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Load Forecasting for Special Days Using a Rule-based Modeling 

Framework: A Case Study for France 

______________________________________________________________________________ 

Abstract  

This paper presents a case study on short-term load forecasting for France, with emphasis on 

special days, such as public and national holidays. Existing methods for load forecasting focus 

mainly on normal working days, while special days are often ignored during the modeling 

process. We generate short-term load forecasts for normal and special days in a coherent and 

unified framework, using a rule-based methodology. The proposed methodology encapsulates 

prior domain knowledge of load profiles into the statistical model. In addition to special day 

effects, we accommodate the intraday, intraweek, and intrayear seasonality in load, whereby we 

consider the original version and corresponding rule-based triple seasonal adaptation of Holt-

Winters-Taylor (HWT) exponential smoothing, seasonal autoregressive moving average 

(SARMA), artificial neural networks (ANNs), along with intraday and intraweek singular value 

decomposition (SVD) based exponential smoothing methods. Using nine years of half-hourly 

load for France, we evaluate point and density forecasts, for lead times ranging from one half-

hour up to a day ahead. Overall, the rule-based SARMA method generated the most accurate 

point and density forecasts.  

 

Keywords: Point and density forecasts; Rule-based; Short-term; Special days; Triple seasonal. 
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1. Introduction  

 

Accurate short-term forecasts of electricity demand (load) are crucial for making informed 

decisions regarding unit commitment, energy transfer scheduling, and load-frequency control of 

the power system. An electric utility needs to make these operational decisions on a daily basis, 

often in real-time, in order to operate in a safe and efficient manner, optimize the operational 

costs, and improve the reliability of distributional networks. Moreover, inaccurate forecasts can 

have substantial financial implications for energy markets (Charytoniuk and Chen 2000).  

Given the significance of short-term load forecasts for electric utilities and energy markets, a 

plethora of different modeling approaches have been proposed for forecasting load for normal 

days (Bunn 2000). Modeling load for special days, such as public holidays and long weekends, 

however, has usually been overlooked in the research literature (see, for example, Smith 2000; 

Nowicka-Zagrajek and Weron 2002; Hippert et al. 2005; Taylor 2010a). We refer to load 

observed on normal days as normal load, whereas load observed on special days is referred to as 

anomalous load.  

The lack of attention in modeling anomalous load can be attributed to the following reasons: 

1) Anomalous load deviates significantly from normal load, which necessitates special days to be 

treated as being different from normal days. 2) The relative infrequent occurrence of special days 

(special days tend to occur annually) results in the unavailability of an adequate number of 

anomalous observations required for sufficiently training the model. 3) Different special days 

exhibit different load profiles (shape of the intraday load curve), which requires each special day 

to be modeled as having a unique profile. The aforementioned reasons make statistical modeling 

of anomalous load very challenging, due to which, the task of forecasting anomalous load has 

often been left to the expert judgment and decision of the central controller of the electricity grid 
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(Hyde and Hodenett 1993; 1997). The focus of this study is to develop models that can 

potentially be deployed in a real-time automated online system, which can assist the central 

controller make informed decisions under normal and anomalous load conditions. 

Although special day effects are often ignored during the modeling, the choice of replacing 

or smoothing anomalous load is subjective and not well-defined. Smith (2000) treats special days 

as a recent Sunday during the modeling process. Nowicka-Zagrajek and Weron (2002) employ 

anomalous load observations for model estimation, but ignore special day effects during model 

evaluation. Hippert et al. (2005) avoid special days by replacing them in their modeling, by load 

observed on a corresponding normal day of the week from the last week. Prior to estimation and 

evaluation procedures, Taylor (2010a) smoothes out the load for special days, by replacing it 

with the mean estimate of the normal load from the corresponding periods of the two adjacent 

weeks. Crucially, the problem with ignoring anomalous load is that it not only guarantees that 

the resulting model cannot be used for special days, but it also results in considerably large 

forecast errors on normal days that lie in the vicinity of special days. In this study, we use the 

actual load time series for modeling, whereby the anomalous load observations are neither 

replaced, nor smoothed out. 

Multivariate weather-based models have been employed previously for modeling load (Cottet 

and Smith 2003; Dordonnat et al. 2008). Multivariate models utilize weather variables like 

temperature, wind speed, cloud cover, and humidity, along with the historical load observations. 

Univariate models on the other hand, include only the historical load observations, and have been 

shown to be adequate for short-term load forecasting (Taylor 2008). It has been argued that the 

weather variables tend to vary smoothly over short time scales, and this variation can be captured 

in the load data itself (Bunn 2000). Moreover, for short lead times, univariate models have been 
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shown to be competitive with weather-based models (Taylor 2008). Hence, we employ 

univariate methods for short-term load forecasting in this study. 

Rule-based forecasting has received considerable attention in the forecasting research 

community (see, for example, Armstrong 2001; 2006). The rationale of using a rule-based 

approach lies in incorporating subjective judgment based on domain knowledge and expertise 

into the statistical model. It has been argued that rule-based forecasting can outperform 

conventional extrapolation methods, especially in cases where prior domain knowledge is 

available and the time series exhibits a consistent structure (see, for example, Bunn and Wright 

1991; Collopy and Armstrong 1992; Adyaa et al. 2000). A discussion on the issues of using a 

rule-based approach with statistical forecasting methods is provided by Bunn and Wright (1991). 

Collopy and Armstrong (1992) create a rule-base to combine forecasts from different 

extrapolation methods, and report that rule-based methods reduced the forecast error by 

approximately half compared to an equally-weighted combined forecast. Adyaa et al. (2000) 

emphasize that the identification of relevant features or characteristics of a time series is crucial 

for the success of rule-based methods. Given that the task of forecasting anomalous load has 

previously relied mainly on subjective judgment, and the fact that load exhibits a consistent 

prominent structure (triple seasonality), we adopt a rule-based methodology in this study. We 

incorporate domain knowledge into the statistical models via rules. The rationale of the proposed 

rule lies in identifying the most suitable historical special day, whose anomalous load 

observations would be most useful in improving the accuracy of the model in forecasting load 

for the future special day.  

