033 -0.113 0.090 -0.138* 0.105 -0.152%
(0.079) (0.079) (0.081)  (0.081) (0.080)  (0.079)

Notes: The estimates are obtained by regressing real GDP growth on the corresponding night lights
indicator lagged/contemporaneous values, plus a constant, an autoregressive term (when indi-
cated in the column header), and country and year fixed effects. For more estimation details see
the notes of table 1, where estimates for the case of lagged indicators with the AR(1) term are
presented. The values inside parentheses are country-clustered robust standard errors. ***, **,
and * stand for 1%, 5%, and 10% levels of statistical significance, respectively.
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Figure 13: Distributions of individual estimates.
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Figure 14: In-sample log RMSE ratios across countries.
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Figure 15: Out-of-sample log RMSE ratios from recursive model estimates across countries.
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Figure 16: Out-of-sample log RMSE ratios from full-sample model estimates across countries.
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Table 8: Hit-rates on DM tests for predictive improvement.

Predictor In-sample OoS recursive OoS full-sample
Panel Indiv. Panel Indiv. Panel Indiv.

Aggregate night lights indicators:

+ SoL growth 12.2% 18.6% 174%  14.5% 15.7% 19.8%
[5.8%] [7.0%] [19.2%] [5.8%] [16.3%] [17.4%]

+ Balance 13.4% 16.3% 16.9% 14.5% 18.6% 21.5%

[4.7%] [5.8%] [18.6%] [4.1%] [19.2%] [20.9%]
Distribution-based night lights indicators:

+ DNs median 7.0% 15.1% 11.0% 14.0% 11.0% 13.4%
[12.2%] [9.3%] [15.7%] [1.7%] [15.1%] [11.6%]
+ DN kurtosis 7.6% 23.8% 11.6% 17.4% 14.5% 17.4%
[17.4%] [14.5%] [15.1%] [4.1%] [22.7%] [13.4%]
+ DNs skewness 8.7% 24.4% 8.7% 16.9% 10.5% 15.7%
[16.9%] [16.3%] [14.5%] [4.7%] [19.2%] [14.0%]
+ DN spatial gini 11.6% 19.2% 157%  13.4% 16.9% 12.2%
[9.9%] [4.1%] [11.6%] [3.5%] [11.0%] [7.6%]
+ DN entropy 8.7% 18.0% 11.0% 13.4% 11.0% 14.5%
[12.2%] [7.6%] [11.6%] [4.7%] [11.6%] [14.5%]
+ DN block entropy 2.3% 18.0% 122%  14.5% 18.0% 18.6%

[1.7%] [7.0%] [15.7%] [4.1%] [18.6%] [15.7%]
Location-based night lights indicators:

+ SoL grw. (low/high entropy) 151%  18.6% 169%  9.9% 163%  18.6%
[8.7%] [14.0%]  [192%] [1.7%]  [20.3%] [20.3%]
+ SoL grw. (+/- cort. pixs.) 18.8%  11.2% 153%  10.0% 212%  12.9%
[9.4%] [18.8%]  [147%] [12%]  [15.9%] [21.2%]
Averages 10.5%  18.3% 13.7%  13.9% 154%  16.5%
[9.9%] [104%]  [15.6%] [3.6%]  [17.0%] [15.7%]
Max-t reality check 8.1%  17.4% 14.0% 12.2% 134%  14.0%

Notes: Same as in table 4 except that here the hit-rates are based on the Diebold and Mariano (1995)
(DM) one-sided test for the null hypothesis of equal predictive accuracy. The hit-rates inside
brackets are obtained from tests based on the Student’s t-distribution of the statistic, instead of
the bootstrapped version (without brackets).
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Table 9: Hit-rates on theoretical CW tests for predictive improvement.

Predictor In-sample OoS recursive OoS full-sample
Panel Indiv. Panel Indiv. Panel  Indiv.

Aggregate night lights indicators:

+ SoL growth 93% 35.5% 23.8% 15.1% 21.5% 37.8%
+ Balance 87% 34.9% 22.7% 15.1% 233% 39.0%
Distribution-based night lights indicators:

+ DN’ median 157% 37.2% 192% 19.2% 18.6% 30.8%
+ DN kurtosis 20.9% 39.5% 221% 17.4% 25.6% 33.7%
+ DNs skewness 22.7% 41.3% 203% 16.9% 22.7% 33.1%
+ DN spatial gini 15.1% 32.6% 16.9% 13.4% 151% 24.4%
+ DN entropy 15.7% 36.6% 174% 13.4% 15.1% 32.0%
+ DN block entropy 23% 36.0% 18.0% 15.7% 192% 31.4%

Location-based night lights indicators:
+ SoL grw. (low/high entropy) 13.4% 57.0% 22.1% 9.9% 238% 47.1%
+ SoL grw. (+/- corr. pixs.) 247% 64.7% 224% 13.5% 26.5% 54.7%

Averages 149% 41.5% 20.5% 15.0% 21.1% 36.4%

Notes: See notes of table 4. Here the significance levels are obtained from the Student’s t-distribution.

