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Abstract

Very-short-term wind forecasts (i.e., wind speed and power predictions issued

at sub-hourly forecast horizons) are indispensable to the reliable operation of

wind energy systems. The dominant consensus in the wind forecasting literature

and practice is that data-driven approaches are, arguably, the “right” tools for

such short-term horizons. This is in contrast to numerical weather predictions

(NWP), or hybrid methods thereof, for which the value is typically substanti-

ated as the forecast horizon becomes longer (> 1-3 hours). In this work, we

propose a probabilistic machine learning (ML) model that leverages NWP in-

formation—which is typically available to the farm or power system operator at

the time of forecast—in order to make very-short-term wind speed and power

forecasting (up to an hour ahead). Instead of directly using NWPs as input

regressors as in most hybrid approaches, we indirectly invoke NWP information

in selecting key hyperparameters within the ML model, thereby guiding it to

adhere to certain physical principles related to local wind field formation and

propagation. Using real-world data from the U.S. NY/NJ Bight where several

offshore wind projects are currently in-development, we show that such indirect

integration of NWPs within an ML approach outperforms several prevalent fore-

casting methods, including persistence forecasts, which are known to be highly

competitive at ultra-short-term horizons. We envision this work to serve as an

exemplar for leveraging the rich, yet coarser-resolution information of NWPs in

improving ML-based ultra-short-term wind forecasting models.
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1. Introduction

Very-short-term wind forecasting refers to the prediction of wind speed and

wind power at ultra-short-term forecast horizons (In this work, starting from

10 minutes ahead up to an hour). The value of such very-short-term forecasts

stems from their high utility to several critical wind farm and power system op-5

erations, including but not limited to economic dispatch, market participation,

and reserve planning (Pinson, 2013; Xie et al., 2013; Lorca & Sun, 2014; Safta

et al., 2016; Modarresi et al., 2018), turbine- and farm-level asset prognostics

and management (Taylor & Jeon, 2018; Golparvar et al., 2021; Papadopoulos

et al., 2021, 2022), as well as production estimation, control and optimization10

(Howland & Dabiri, 2019; Nasery & Ezzat, 2022).

The methods for wind speed and power forecasting can be broadly classified

based on whether they make use of numerical weather predictions (NWP) or

not (Giebel & Kariniotakis, 2017). NWPs are physics-based approaches that

numerically solve a system of discretized differential conservation equations of15

mass, momentum, and energy in the atmosphere, and forecast wind speed or

other weather conditions based on the solution of the physical equations Lange

& Focken (2006). Despite their value, there is an overall consensus in the wind

forecasting literature and practice that invoking NWP information is particu-

larly valuable (and in fact, necessary) as the forecast horizon becomes longer.20

In the literature, a precise threshold between what constitutes a “short” tem-

poral horizon does not appear to exist, but it is typically in the range between

1-6 hours when NWPs (or hybrid methods thereof) tend to outperform purely

data-driven models (Giebel et al., 2011).

On the other hand, for relatively shorter forecast horizons, data-driven meth-25

ods, and in particular those that are primarily based on statistical and machine

learning (ML), are typically regarded as the right tools for predicting wind

speed and power. By relying on an implicit assumption of persistence, i.e., a

similarity between what has been seen and what will be seen, statistical and ML
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methods are able to effectively learn, “mine,” and extrapolate patterns, trends,30

and correlations from sheer volumes of historical measurements into the near

future (Pinson & Madsen, 2012; Khodayar et al., 2017; Safari et al., 2018; Ju

et al., 2019), thereby overcoming the computational and modeling limitations

of NWPs at shorter forecast horizons. Few non-exhaustive examples of statis-

tical and ML methods which have been pervasively used for short-term wind35

forecasting include autoregressive-based models (Erdem & Shi, 2011; Gneiting

et al., 2006), deep learning models, in particular long short-term memory and

recurrent neural networks (Feng et al., 2017; Liu et al., 2020), and geostatistical

approaches (Yan et al., 2016; Ezzat et al., 2019; Ezzat, 2020; Lenzi & Genton,

2020).40

Despite their demonstrated success in short-term wind forecasting, statistical

and ML methods are often criticized for being largely physics-agnostic, that is,

they are often developed and trained without careful consideration of the first

principles governing the physical process being studied (in this case, the wind

field). As a result, they may be vulnerable to model specifications that violate45

those fundamental physical principles. This has driven an active area of research

collectively dubbed as physics-informed or physics-guided statistical/machine

learning (Gneiting, 2002; Karniadakis et al., 2021), wherein existing physical

information and/or domain knowledge is leveraged to inform the learning and/or

prediction stages in an ML pipeline, thereby offering an alternative paradigm50

to the black-box, purely data-driven approach.