In a recent study, Arora and Taylor (2013) propose a rule-based approach for modeling 

anomalous load for Great Britain (GB). This paper extends the work of Arora and Taylor (2013), 
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whereby we: 1) Adapt the rules and models proposed earlier for GB, in order to model load for 

France. 2) Propose a new method; referred to as the rule-based intraday SVD based exponential 

smoothing method. 3) Evaluate density forecasts (in addition to point forecasts), across normal 

and special days. To the best our knowledge, there are no existing studies on modeling the 

density of anomalous load. Moreover, compared to GB, we note that modeling anomalous load 

for France is more challenging, due to the relatively large number of different types of special 

days observed in France. 

Although we demonstrate the applicability of the rule-based methods for load forecasting, the 

proposed methodology can potentially be adapted for other applications. Some examples where 

this approach could be useful for forecasting includes call centre arrivals, hospital admissions, 

cash withdrawals at ATMs, water usage, and transportation counts, as the corresponding time 

series exhibit seasonality and anomalous conditions pose significant modeling challenges.  

In the next section, we provide a comprehensive review of the literature on modeling 

anomalous load. We present the French load data in Section 3, and discuss the normal and 

anomalous load characteristics. In Section 4, we present the rule-based methods. Section 5 

presents the subjective formulation of a rule. Empirical comparison of different methods and 

simple benchmarks is provided in Section 6. In Section 7, we summarize and conclude the paper.  

2. Review of Methods for Anomalous Load Forecasting 

Previous approaches for short-term forecasting of normal and anomalous load have mostly   

employed regression-based methods with dummy variables for special days (see Ramanathan et 

al. 1997; Pardo et al. 2002; Cottet and Smith 2003; Cancelo et al. 2008; Soares and Medeiros 

2008; Dordonnat et al. 2008; De Livera et al. 2011; Kim 2013).  
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Ramanathan et al. (1997) build a separate regression model for each hour of the day, and 

include special day and weather effects on load using dummy variables. Pardo et al. (2002) use 

dummy variables for capturing the day of week, month of year, and holiday effects on load. 

Moreover, following the work of Ramanathan et al. (1997), Pardo et al. (2002) employ 

additional dummy variables for the day following a special day. This helps accommodate the 

potential impact of anomalous load on a normal day following a special day. Cottet and Smith 

(2003) model load using a multi-equation Bayesian model. They treat Christmas Day, Boxing 

Day, New Year’s Day, Good Friday, and Easter Monday as the most idiosyncratic public 

holidays, and allot a different dummy variable to each of the above mentioned public holidays, 

while all other remaining holidays in the dataset were allotted a single dummy variable. 

Moreover, Cottet and Smith (2003) use 48 coefficients for each dummy variable to capture the 

intraday seasonality using half-hourly load. Cancelo et al. (2008) build a separate model for each 

hour of the day using Spanish load. They first issue a forecast for load assuming a normal day, 

and make adjustments accordingly for special days using different dummy variables employed 

for different classes of special days. Soares and Medeiros (2008) build a two stage model for 

each hour of the day for load, such that anomalous load is modeled in the first stage using 

dummy variables. Any unexplained component in load is then modeled in the second stage using 

either an autoregressive (AR) model or an ANN. However, Soares and Medeiros (2008) found 

that using an ANN did not lead to any improvement in forecast accuracy over a linear AR model. 

Dordonnat et al. (2008) build a regression model for each hour of the day, and accommodate 

special day effects using dummy variables. In addition, they also use dummy variables for 

bridging days. A day is defined to be a bridging day if it is a Monday before a special day, or a 

Friday after a special day. The load on bridging days tends to be lower than normal load, and 
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hence, needs to be treated separately. De Livera et al. (2011) propose an innovations state space 

modeling framework, and handle special day effects for national and religious holidays in load 

via dummy variables. Kim (2013) adopt a double seasonal multiplicative SARMA model to 

accommodate special day effects on an hourly basis using dummy variables for Korean load.  

To model load adequately, the triple seasonal effects need to be accommodated, which 

requires different dummy variables for identifying the period of the day, day of the week, and 

date, for each special day. Given that load for different special days is different, dummy 

variables are also required for identifying the special day type. However, to include a correction 

coefficient with each dummy variable results in the final model being highly parameterized and 

difficult to interpret. To avoid the model becoming over-parameterized, different special days 

have often been classified as belonging to the same special day type (see, for example, Kim et al. 

2000; Cottet and Smith 2003; Cancelo et al. 2008; Soares and Medeiros, 2008; Dordonnat et al. 

2008). The classification of special days relies on the assumption that load profile for different 

special days can be treated as being similar, and would remain similar over the years. Using 

French load, we observe from the data that each special day exhibits a unique profile. Hence, 

instead of classifying different special days as being the same, we model each special day as 

having a unique profile, which may change over different years.  

Apart from regression-based methods, some authors have proposed rule-based approaches 

for anomalous load forecasting (Rahman and Bhatnagar 1988; Hyde and Hodnett 1997; Arora 

and Taylor  2013), while others have used ANNs (Srinivasan et al. 1995; Kim et al. 2000, Song 

et al. 2000). Rahman and Bhatnagar (1988) propose a rule-based approach, whereby they 

formulate rules based on the logical and syntactical relationships between weather and load, 

using data for an electric utility in Virginia, USA. Hyde and Hodnett (1997) formulate rules for 
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the Irish load data, whereby the rationale of their approach is to find the deviation of load for 

different special days from normal load for a given year, and use this deviation as a correction 

term for the corresponding special day falling next year. Srinivasan et al. (1995) use ANNs with 

fuzzy rules, and find that the load profile on most special days is similar to the profile of a typical 

Sunday. Kim et al. (2000) classify special days into five different types, and employ an ANN 

(for each special day type) used in conjunction with fuzzy rules inferred from the Korean load 

data. Song et al. (2000) propose a fuzzy linear regression method, and report that errors from 

their method were lower compared to an ANN and fuzzy inference method. Apart from fuzzy 

rules, ANNs have also been used in conjunction with self-organizing maps (SOMs) for 

anomalous load forecasting (Lamedica et al. 1996).  

