
Forecasting European Industrial Production with
Multivariate Singular Spectrum Analysis

Anatoly Zhigljavskya∗, Hossein Hassania, and Saeed Heravib
aCentre for Optimisation and Its Applications, Cardiff School of Mathematics, CF24 4AG

bCardiff Business School, Cardiff University, CF10 3EU, UK.

Abstract

In recent years the Singular Spectrum Analysis (SSA) technique, used as a pow-
erful technique in time series analysis, has been developed and applied to many
practical problems. The aim of this research is to develop theoretical and method-
ological aspects of the multivariate SSA (MSSA) technique and to demonstrate that
MSSA can also be considered as a powerful method of time series analysis and fore-
casting. We use the UK Industrial Production series to illustrate the main findings.
The performance of the SSA technique is assessed by applying it to eight series
measuring the monthly seasonally unadjusted industrial production for the main
sectors of the UK economy. The results are compared with those obtained using
the ARIMA and VAR models.

We also develop the concept of casual relationship between two time series based
on the SSA techniques. We introduce several criteria which characterize this causal-
ity. The criteria are based on the forecasting accuracy and the predictability of the
direction of change. The performance of the proposed tests is examined using the
same data, the UK industrial production series.
Keywords: Singular Spectrum Analysis, Forecasting, Causality, The UK industrial
production series.

1 Introduction

Econometric methods have been widely used to forecast the evolution of quarterly and
yearly national account data. However, many of the structural or time series forecasting
models have failed to accurately predict economic time series. This is due to technological
advances, change in government policies and also change in consumer preferences. These
shocks cause structural changes in these time series making them nonstationary. Develop-
ment of a methodology which is robust under these changes is of paramount importance
in accurate prediction of macroeconomic time series.

There are several reasons that classical model does not have a good performance for
modelling and forecasting economic and financial time series. First, an economic model
that has been established to have validity in explaining a relationship under one set of
assumptions is useless if the assumptions are not valid. Model assumptions include not
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only those that can be expressed as predicates on model parameters but others with more
qualitative or asymptotic form (for more information see [1]).

Moreover, many structural econometric and time series models devised for forecasting
macroeconomic time series are based on restrictive assumptions of normality and linearity
of the observed data. The methods that do not depend on these assumptions could be
very useful for modelling and forecasting economics data. On the other hand classical
methods of forecasting such as ARIMA type models are based on the assumption such as
stationarity of the series and normality of residuals (see, for example, [2], [3] and references
therein) .

Additionally, some of the previous research have considered economic and financial
time series as deterministic, linear dynamical systems. In this case, the linear models
can be used for modelling and forecasting. However, many financial time series exhibit
nonlinear behavior (see, for example, [4, 5, 6, 7]); and therefore, we should use nonlinear
methods. In addition a method that works well for both linear and nonlinear, station-
ary and non stationary time series is ideal for modelling and forecasting the real time
series data. The Singular Spectrum Analysis (SSA) in a technique that is free from all
these assumptions. The SSA technique is a nonparametric technique of time series anal-
ysis incorporating the elements of classical time series analysis, multivariate statistics,
multivariate geometry, dynamical systems and signal processing[8]. Note also that SSA
naturally incorporates the filtering of the series and the SVD.

The basic SSA method consists of two complementary stages: decomposition and
reconstruction; both stages include two separate steps. At the first stage we decompose the
series and at the second stage we reconstruct the original series and use the reconstructed
series for forecasting new data points. The main concept in studying the properties of
SSA is ‘separability’, which characterizes how well different components can be separated
from each other. The absence of approximate separability is often observed in series with
complex structure. For these series and series with special structure, there are different
ways of modifying SSA leading to different versions such as SSA with single and double
centering, Toeplitz SSA, and sequential SSA [8].

It is worth noting that although some probabilistic and statistical concepts are em-
ployed in the SSA-based methods, we do not have to make any statistical assumptions
such as stationarity of the series or normality of the residuals. SSA is a very useful tool
which can be used for solving the following problems:

finding trends of different resolution;
smoothing;
extraction of seasonality components;
simultaneous extraction of cycles with small and large periods;
extraction of periodicities with varying amplitudes;
simultaneous extraction of complex trends and periodicities;
finding structure in short time series.

Solving all these problems correspond to the so-called basic capabilities of SSA. In
addition, the method has several essential extensions. First, the multivariate version of
the method permits the simultaneous expansion of several time series; see, for example
[10]. Second, the SSA ideas lead to several forecasting procedures for time series; see
[8, 10]. Also, the same ideas are used in [8] and [14] for change-point detection in time
series. For comparison with classical methods, ARIMA, ARAR algorithm and Holt-
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Winter, see [15] and [16], and for comparison between multivariate SSA and VAR model
see [17]. For automatic methods of identification within the SSA framework see [18] and
for recent work in ‘Caterpillar’-SSA software as well as new developments see [19]. A
family of causality tests based on the SSA technique has also been considered in [20].