To circumvent this limitation, we propose a probabilistic ML model for very-

short-term wind speed and power forecasting, for which the key distinguishing

feature is the ability to actually make use of NWP information that is typi-

cally available to the farm or power system operator at the time of forecast.55

The proposed approach is based on a spatio-temporal Gaussian process (GP)

(Rasmussen & Williams, 2006), within which NWPs are leveraged to implicitly

guide the selection of key hyperparameters in the covariance function in order to

encode information about the local wind flow in the region under study. This in-

direct integration of NWPs within an ML-based forecasting model breaks away60
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from the mainstream approach of hybrid forecasting, wherein NWPs are di-

rectly integrated as input regressors to ML-based wind forecasting models (Chen

et al., 2013; Xu et al., 2015; Hu et al., 2021). We believe that our approach is less

prone than hybrid methods to carry over the deficiencies of NWPs when directly

downscaled to higher resolutions and very-short-term forecast horizons. Com-65

mon examples of those NWP deficiencies at fine-scale resolutions and horizons

include forecast inaccuracies, as well as temporal, spatial, and scaling biases

(Sweeney et al., 2020).

Thus, our approach falls under the umbrella of data-driven approaches de-

scribed above, but is not a purely “data-driven” method. Instead, the con-70

struction of the model, as pointed out earlier, is guided by the physics unique

to the local wind field, without the need to explicitly re-model those physics.

Our driving hypothesis is that such physically motivated data-driven approach

yields substantial improvements in the predictive and explanatory power rela-

tive to the purely data-driven approaches which are indifferent to the physical75

properties of wind fields, as well as to those that are primarily physics-based.

We train and test our proposed approach using actual observations that

have been recently collected in proximity to the offshore wind energy areas

in the NY/NJ Bight, where several Gigawatt-scale projects are currently in-

development (BOEM, 2017). We demonstrate that our approach achieves no-80

ticeable improvements, in terms of both wind speed and power forecasting,

relative to several benchmarks in the forecasting literature and practice, includ-

ing persistence forecasts, which are known to be highly competitive for very-

short-term horizons. We therefore envision our work to serve as an exemplar for

leveraging the rich, yet coarse-resolution information of NWPs within ML-based85

ultra-short-term wind forecasting.

The remainder of this paper is organized as follows. Section 2 describes the

real-world data used in this paper. Section 3 reviews the concept of spatio-

temporal asymmetry for wind fields, which will then be used in deciphering the

potential role of NWPs in data-driven ultra-short-term forecasting. In Section90

4, we introduce our proposed forecasting method, which is then followed by

4



Section 5 where we present and analyze our results. Finally, we conclude the

report in Section 6.

2. Data Description

Our dataset comprises 10-min wind speed measurements, at 100-m altitude,95

collected using two floating LiDAR buoys that have been recently deployed by

the New York State Energy Research & Development Authority (NYSERDA)

called E05 and E06, respectively, in order to further our understanding of the

wind resource in proximity to the wind energy areas in the NY/NJ Bight (NY-

SERDA, 2019). Figure 1(a) depicts the rose plot of the wind data, showing the100

distribution of the wind speed and direction in that region. The rose plot sug-

gests a north-westerly prevailing wind. The two buoys are ∼77 Km apart, and

their exact coordinates are 39°58’10”N and 72°43’00”W for E05 and 39°32’50”N

and 73°25’45”W for E06.

We also obtain a set of hourly NWP forecasts from a meso-scale meteoro-105

logical model operated by Rutgers University, called RU-WRF (short for the

Rutgers University Weather Research & Forecasting model) (RUCOOL, 2019).

The model has been recently validated by the National Renewable Energy Lab-

oratory (NREL) (Optis et al., 2020), and has been continously updated and im-

proved since then (Dicopoulos et al., 2021). For this study, both measurements110

and NWP outputs span the month of December 2019. Figure 1(b) shows the

histograms of the actual observations versus their correspondent NWPs, while

Figure 1(c) shows a 12-day time series of the actual wind speed measurements

versus statistically interpolated NWPs for E05 (top) and E06 (bottom).