It is noteworthy that most existing methods for anomalous load forecasting rely on classifying 

different special days as being the same, while some approaches employ different models for normal 

and special days (Kim et al. 2000). We, however, treat each special day as having a unique profile, 

and adopt a unified modeling framework for both day types. Moreover, the existing rule-based 

methods are tailored only to the data at hand (Rahman and Bhatnagar 1988; Hyde and Hodnett 1993; 

1997). This makes the task of adapting existing rule-based methods to different datasets very 

challenging, as it would require creating a completely new set of rules for the French data. Due to the 

aforementioned reasons, we do not use existing rule-based methods as benchmarks in this study.  

 

3. Anomalous Load Characteristics 

We employ nine years of half-hourly load for France, stretching from 1 January 2001 to 31 

December 2009, inclusive. This leads to a total of 157,776 load observations. We use the first 

eight years of the dataset as the estimation sample (consisting of 140,256 observations), and 
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employ the final year as the evaluation sample (consisting of 17,520 observations). We generate 

forecasts by rolling the forecast origin through each period in the post-sample data. The data has 

been obtained from Électricité de France (EDF), and there are no missing observations in the 

employed dataset.  

The complete load data is presented in Figure 1. It can be seen from this figure that load 

exhibits a recurring within-year pattern (due to seasonal effects), termed as the intrayear 

seasonality. Moreover, the data shows an upward trend. Also, load in winter is higher than in 

summer, which is due to the increased use of electrical equipment for heating in winter in 

France.  

 
Figure 1— Half-hourly load for France stretching from 1 January 2001 to 31 December 2009. 

The vertical dashed line denotes the time index that divides the time series into non-overlapping 

estimation and evaluation sample.  

 

The average intraday cycle (calculated using only the estimation sample) for different days of 

the week is presented in Figure 2. It can be seen from the figure that load on weekends is 

considerably lower compared to weekdays, whereby load is lowest on Sundays. Load on 
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Monday mornings and Friday evenings is particularly lower compared to other weekdays (for the 

same period of the day), whereas the average load profiles for Tuesday, Wednesday and 

Thursday are very similar.  

 

Figure 2— Average intraday profile for each day of the week. 

Using the calendar dates for French public holidays, we identified a total of twenty four 

special days in the one year post-sample data. Inspection of the data reveals that load for a given 

special day is considerably lower than normal day, for the same day of the week, around the 

same date. It is noteworthy that some authors have employed objective schemes for identifying 

special days (Lamedica et al. 1996). To compare anomalous and normal load, in Figure 3, we 

plot load for a Bastille Day (14 July 2008, Monday), which is a national holiday in France, and 

load for a normal working Monday from the preceding and following weeks. It is evident from 

Figure 3 that not only anomalous load is substantially lower than normal load, but the load 

profiles for normal and special days are indeed very different. Inspection of the data reveals that 

this characteristic of anomalous load holds true across all special days.  
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Figure 3— Load profile for a Bastille Day (14 July 2008, Monday), a normal Monday (7 July 

2008) from the preceding week, and a normal Monday (21 July 2008) from the following week. 

 

 

Figure 4—  Load profile for a New Year’s Day (1
 
January), Christmas Day (25 December), 

Remembrance Day (11 November), Labor Day (1 May), Bastille Day (14 July), and The 

Assumption of Blessed Virgin Mary Day (15 August), observed in the year 2008.  
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In Figure 4, we plot load profiles for six different special days observed in the year 2008. As 

expected, load for special days occurring during winter months (New Year’s Day, Christmas 

Day and Remembrance Day) is considerably higher than load for special days occurring during 

summer months (Labor Day, Bastille Day and The Assumption of Blessed Virgin Mary Day). 

Moreover, it is interesting to note that the profile for different special days is noticeably 

different. It is due to this reason, that we do not classify different special days as being the same.  

In Figure 5, we plot load for a special day and a corresponding normal day (from the 

following weeks), for all years within the estimation sample. Specifically, we plot load for a New 

Year’s Day (1 January), and a normal day (14 January), observed across eight years (2001-

2008). It can be seen from Figure 5, that the profile for a given special day and the corresponding 

normal day is different across different years. Both New Year’s Day and the normal working day 

obviously fall on a different day of the week each year. Note that 14 January fell on a Sunday in 

2001 and 2007. It is due to this reason that compared to the other years; load on 14 January is 

relatively low for the years 2001 and 2007 (as shown in Figure 5b). Moreover, we note from 

Figure 5 that there is no strict trend in load for a given special or a normal day across different 

years. 

We denote the length of the intraday, intraweek, and intrayear seasonal cycle by   , 

   and      . Since the data is recorded every half-hour, we have    = 48 and    = 336. For 

normal days, we define       = 52     (for a given period   , except for few weeks around the 

clock-change, where we define       = 53   . For special days, we select       using a rule-

based approach. This allows appropriate selection of historical anomalous load observations in 

the model, to be extrapolated into future to generate forecasts, as explained further in detail in 

Section 5. 
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Figure 5— Load profile for a New Year’s Day (1
 
January), and a following normal day (14 

January) observed across all years within the estimation sample, stretching from 2001 to 2008. 