40



A.3 Countries ISO codes

1SO COUNTRY 1SO COUNTRY
HIGH INCOME COUNTRIES: UPPER MIDDLE INCOME COUNTRIES:
ARE UNITED ARAB EMIRATES ARG ARGENTINA
AUS AUSTRALIA BRA BRAZIL
AUT AUSTRIA BRB BARBADOS
BEL BELGIUM BWA BOTSWANA
BHS BAHAMAS CHL CHILE
BRN BRUNEI DARUSSALAM CRI COSTA RICA
CAN CANADA CZE CZECH REPUBLIC
CHE SWITZERLAND EST ESTONIA
CYp CYPRUS GAB GABON
DEU GERMANY HRV CROATIA
DNK DENMARK HUN HUNGARY
ESp SPAIN LBN LEBANON
FIN FINLAND LBY LIBYAN ARAB JAMAHIRIYA
FRA FRANCE LCA SAINT LUCIA
GBR UNITED KINGDOM LTU LITHUANIA
GRC GREECE LVA LATVIA
HKG HONG KONG MEX MEXICO
IRL IRELAND MNE MONTENEGRO
ISL ICELAND MUS MAURITIUS
ISR ISRAEL MYS MALAYSIA
ITA ITALY OMN OMAN
JPN JAPAN PAN PANAMA
KOR KOREA, REPUBLIC OF POL POLAND
KWT KUWAIT SAU SAUDI ARABIA
LUX LUXEMBOURG SRB SERBIA
MLT MALTA SVK SLOVAKIA
NLD NETHERLANDS TTO TRINIDAD AND TOBAGO
NOR NORWAY TUR TURKEY
NZL NEW ZEALAND URY URUGUAY
PRT PORTUGAL VEN VENEZUELA
QAT QATAR ZAF SOUTH AFRICA
SVN SLOVENIA
SWE SWEDEN
TWN TAIWAN, PROVINCE OF CHINA
USA UNITED STATES
LOWER MIDDLE INCOME COUNTRIES: LOW INCOME COUNTRIES:
AGO ANGOLA AFG AFGHANISTAN
ALB ALBANIA AZE AZERBAIJAN
ARM ARMENIA BDI BURUNDI
BGR BULGARIA BEN BENIN
BIH BOSNIA AND HERZEGOVINA BFA BURKINA FASO
BLR BELARUS BGD BANGLADESH
BLZ BELIZE BTN BHUTAN
BOL BOLIVIA CAF CENTRAL AFRICAN REPUBLIC
CHN CHINA CIvV COTE D’IVOIRE
CcoL COLOMBIA CMR CAMEROON
CPV CAPE VERDE COD CONGO, THE DEMOCRATIC REPUBLIC OF THE
DJI DIJIBOUTI COG CONGO
DOM DOMINICAN REPUBLIC COM COMOROS
DZA ALGERIA ERI ERITREA
ECU ECUADOR ETH ETHIOPIA
EGY EGYPT GHA GHANA
FII FIJT GIN GUINEA
FSM MICRONESIA, FEDERATED STATES OF GMB GAMBIA
GEO GEORGIA GNB GUINEA-BISSAU
GTM GUATEMALA HTI HAITI
GUY GUYANA IND INDIA
HND HONDURAS KEN KENYA
IDN INDONESIA KGZ KYRGYZSTAN
IRN IRAN, ISLAMIC REPUBLIC OF KHM CAMBODIA
IRQ IRAQ LAO LAO PEOPLE’S DEMOCRATIC REPUBLIC
JAM JAMAICA LBR LIBERIA
JOR JORDAN LSO LESOTHO
KAZ KAZAKHSTAN MDG MADAGASCAR
LKA SRI LANKA MLI MALI
MAR MOROCCO MMR MYANMAR
MDA MOLDOVA, REPUBLIC OF MNG MONGOLIA
MKD MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF MOZ MOZAMBIQUE
NAM NAMIBIA MRT MAURITANIA
PER PERU MWI MALAWI
PHL PHILIPPINES NER NIGER
PNG PAPUA NEW GUINEA NGA NIGERIA
PRY PARAGUAY NIC NICARAGUA
ROU ROMANIA NPL NEPAL
RUS RUSSIAN FEDERATION PAK PAKISTAN
SLV EL SALVADOR RWA RWANDA
SUR SURINAME SEN SENEGAL
SWZ SWAZILAND SLB SOLOMON ISLANDS
SYR SYRIAN ARAB REPUBLIC SLE SIERRA LEONE
THA THAILAND STP SAO TOME AND PRINCIPE
TKM TURKMENISTAN TCD CHAD
TLS TIMOR-LESTE TGO TOGO
TON TONGA TIK TAJIKISTAN
TUN TUNISIA TZA TANZANIA, UNITED REPUBLIC OF
UKR UKRAINE UGA UGANDA
UZB UZBEKISTAN VNM VIET NAM
VCT SAINT VINCENT AND THE GRENADINES YEM YEMEN
vuT VANUATU ZMB ZAMBIA
WSM SAMOA ZWE ZIMBABWE
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