3. Spatio-temporal Data Analysis115

Let Z(s, t) denote a spatio-temporal random process, such that s ∈ R2 de-

notes the location (in longitude and latitude) and t denotes time. A cornerstone

of spatio-temporal models is to invoke a covariance function (often known as
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Fig. 1. (a) Wind rose plot for the actual wind speed measurements recorded in the NY/NJ

Bight (Data from two buoys combined to produce this figure); (b) Histograms of actual wind

speed measurements (mean = 10.52 m/s) versus NWP wind speed forecasts (mean = 9.87

m/s); (c) actual wind speed measurements (10-min) versus statistically interpolated NWPs.
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a kernel) that encodes the similarity between a pair of spatial-temporal obser-

vations and enables GP-based forecasting. Assuming (local) stationarity, this120

kernel is denoted as C(h, u) : R2 × Z+ → R, where h = si − sj and u = ti − tj

are spatial and temporal lags, respectively.

A prevalent way to model C(·, ·) in the spatio-temporal statistical litera-

ture is through the so-called separable approach, wherein C(h, u) is expressed

as C(h, u) = Cs(h) × Ct(u), such that Cs(h) and Ct(u) are two independent

kernels for space and time, respectively (Cressie & Wikle, 2015). As such,

one could independently model the covariance structure across space and time

through separate covariance functions or kernels. Popular selections for Cs(h)

and Ct(u) include the Gaussian, squared exponential and Matérn kernels (Ras-

mussen & Williams, 2006). The final spatio-temporal covariance matrix can

be computed efficiently as the Kronecker product of two smaller spatial and

temporal covariance matrices, as in 1.

ΣΣΣsep = ΣΣΣs ⊗ΣΣΣt, (1)

such that ΣΣΣsep is the resulting covariance matrix, whereas ΣΣΣs and ΣΣΣt are the

spatial and temporal covariance matrices, respectively.

Despite its simplicity, a major limitation of the abovementioned separable125

approach is that it assumes, by design, that space-time correlations are sym-

metric, that is, we have cor{Z(si, t), Z(si′ , t+ u)} = cor{Z(si′ , t), Z(si, t+ u)}.

Processes that involve a flow over time (e.g., wind fields) typically violate that

assumption, because the along-wind dependence (i.e., correlations in the direc-

tion of the flow) are typically stronger than opposite-wind dependence due to130

the impact of the prevailing transport effect (Cressie & Wikle, 2015; Salvaña &

Genton, 2020), thereby making the assumption of symmetry physically “unjus-

tifiable” for local wind fields.

To demonstrate this using our data, we use an estimator of asymmetry

(defined as lack of symmetry), expressed as in (2) (Stein, 2005; Ezzat et al.,

2018).

a(si, si′ , u) := δ(si, si′ , u)− δ(si′ , si, u), (2)
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where si and si′ denote the coordinates of E05 and E06, respectively, and δ(·, ·, ·)

is the empirical spatio-temporal semi-variogram, which is a a measure of dis-

similarity between a pair spatio-temporal observations, and is expressed as in

(3).

δ (si, si′ , u) =
1

2(N − u− 1)

N−u−1∑
k=1

{y (si, k + u)− y (si′ , k)}2 . (3)

In (3), N is the number of observations, δ (si, si′ , u) means that the measure-

ments taken at site si′ are u time lag behind that at site si, while δ (si′ , si, u)135

means the measurements taken at site si are u time lag behind that at site

s′i. Hence, if the wind is blowing from site si′ towards site si, then we should

expect δ(si, si′ , u) < δ(si′si, u), and therefore a(si, si′ , u) < 0, indicating a lack

of symmetry.