 

4. Rule-based Forecasting Methods 

4.1. Rule-based Modified HWT exponential smoothing 

We modify the rule-based HWT exponential smoothing method proposed by Arora and 
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             (3) 

        
    

     (4) 

        
    

     (5) 

               
         

      (6) 

 

where    denotes the load observed at a period  ,   denotes the smoothed level, while  ,   and   

represent the daily, weekly and annual seasonal indices, respectively. The term involving 

parameter   adjusts for first order autocorrelations in the error, denoted by   . The model errors 

for normal and special days are denoted by   
   

         
   and   

   
         

  , respectively, 

having corresponding variances   
  and   

 , while     refers to a normal and independently 

distributed process. For any period   occurring on normal days, the binary indicator    
 equals 

one, and zero otherwise. Similarly, for   falling on special days,    
 equals one, and zero 

otherwise. The smoothing parameters are denoted by  ,  ,  ,    and   . The length of the 

intrayear seasonal cycle is denoted by      , for a given period  . For special days,       is 

selected using a rule based approach, while for normal days,       equals either 52     or 

53     (depending on the clock-change). We refer to this model as rule-based triple seasonal 

HWT exponential smoothing (RB-HWT). 

In the above presented model, the index   accommodates the intraday seasonality for normal 

days, while   captures the intraweek seasonality for normal days, which remains after the 

intraday seasonality for normal days has been removed. The index   accommodates intrayear 

seasonality for normal days, after both the intraday and intraweek seasonality for only the normal 

days has been deducted. Moreover, for special days,   solely accommodates the intraday, 

intraweek, and intrayear seasonal effects on anomalous load. Given that special days occur 

annually, it is convenient to incorporate special day effects via the intrayear seasonal index. Note 
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that we update   at different rates for normal and special days, using smoothing parameters    

and   , respectively. This gives the model the flexibility, to be able to allow the impact of 

normal and special days to be different on the intrayear seasonal index. Furthermore, since   and 

  accommodate seasonal effects for only the normal days, we do not update these indices on 

special days. 

The HWT exponential smoothing method proposed by Arora and Taylor (2013) focusses on 

modeling anomalous load in terms of its deviation from normal load, using load for GB. 

Specifically, to model load for special days, their method employs the daily and weekly seasonal 

indices for normal days, and adjusts the anomalous load profile accordingly for special days 

using the annual seasonal index. This relies on the current and historical load profiles to exhibit 

similar deviation from normal load, for same day of the week, observed around the same date. 

However, using the French load, we find that this assumption does not hold true. Hence, instead 

of modeling anomalous load in terms of its deviation from normal load (as done by Arora and 

Taylor 2013), we model anomalous load as being completely separate from normal load. 

Specifically, we accommodate the triple seasonality for special days solely via the intrayear 

seasonal index. We find that this modification in the structure of the model led to a substantial 

improvement in its forecast accuracy, as presented in Section 6. 

The model parameters for RB-HWT are estimated by maximizing log likelihood over the 

estimation sample. The likelihood function assumes a Gaussian error, for which the variance is 

different on special days to that of normal days. Specifically, we use the following log likelihood 

(LL) function: 
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where   is the length of the estimation sample,     and     are the number of load observations 

that belong to normal and special days, respectively, excluding the observations from the first 

year. 

4.2. Rule-based SARMA 

As proposed by Arora and Taylor (2013), we consider the following rule-based adaptation of 

SARMA to model anomalous load: 
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where    denotes load;   is a constant;   denotes a lag operator;   
   

         
   and 

  
   

         
   are model errors for normal and special days, respectively. Moreover,   , 

   
and    

 are AR polynomial functions of order  ,    and   , while    ,    
 and    

 are MA 

polynomial functions of order  ,    and   , respectively. The functions   and   accommodate 

the intrayear seasonal effects for normal days; while   and   accommodate annual seasonality 

for special days. The function   is written as: 

 (      )       
         

        (       )     
        (       )   (    (       )) (9) 

where   ,    and    are constant coefficients. The functions  ,   and   can be represented using 

equation (9), with a difference that each function comprises of a different set of coefficients. We 

adopted the Box and Jenkins (1970) methodology to select polynomial function orders for AR 

and MA terms. We consider orders equal to or less than three. We refer to this method as RB-
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SARMA. We estimate the model parameters by maximizing the log likelihood function, using a 

Gaussian error with different variances for normal and special days, as we did for RB-HWT.  

4.3. Rule-based ANN 

ANNs have been widely used for modeling anomalous load (Srinivasan et al. 1995; 

Lamedica et al. 1996; Kim et al. 2000; Song et al. 2000; Arora and Taylor 2013). The advantage 

of using ANNs for load forecasting is that they are able to model the complex nonlinear 

relationships between load and weather variables in a nonparametric framework, i.e., without 

making strong prior assumptions about the true functional form of the data generating process. 

However, the disadvantage of using ANNs is that there is no well-established systematic 

approach, or a consensus among researchers, for choosing a suitable ANN architecture, namely, 

the number of inputs, hidden layers, and units within each hidden layer, for a given dataset.  

In this study, we employ a feed-forward ANN method with a single hidden layer and a single 

output, as employed by Arora and Taylor (2013). We pre-process the data prior to modeling, 

using a double differencing operator of the form               . We difference the output 

using this operator, and normalize it by subtracting the mean, and dividing by the standard 

deviation. The input comprises lagged load observations, differenced using the above operator, 

and normalized to have zero mean and unit standard deviation. As ANNs have been shown to be 

unsuitable for generating multi-step ahead forecasts (Atiya et al. 1999), we build a separate ANN 

model for each forecast horizon. We select the lags for input variables to be consistent with the 

SARMA model. Specifically, for the ANN built for horizon  , we use load at the forecast origin, 

and at the following lags:  ,  ,     ,      ,      ,     ,      ,      , 

            ,                       , and                

       , where       denotes the magnitude of the intrayear cycle length defined at the 
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period  . The value of       is selected using a rule-based approach for special days, as done 

earlier for RB-HWT and RB-SARMA.  