To test for statistical significance, we perform a t-test for each time lag,140

u ∈ {1, ..., 36} (in 10-min intervals), with H0 : ā(s1, s2, u) = 0, where ā(s1, s2, u)

is the average asymmetry at time lag u. Figure 2 shows the values of ā(s1, s2, u)

versus the time lag, together with the test’s 95% confidence intervals. The

negative values shown in Figure 2 suggests a noticeable asymmetry in along-

wind versus opposite-wind dependence, as a result of the wind propagation145

across the prevailing westerly wind during this time of the year—Recall the

rose plot in Figure 1(a). Another piece of information conveyed by Figure 2

is that the maximum asymmetry levels appear to take place in time lags of

∼1-3 hours, which is approximately the expected time for wind conditions to

propagate from E06 towards E05.150

The above analysis suggests the potential benefit of modeling asymmetry:

when attempting to predict the wind conditions at a downstream location, then

one may potentially assign higher weight to the observations recorded few hours

ago at an upstream location, since those upstream (but past) measurements

are expected to be highly correlated with their downstream counterparts at155

the current time. To enable this, we need an accurate representation of the

prevailing wind flow (both magnitude and direction) at the time of the forecast.

This is, in fact, where we plan to integrate NWP information. Details of this
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Fig. 2. Average difference in empirical semi-variograms versus the time lag, along with 95%

t-test confidence intervals. Noticeable levels of asymmetry are observed, peaking at ∼1-3-hour

time lag, which is line with the expected duration for wind conditions to propagate across

the wind field—the average distance between E05 and E06 is 77 Km, while the average wind

speed across both sites is 38 Km/hr.

integration are discussed in Section 4.

4. Methodology160

We first introduce spatio-temporal Gaussian processes in Section 4.1, then

discuss the role of NWPs in Section 4.2.

4.1. Spatio-temporal Gaussian Processes (GPs)

Let Z = [z (s1, t1) , z (s1, t2) , . . . , z (s1, tT ) , . . . , z (sn, tT )]
T

be a vector of

spatio-temporal wind speeds, where z(si, tj) is the wind speed at location si

and time tj . A GP model can be expressed as in (4).

z (si, tj) = m (si, tj) + γ (si, tj) , (4)
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where m (si, tj) is referred to as the GP mean function, which, for ultra-short-

term forecasting, can be expressed as a constant, m (si, tj) = β0,∀i, j. The term165

γ(·, ·) is a zero-mean, spatio-temporal Gaussian random field, with an nT × nT

covariance matrix denoted by Σ + δI, where δ is the noise parameter, and I is

the identify matrix. The entries of Σ are computed using the GP kernel, C(h, u)

(details of which are to follow).

For a GP, the joint distribution of the training data Z and a set of testing

data Z∗ follows a multivariate Gaussian distribution, as shown in (5). Z

Z∗

 ∼ N

 m

m∗

 Σ Σ∗

ΣT
∗ Σ∗∗

 , (5)

where m = [m(s1, t1), ...,m(sn, tT )]
T is the vector of mean function evaluations

at the training data, and m∗ is similarly defined for the testing data. The

matrix Σ∗ holds the covariance values between Z and Z∗, while Σ∗∗ denotes

the covariance matrix of the testing data. The forecast distribution conditioning

the joint Gaussian prior distribution on the observations can then be expressed

as in (6).

P (Z∗ | Z,m(·), γ(·, ·)) ∼ N (µ̂, Σ̂), (6)

where

µ̂ = m∗ +ΣT
∗ (Σ+ δI)−1(Z −m),

Σ̂ = Σ∗∗ −ΣT
∗ (Σ+ δI)−1Σ∗.

(7)

We note that using GPs for wind forecasting may entail some data trans-170

formations to ensure the validity of GP assumptions. For our case study, non-

positivity was not an issue since offshore wind speeds are typically high (av-

erage = 10.52 m/s)—See the histogram of Fig 1(b). Despite not enforcing a

non-positivity constraint, the resulting GP-based mean forecasts were all non-

negative, whereas less than 0.1% of the 95% prediction intervals included values175

that are slightly lower than zero. We acknowledge, however, that for other 

datasets, one may wish to invoke data pre-processing transformations before 

using GPs.
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4.2. Modeling C(h, u) and The role of NWPs

Defining the GP kernel C(h, u) is essential for spatio-temporal GPs. The

analysis in Section 3 motivates the need for a nonseparable kernel that ac-

knowledges the impact of the wind flow on the space-time correlations. Here,

we adopt an under-explored class of nonseparable covariance models that can

particularly capture asymmetric behavior in spatio-temporal data. Consider a

spatial random field on R2 with a spatial, motion-invariant covariance function

Cs(·). Now, let’s assume this field moves over time with a random velocity vector

Θ ∈ R2, creating a spatial-temporal random process with an asymmetric covari-

ance, Ca(h, u), expressed as in (8). This general covariance structure (despite

still lacking a closed-form representation) is referred to as a Lagragian reference

framework in the geostatistical literature (Cox & Isham, 1988; Gneiting et al.,

2007).

Ca(h, u) = EΘ{Cs(h−Θu)}. (8)

Assuming Cs(x) = exp(−x2) and letting Θ ∼ N (τ ,Ψ) gives us the closed-

form expression in (9), which is referred to as Schlather’s covariance model

(Schlather, 2010).

Ca(h,u) =
1√

|I2×2 + 2Ψu2|

× exp
{
− (h− τu)

T (
I2×2 + 2Ψu2

)−1
(h− τu)

}
,

(9)

where |·| denotes the matrix determinant.180

The choice of τ and Ψ (the parameters of the prevailing flow) is crucial

for the effective use of Ca(h, u) in practice. Incorrect specifications of τ and

Ψ can severely limit (or even reverse) the benefits of an asymmetric approach.

In our prior works (Ezzat et al., 2018, 2019), τ and Ψ have been either pre-

set, or estimated using historical measurements. We believe, however, that

local measurements are not necessarily the best descriptors of the prevailing

flow characteristics, but rather are merely instantaneous representations of the

wind velocity at a particular location and time. Instead, this work advocates

the use of NWP wind velocity predictions—which are typically available to the
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farm or power system operator at the time of the forecast—as more meaningful

representations of the prevailing flow. In particular, we estimate τττ and ΨΨΨ as in

(10) and (11), respectively.

τττ = [τ1, τ2]
T = [v̄, w̄]T , (10)

ΨΨΨ =

 Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

 =

 cov(v,v) cov(v,w)

cov(w,v) cov(w,w)

 , (11)

where v = [v1, ..., vT+h]
T and w = [w1, ..., wT+h]

T are the NWP outputs for

the eastward and northward winds, respectively, during both the training and

forecast horizon windows, whereas v̄ and w̄ are the sample means of v and w,

respectively, and cov(·, ·) denotes the sample covariance.

5. Real-world Case Study185

We test our method using a rolling forecasting scheme, for forecast horizons,

h ∈ {10, ..., 60} minutes. For each forecast roll, we train the model, obtain

the forecasts, roll by six hours, and then repeat the training and forecasting

procedures. This leads to a total of 100 rolls , which is equivalent to 1, 200 testing

instances (6 forecasts/hour ×100 rolls ×2 locations). For each forecast roll, five190

days of historical data and meteorological forecasts are used for model training.

We find that a combination of an asymmetric kernel Ca(h, u) and a separable

kernel yields better performance than solely using Ca(h, u), so we employ a

convex combination of both and estimate the convex combination coefficient

using the training data, along with the remaining GP hyperparameters.195

5.1. Wind Speed Forecasting Results

We compare the wind speed forecasts obtaiend from our proposed approach

against five prevalent forecasting benchmarks:

1. GP: This is a data-driven spatio-temporal GP, with a separable squared

exponential kernel. The purpose of this benchmark is to demonstrate200

the merits of a physically meaningful covariance function proposed in our

model relative to a black-box, physics-agnostic kernel choice.
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Table 1: Forecasting results (in MAE), for wind speed (up) and wind power (bottom), averaged

over both sites (E05 and E06). Bold-faced values indicate best performance (i.e. lower errors).

Avg. and %IMP denote average performance, and percentage improvement, across different

forecast horizons, h = 10, ..., 60 mins.

Wind Speed (m/s)

Data-driven Physics-based

h (minutes) Proposed GP ARMA PER NWP HYB

10 .373 .376 .382 .376 1.62 1.51

20 .505 .510 .513 .509 1.57 1.28

30 .685 .692 .692 .695 1.48 1.28

40 .825 .832 .829 .833 1.46 1.30

50 .909 .921 .942 .925 1.50 1.36

60 1.05 1.07 1.09 1.07 1.56 1.44

Avg. .725 .734 .742 .734 1.53 1.36

% IMP - 1.20% 2.23% 1.22% 52.6% 46.7%

Wind Power (dimensionless)

Data-driven Physics-based

h (minutes) Proposed GP ARMA PER NWP HYB

10 .030 .031 .034 .031 .187 .153

20 .043 .044 .046 .044 .191 .154

30 .085 .085 .085 .085 .170 .164

40 .096 .100 .101 .100 .297 .148

50 .105 .111 .109 .111 .291 .143

60 .129 .133 .134 .134 .292 .139

Avg. .081 .084 .085 .084 .238 .150

% IMP - 3.17% 4.02% 3.39% 65.8% 45.8%
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2. ARMA: The autoregressive moving average model is a statistical ap-

proach, trained separately for each location (no spatial correlations con-

sidered). Bayesian Information Criterion (BIC) and Maximum Likelihood205

Estimation (MLE) are used to dynamically update the model order pa-

rameters and the model coefficients, respectively, at each forecasting roll.