We use a sigmoid activation function that nonlinearly maps the inputs to the units in the 

hidden layer. For mapping the values in the units of the hidden layer to the output, we use a 

linear activation function. We estimate the link weights by minimizing the one-step ahead sum of 

squared errors (SSE), and employ regularization parameters, which prevent the network weights 

from becoming too large (Bishop, 1997). We employ the backpropagation algorithm with 

learning rate   and momentum parameter  . The parameter   determines how fast or slow the 

weights change with respect to the output error. The parameter   gives more weight to the more 

recent network weights, and is similar to the smoothing parameter used in the exponential 

smoothing methods. We estimate the model parameters using cross-validation, employing a 

hold-out sample corresponding to the last one year of the estimation sample. We refer to this 

method as RB-ANN. 

4.4. Rule-based Intraweek & Intraday SVD based exponential smoothing 

Statistical methods based on dimension reduction have been employed for forecasting a 

range of intraday time series (see, for example, Shen and Huang 2005, 2008a, 2008b; Taylor 

2006; 2010b; 2012). The rationale of employing dimension reduction techniques in conjunction 

with statistical models is to identify and forecast only those components which capture a major 

proportion of variance in the time series. This allows for a reduction in the dimensionality of the 

model to be considered.  

In this study, we employ the intraweek singular value decomposition (SVD) based method 

proposed by Arora and Taylor (2013). As done with RB-HWT, we modify the SVD method of 
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Arora and Taylor (2013) to model anomalous load as being completely separate from normal 

load. We refer to this method as the rule-based modified intraweek SVD based exponential 

smoothing method, denoted as RB-IW-SVD.  

Moreover, we propose a rule-based modified intraday SVD based exponential smoothing 

method, referred to as RB-ID-SVD. The RB-ID-SVD method extends the SVD based method 

proposed by Taylor (2010b), to model both normal and anomalous load in a unified framework. 

Based on the similarity in the average intraday cycle for different days of the week (as shown in 

Figure 2), this method treats a week as consisting of five distinct intraday cycle types. 

Specifically, the RB-ID-SVD method assumes Tuesday, Wednesday and Thursday to have a 

common intraday cycle, whereas Monday, Friday, Saturday and Sunday are each assumed to 

have a distinct intraday cycle. The advantage of RB-ID-SVD is that it uses a single model to 

update the interday feature series (also referred to as principal components), as opposed to 

building separate time series models for the feature series, as done by Shen and Huang (2005, 

2008a, 2008b), for details, see Taylor (2010b). 

As opposed to RB-ID-HWT, which utilizes the similarity between different periods in the 

intraday cycle, RB-IW-HWT achieves dimension reduction by exploiting the similarity between 

different periods in the intraweek cycle. A limitation of the RB-ID-SVD method is that it 

requires the initialization and updating of five different interday feature series for different days 

of the week. On the contrary, RB-IW-SVD employs a single interweek feature series for all days 

of the week, resulting in a much simpler model. The model parameters for RB-IW-SVD and RB-

ID-SVD were estimated using the maximum likelihood procedure as used for RB-HWT. 
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5. Rule Formulation 

This section formulates a rule based on subjective judgment. The sole purpose of the 

proposed rule is to determine the value of the intrayear cycle length,      , in the formulation of 

the models considered in this study. Using the estimation data, we identified four distinct 

features that have a unique impact on anomalous load. These are the special day type, the period 

of day, the day of week, and the time of year. For a given special day, the anomalous load profile 

is treated as a function of the above features.  

The rationale of this rule is to treat weekdays as having a different impact on anomalous 

load, in comparison to weekends, and allow each special day to have a unique profile. This rule 

is based on the observation that the average intraday load profile for weekends is substantially 

lower compared to weekdays (as shown in Figure 2), and that different special days exhibit 

different profiles (as shown in Figure 4).  

During the modeling, this rule requires that the current and historical anomalous load 

observations belong either to a weekday, or a weekend. As an example, consider Boxing Day (26 

December) in 2009, which fell on a Saturday. Using this rule,       is selected so as to include 

observations belonging to the most recent occurrence of a Boxing Day, which also fell on a 

weekend. Hence, this rule refers to Boxing Day in 2004, which was a Sunday. Specifically, for 

all periods belonging to Boxing Day in 2009, this rule sets                     . 

Similarly, to model load for New Year’s Day (1 January) in 2009, which fell on a Friday, this 

rule refers to New Year’s Day in 2008, which fell on a Thursday, as both special days occur on a 

weekday. Hence, for all periods belonging to New Year’s Day in 2009, we set       

      . This rule takes into account the inclusion of additional observations due to leap years. 
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Several researchers have incorporated proximity day effects while modeling anomalous load 

(see, for example, Engle 1982; Ramanathan et al. 1997, Pardo et al. 2002; Dordonnat et al. 2008; 

Kim 2013; Arora and Taylor 2013). The day which either precedes or follows a special day is 

defined as a proximity day. Due to special day effects, load on proximity days tends to be lower 

than normal load for same day of the week (around the same date), but higher than 

corresponding special day. In Figure 6, we plot load for a Christmas Day (25 December), a 

proximity day (24 December, Wednesday) that precedes the Christmas Day, and a corresponding 

normal day from the previous week (17 December, Wednesday), all observed in the year 2008. It 

is evident from the figure that load on the proximity day is noticeably lower than normal load, 

but considerably higher than anomalous load.  

 

Figure 6— Load profile for a normal day (17
 
December, Wednesday), proximity day (24 

December, Wednesday), and a special day (25 December, Christmas Day, Thursday), all 

observed in the year 2008. 

We denote proximity days using the notation PD. For the one year post-sample period (i.e. 
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Day), b) 22 May (the day following Ascension Day), and c) 13 July (the day before Bastille 

Day). Moreover, days within the Christmas period, which either precede a Christmas Day (i.e. 21 

December to 24 December, inclusive), or follow a Boxing Day (i.e. 27 December to 30 

December, inclusive), are also treated as PDs. To appropriately accommodate the impact of 

special days on PDs, we treat PDs which follow a special day, as being different from PDs 

which precede a special day. For example, consider 24 December 2009 (Thursday), which is a 

PD preceding a Christmas Day. To model load for this day, we set             , so that 

we refer to 24 December 2008 (Wednesday), as both PD precede a Christmas Day, and fall on a 

weekday.  

In this study, we also accommodate bridging day effects (see, for example, Dordonnat et al. 

2008; Arora and Taylor 2013). A bridging day is defined as a proximity day which occurs 

between a special day and a weekend. Load on PD tends to be lowered further if it is a bridging 

day. Specifically, a Monday preceding a special day, or a Friday following a special day, is 

defined as a bridging day. Otherwise, it is defined as a non-bridging day. We denote bridging 

proximity days using the notation B-PD, while non-bridging proximity days are referred to as 

NB-PD. We treat B-PD as being separate from a NB-PD. Moreover, B-PD which precede a 

special day, are treated as being different from B-PD which follow a special day. This allows us 

to appropriately accommodate the impact of special days and weekends on proximity days. For 

example, consider 2 January in 2009, which occurred on a Friday. We treat this day as a B-PD, 

as it occurs between New Year’s Day and weekend. Hence, for all periods on 2 January in 2009, 

we set                        , so that the model refers to observations from 2 

January in 2004 (Friday), as both PD follow a special day, and belong to the class of B-PD. In 
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cases where the magnitude of       tends to be larger than the total number of historical 

observations using this rule, we simply refer to the same special day from last year. 

Using this rule, we identified seven different categories of special day. During the modeling, 

we ensure that both current and historical special day belongs to the same category. Specifically, 

for a given special day, we select       such that both    and          adheres to one of the 

following categories:   

Category A: Basic special days (national and public holidays) that occur on a weekday.  

Category B: Basic special days that occurs on a weekend. 

Category C: Bridging proximity days that precede a special day. 

Category D: Bridging proximity days that follow a special day. 

Category E: Non-bridging proximity days that precede a special day and occur on a weekday. 

Category F: Non-bridging proximity days that follow a special day and occur on a weekend. 

Category G: Non-bridging proximity days that follow a special day and occur on a weekday. 

The category applicable for each special day is specified in Table 1. Note that each special 

day can be recognized as belonging to one of the seven categories. Specifically, Table 1 presents 

the complete list of special days observed in the one year post-sample period. For each special 

day observed in 2009, this table presents the corresponding category, which characterizes the 

special day under consideration. The table also presents the corresponding historical special day, 

whose observations are included in the model to generate forecasts. Note that for a given special 

day, we include observations from only one historical special day during the modeling. These 

categories can be easily adapted to model anomalous load observations belonging to different 

datasets. Moreover, this rule is flexible enough to adapt with the inclusion of additional new 

observations in the model. 



25 
 

      TABLE 1:  LIST OF SPECIAL DAYS IN FRANCE OBSERVED IN 2009, AND THE     

      CORRESPONDING HISTORICAL SPECIAL DAY REFERRED TO USING THE 

FORMULALTED RULE. 
______________________________________________________________________________ 
______________________________________________________________________________ 

Current Special Day Type : 
*
Day of the Week

 
Date 

(Current Special day) 

 Previous Special Day 

 Referred to via       

    Date  

(Prev. Special day) 

______________________________________________________________________________________ 

Basic special days that occur on a weekday (Category A).  
     

New Year's Day : Th. 01/01/2009 New Year's Day : Tu. 01/01/2008 

Easter Monday : M. 13/04/2009 Easter Monday : M. 24/03/2008 

Labor Day : F. 01/05/2009 Labor Day : Th. 01/05/2008 

WWII Victory Day : F. 08/05/2009 WWII Victory Day : Th. 08/05/2008 
         **

Ascension Day : Th. 21/05/2009 Ascension Day : Th. 17/05/2007 

Whit Monday : M. 01/06/2009 Whit Monday : M. 12/05/2008 

Bastille Day : Tu. 14/07/2009 Bastille Day : M. 14/07/2008 

Remembrance Day : W. 11/11/2009 Remembrance Day : Tu. 11/11/2008 

Christmas Day : F. 25/12/2009 Christmas Day : Th. 25/12/2008 

New Year’s Eve : Th. 31/12/2009 New Year’s Eve : W. 31/12/2008 

 
 

Basic special days that occur on a weekend (Category B). 
 

Virgin Mary Day : Sa. 15/08/2009 Virgin Mary Day : F. 15/08/2008 

All Saints Day : Su. 01/11/2009 All Saints Day : Sa. 01/11/2008 

Boxing Day : Sa. 26/12/2009 Boxing Day : Su. 26/12/2004 

______________________________________________________________________________________ 

Bridging proximity days that precede a special day (Category C). 
 

Day before Bastille Day : M. 13/07/2009 Day before Bastille Day : F. 15/07/2005 

______________________________________________________________________________________ 

Bridging proximity days that follow a special day (Category D). 
 

Day after New Year's : F. 02/01/2009 Day after New Year's : F. 02/01/2004 

Day after Ascension : F. 22/05/2009 Day after Ascension : F. 18/05/2007 

______________________________________________________________________________________ 

Non-bridging proximity days that precede a special day and occur on a weekday (Category E). 
 

Christmas Week : M. 21/12/2009 Christmas Week : M. 22/12/2008 

Christmas Week : Tu. 22/12/2009 Christmas Week : M. 22/12/2008 

Christmas Week : W. 23/12/2009 Christmas Week : Tu. 23/12/2008 

Christmas Week : Th. 24/12/2009 Christmas Week : W. 24/12/2008 

______________________________________________________________________________________ 

Non-bridging proximity days that follow a special day and occur on a weekend (Category F). 
 