3. PER: Persistence forecasting assumes wind conditions persist in the fore-

cast horizon. This method is known to be highly competitive for ultra-

short-term horizons, with a decaying predictive skill as the forecast horizon210

becomes longer.

4. NWP: Those are the hourly (physics-based) NWP model outputs, which

we statistically interpolate (using cubic splines) to the target 10-min res-

olution.

5. HYB: This is a hybrid model that calibrates NWPs using local obser-215

vations via a simple model output statistics (MOS) regression approach

(Glahn & Lowry, 1972).

Table 1 (top) shows the mean absolute error (MAE) values for the wind

speed forecasts for all models at various forecast horizons, h ∈ {10, ..., 60} min-

utes ahead. First, we clearly note how data-driven methods (including ours)220

are performing significantly better than the benchmarks that directly invoke

NWP information in the forecast (NWP and HYB) at ultra-short term hori-

zons, especially for the first 30 minutes. This agrees with the general con-

sensus in the forecasting literature and practice regarding the superiority of

data-driven approaches in ultra-short-term wind forecasting. Second, we note225

how our approach performs noticeably better than all methods, including data-

driven approaches (namely, GP, ARMA, and PER), with average percentage

improvements, ranging between 1.20 - 2.23%. Finally, we would like to stress

how our method in particular outperforms the persistence forecast (PER), which

is known to be highly competitive for such ultra-short-term horizons.230

Another major advantage of our proposed approach is its ability to naturally
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output probabilistic forecasts. Figure 3 depicts the probabilistic forecasts for five

consecutive days, with 95% forecast intervals, suggesting a faithful agreement

with the actual observations.

5.2. Wind Power Forecasting Results235

We transform the wind speed forecasts into wind power predictions using

actual power curves. Currently, there are no existing wind farms in the NY/NJ

Bight (where the wind measurements are obtained), so we use actual power

curves that have been constructed using the method of bins (IEC, 2017; Gol-

parvar et al., 2021) applied on SCADA data obtained from an operational wind240

farm in the US (Ding, 2019). The method of bins is the industrial standard for

power curve modeling and entail the discretization of the wind speed domain

into a number of bins (typically with a bin width of 0.5 m/s) and then averaging

the power output within each bin, thus producing bin-specific power estimates.

We scale the power output to the [0, 1] interval, such that a value of 1245

constitutes the maximum rated capacity. We then use the constructed power

curve to convert both the actual wind speed values, as well as the correspondent

forecasts (from the six competing methods) into wind power predictions. Table 1

(bottom) shows the MAE values of the wind power predictions for the six models

at different forecast horizons. Again, our model is able to outperform all of its250

competitors across all forecast horizons. We also notice that the improvements

in the power domain are fairly higher than those in the wind speed domain,

which aligns with the theoretical cubic speed-to-power functional relationship.

6. Conclusions

In this work, we proposed a data-driven, spatio-temporal model for ultra-255

short-term wind speed and power forecasting. Unlike purely data-driven meth-

ods, or on the other hand, those that are primarily physics-based, we indirectly

leverage numerical weather predictions in loosely guiding the selection of key

physically meaningful parameters within the ML-based model (in particular, in

15



Fig. 3. Time series of the proposed model’s forecasts, along with 95th forecast intervals, on

top of actual observations for E05 (top) and E06 (bottom).
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informing the kernel choice of the GP model). We show that, for ultra-short-260

term horizons, such indirect integration leads to noticeable forecast accuracy

improvements, in terms of both wind speed and power prediction, relative to

purely data-driven models (that do not invoke NWPs), or those that directly

use NWPs as inputs. Further research will investigate the merit of our approach

for longer forecast horizons and larger spatial networks.265
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