Christmas Week : Su. 27/12/2009 Christmas Week : Sa. 30/12/2006 

______________________________________________________________________________________ 

Non-bridging proximity days that follow a special day and occur on a weekday (Category G). 
 

Christmas Week : M. 28/12/2009 Christmas Week : M. 29/12/2008 

Christmas Week : Tu. 29/12/2009 Christmas Week : M. 29/12/2008 

Christmas Week : W. 30/12/2009 Christmas Week : Tu. 30/12/2008 

______________________________________________________________________________ 
*  

The seven days of the week are denoted by M. (Monday), Tu. (Tuesday), W. (Wednesday), Th. (Thursday), F. 

(Friday), Sa. (Saturday) and Su. (Sunday).  
**  

Ascension Day in 2008 occurred on the same day as Labor day (1 May 2008), hence, while modeling load for this 

special day in 2009, we refer to the profile of Ascension Day in 2007 in order to avoid any discrepancy.  
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6. Empirical Comparison 

We provide an empirical comparison of the different methods considered in this study based 

on an evaluation of their post-sample point and density forecast accuracy. Specifically, we 

compare the original version and corresponding rule-based adaptations of the different univariate 

methods presented in Section 4, along with a range of simple benchmarks. To evaluate point 

forecasts, we use the Mean Absolute Percentage Error (MAPE) and Root Mean Squared 

Percentage Error (RMPSE) given by: 
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where       and        denote the MAPE and RMSPE at forecast horizon  , respectively, 

whereby    is the actual load,  ̂  is the corresponding forecast,   is the forecast origin and   is 

the length of the time series. The relative model rankings were similar for the two measures; 

hence, we present results using only the MAPE in this paper.  

In order to evaluate the density forecast performance, we use the Continuous Ranked 

Probability Score (CRPS), see Gneiting et al. (2007). Note that the CRPS can be viewed as the 

distributional analogue of the Mean Absolute Error (MAE), and is defined as follows: 

      ∫              
 

  

     

 

(12) 

where   is the actual observation, and   denotes an indicator function. The empirical form of 

CRPS, as given by Gneiting and Raftery (2007), is represented as: 
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where   and    are independent samples drawn from the forecasts density function, each having 

the same distribution  ,    is the expectation with respect to the distribution  . We use equation 

(13) to estimate the CRPS as it is relatively convenient to compute compared to equation (12). 

Note that for     , i.e. when   reduces to a point forecast, CRPS is same as the MAE. 

In this study, we evaluate the original and rule-based adaptations of the HWT exponential 

smoothing method, SARMA, and the ANN method. Note that the original versions of the 

univariate methods considered in this study do not incorporate any prior knowledge in the 

modeling framework using the formulated rule. This amounts to treating special days as normal 

days during the modeling process. Regarding parameter estimates, for the original HWT 

exponential smoothing, we estimated   = 0,   = 0.3517,   = 0.0201,   = 0.1048 and   = 0.9940, 

while for RB-HWT, we estimated   = 0.0057,   = 0.0889,   = 0.0097,    = 0.4661,    = 0.3876 

and   = 0.9872. For both original and the rule-based ANN, we obtained   = 0.1,   = 0.9, number 

of hidden units   = 30, and regularization parameters to be 0.001. For original SARMA, we 

estimated the following model: 

                                                               

                                                          

                                                            

                                               

(14) 

where            ,             (       ), and             (  

  (       )). Moreover, we estimated the following RB-SARMA method: 
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In Figure 7, we present the MAPE across special days for the original and rule-based 

adaptations of the HWT exponential smoothing method, SARMA, and the ANN method. It is 

interesting to see that all the rule-based methods are noticeably more accurate than their 

corresponding original counterparts, at nearly all horizons. The most accurate method is RB-

SARMA, while RB-HWT is the second most accurate method overall. However, the worst 

performing rule-based method is RB-ANN. The poor performance of RN-ANN can potentially 

be attributed to the absence of strong nonlinearity in the structure of the time series. Moreover, 

following Taylor et al. (2006), we incorporated an error correction model within the RB-ANN 

modeling framework. Specifically, if       denote the   step ahead forecast error, having 

corresponding forecast origin denoted by  , the error correction model is represented as       

          . The error correction parameter    is estimated separately for each horizon, using 

ordinary least squares regression, employing only the cross-validation hold out sample 

(corresponding to last one year of the estimation sample). However, using the error correction 

term did not lead to a noticeable improvement in the post-sample forecast accuracy of the RB-

ANN method. Hence, results for this case are not presented here. Moreover, the RB-ID-SVD and 
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RB-IW-SVD methods were not competitive with the other univariate methods, and hence, for the 

sake of conciseness, we do not present results for these methods in this study.  

 

Figure 7— MAPE across special days for the original and rule-adaptations of the HWT 

exponential smoothing method, SARMA and the ANN method.  

 

In addition to the rule-based methods, we consider the following five simple benchmarks, 

whereby to model load for a given special day, we use: 

1. Recent Sunday – load observed on the most recent Sunday. This benchmark was 

employed by Smith (2000). 

2. Seasonal random walk (SRW) – load observed on the same special day in the last year. 

3. SRW for same day of the week (SRW-D) – historical load observed on the same special 
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4. Rule-based SRW (RB-SRW) – historical load observed on the same special day, such 

that both current and previous special day belong either to a weekday, or a weekend. This 

benchmark is based on the rule formulated in Section 5.  

5. SRW for same intraday cycle (IC-SRW) – historical load observed on the same special 

day, such that both current and previous special day have the same intraday cycle. This 

benchmark treats a week as consisting of five distinct intraday cycle types, as done for 

the RB-ID-SVD exponential smoothing method, as discussed in Section 4.4.  

For the five simple benchmarks discussed above, the MAPE values across special days are 

consistently higher than 10% (and lower than 12%), at all horizons considered in this study. The 

best performing benchmark is RB-SRW, whereas, recent Sunday and SRW are the two worst 

performing benchmarks. The forecast performance of the original and rule-based adaptations of 

the univariate methods is significantly superior to the simple benchmarks. The MAPE values for 

RB-SARMA are about one-third compared to the simple benchmarks. Since the simple 

benchmarks are not competitive with the rule-based methods, we do not present results for this 

case in this paper. 

In Figure 8, we present the MAPE across special days for the best performing methods from 

Figure 7 (RB-HWT and RB-SARMA), plotted against different times of the day. Figure 8a 

presents the MAPE for six-hour ahead forecast, while Figure 8b shows the MAPE for one-day 

ahead forecast. As expected, the large MAPE values correspond to periods of the day when load 

changed by a relatively large amount. 
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Figure 8— MAPE across special days, using RB-HWT and RB-SARMA, plotted against 

different time of the day, for forecast horizon equal to: a) six-hour, and b) one-day.  

 

 

Figure 9— MAPE average across all days for the original and rule-adaptations of the HWT 

exponential smoothing, SARMA and ANN method.  
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In Figure 9, we evaluate the methods considered in Figure 8 across all days in the post-

sample dataset, i.e. across both normal and special days. It is interesting to see that the overall 

performance of the rule-based methods is better than their original counterparts. Moreover, RB-

SARMA is considerably more accurate than original SARMA at all forecast horizons. It is 

reassuring to see from this figure that placing emphasis on special days during the modeling 

results in an improvement in the model’s overall performance across all days. 

To evaluate density forecast accuracy, in Figure 10, we present the CRPS values across 

special days for RB-HWT and RB-SARMA. We generated density forecasts using Monte Carlo 

simulations, whereby for each forecast origin, we used 1000 iterations. It is evident from Figure 

10, that RB-SARMA is considerably more accurate than RB-HWT, across both normal and 

special days. The model rankings based on the CRPS are consistent with the earlier rankings 

obtained using the MAPE.  

 

Figure 10— CRPS values for RB-HWT and RB-SARMA averaged across: a) special days, and 

b) all days. Note that the lower CRPS values are better. 
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Figure 11— Density forecast generated using RB-SARMA, plotted for forecast horizon 

corresponding to: a) six-hour, and b) one-day. Note that point forecasts correspond to the median 

of the predicted density.  
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forecast distribution. As expected, the uncertainty associated with the one-day ahead forecast is 

much higher compared to the six-hour ahead forecasts. Interestingly, RB-SARMA appropriately 

identifies different day types in the dataset, and adequately models the load profiles for a 

weekend (12 July, Sunday), bridging proximity day (13 July, Monday), special day (14 July, 

Bastille Day), and a normal day (15 July, Wednesday), using a unified modeling framework. 

 

 

Figure 12— Average MAPE for each individual special day using the RB-SARMA method, and 

corresponding standard deviation (shown as error bar), plotted for forecast horizon 

corresponding to: a) six-hour, and b) one-day.  
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In Figure 12, we plot the MAPE across each individual special day, using RB-SARMA. Note 

that there are twenty four special days in the one year post-sample data. Specifically, we 

compute the MAPE associated with each of the 1000 iterations (used in Monte Carlo 

simulations), for each special day, and report the average MAPE (and corresponding standard 

deviation). Figure 12a shows MAPEs for six-hour ahead forecast, while Figure 12b presents 

MAPEs for one-day ahead forecast.  

 

7. Summary and Concluding Remarks 

In this paper, we presented a case study on load forecasting for France, with emphasis on 

special days. We adapted the rule-based methods proposed by Arora and Taylor (2013), and 

provided an empirical comparison of different methods based on an evaluation of their point and 

density forecast accuracy. It is noteworthy that previous studies have either ignored special days 

in the modeling, or focused only on evaluating point forecasts for anomalous load. We 

investigated the original versions and corresponding rule-based adaptations of five different 

univariate methods, and five simple benchmarks. Overall, we found that RB-SARMA generated 

the most accurate forecasts. Interestingly, across special days, the error obtained using RB-

SARMA was about one-third compared to the simple benchmarks, and about half compared to 

the original SARMA method, which was not rule-based. The conclusions of our study are 

consistent with the recent findings of Kim (2013) and Arora and Taylor (2013), who report that 

SARMA outperforms methods based on exponential smoothing for anomalous load forecasting. 

As opposed to some of the previous approaches, which employ different models for normal 

and special days, the rule-based methods investigated in this study model load for all days in a 

unified and coherent framework. This modeling approach makes the task of generating multistep 
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density forecasts relatively straightforward, which potentially paves the way forward the 

methods employed in this study to be used to generate real time online forecasts in an automated 

framework.  

An interesting and potentially useful line of future work would be to combine load density 

forecasts from different models, or adaptively switch between different models based on either 

the time of day, or the special day under consideration. This would amount to using a different 

model for different time of the day, or different special days. Moreover, it would be worth 

investigating the efficacy of the rule-based methods employed in this study, to forecast time 

series from other applications which exhibit seasonality, and where anomalous conditions pose 

considerable modeling challenges. Some such examples include time series for call centre 

arrivals, hospital admissions, cash withdrawals at ATMs, water usage, and transportation counts. 

For future work, as opposed to using SVD, it would be worth employing the wavelet transform 

(Daubechies, 1992) and independent component analysis (Comon, 1994) as a tool for dimension 

reduction for the load data. Furthermore, for horizons longer than a day, and in cases where 

weather predictions may be easily available, it would be interesting to extend the proposed 

univariate methods, to also include weather variables as additional explanatory variables, and 

employ dimension reduction techniques to select only the most relevant variables in the new 

feature space during the modeling of load data.  
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