In the area of nonlinear time series analysis SSA was considered as a technique that
could compete with more standard methods. There are a number of research that con-
sidered SSA as a filtering method in (see, for example, [21] and references therein). In
another research, the noise information extracted using the SSA technique, has been used
as a biomedical diagnostic test [22]. The SSA technique also used as a filtering method
for longitudinal measurements. It has been shown that noise reduction is important for
curve fitting in growth curve models, and that SSA can be employed as a powerful tool
for noise reduction for longitudinal measurements [23].

The monthly industrial production indices for the UK, have been previously analysed
in linear and nonlinear contexts in [16], [24] and [25]. The eight series examined for the
UK, are interesting and important since they ranging from traditional industrial sections
(Basic metals) to Food and Electricity and Gas. These eight time series contribute for at
least 50% to the aggregate industrial production in the UK economics.

Osborn et al. [24] have considered the extent and nature of seasonality in these series.
Seasonality accounts for at least 80% of variation in all series (except vehicles) in the
UK. In our recent research [16], we used Singular Spectrum Analysis (SSA), ARIMA and
Holt-Winter methods for forecasting seasonally unadjusted monthly data on industrial
production indicators in Germany, France and the UK. We have demonstrated that SSA
is a very powerful tool for analyzing and predicting these series. The SSA technique
decomposes the original time series into a sum of small number of independent and in-
terpretable components such as slowly varying trend, oscillatory components and noise.
Theoretical and practical foundations of the SSA technique can be found in [8].

Hassani et al. [16] showed that the quality of 1-step ahead forecasts are similar for
ARIMA and SSA; Holt-Winter forecasts being slightly worse. The quality of SSA forecasts
at horizons h = 3, 6 and 12 is much better than the quality of ARIMA and Holt-Winter
forecasts. As h increases, the quality of ARIMA and Holt-Winter forecasts becomes worse.
Also the standard deviation of the ARIMA and Holt-Winter forecasts increases almost
linearly with h. The situation is totally different for the SSA forecasts: the quality of
SSA forecasts is almost independent of the value of h (for the values of h considered in
our research).

Another important aspect of the SSA (which can be very useful in economics) is that,
unlike many other methods, it works well even for small sample size (see, for example,
[12] and [15]). We found that SSA works well for small sample sizes, as for the UK with
the sample size of 84 observations [16].

Hassani et al. [16] also showed that three methods perform similarly well in predicting
the direction of change for small h. However, SSA outperforms the Holt-Winter and
ARIMA models at longer horizons and hence can be considered as a reliable method for
predicting recessions and expansions.

The present project aims to predict the monthly industrial production indices for the
UK using multivariate singular spectrum analysis (MSSA). Here we develop the method-
ology of forecasting these series based on MSSA. Preliminary results indicate that the
SSA can further improve the results of univariate SSA for the these series. The quality of
MSSA forecasts can be higher when the analysed series are interdependent and therefore
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highly correlated. We also use MSSA to investigate the causality among these series. As
these series are non-stationary and non-linear, we use nonlinear correlation which is based
on the Mutual information introduced in [26] and [27], and has also been used in [21].

We are motivated to use SSA because of its capability in dealing with non-stationary
series. Given that the dynamics of some industrial production series has gone through
structural changes during the time period under consideration, one needs to make sure that
the method of prediction is not sensitive to the dynamical changes. Moreover, contrary to
the traditional methods of time series forecasting (both autoregressive or structural models
that assume normality and stationarity of the series), SSA method is non-parametric and
makes no prior assumptions about the data. The data considered in this study has
a complex structure of this kind; as a consequence, we found superiority of SSA over
classical techniques. Additionally, SSA method decomposes a series into its component
parts, and reconstruct the series without including the random (noise) component.

The structure of this report is as follows. A brief introduction of the SSA method
is represented in Section 2. The descriptive statistics of the series and the results of
various tests (such as normality, nonlinearity, stationarity) are presented in Section 3.
The performance of ARIMA, SSA, MSSA and VAR is considered in Section 4. A new
casuality test based on the SSA technique is introduced in Section 5. Finally, Section 6
presents a summary of the study and some concluding remarks.

2 Singular Spectrum Analysis

The main purpose of SSA is to decompose the original series into a sum of series, so that
each component in this sum can be identified as either a trend, periodic or quasi-periodic
component (perhaps, amplitude-modulated), or noise. This is followed by a reconstruction
of the original series. The Basic SSA technique is performed in two stages, both of which
include two separate steps as follows:





Stage 1 : Decomposition

{
Step 1 : Embedding
Step 2 : Singular Value Decomposition (SVD)

Stage 2 : Reconstruction

{
Step 1 : Grouping
Step 2 : Diagonal Averaging

A short description of the SSA technique is given as follows (for more information see
[8]).

2.1 Decomposition

1st step: Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional time se-
ries YT = (y1, . . . , yT ) into the multidimensional series X1, . . . , XK with vectors Xi =
(yi, . . . , yi+L−1)

T ∈ RL , where K = T − L +1. Vectors Xi are called L-lagged vectors
(or, simply, lagged vectors). The single parameter of the embedding is the window length
L, an integer such that 2 ≤ L ≤ T . The window length L should be sufficiently large.
The result of this step is the trajectory matrix X = [X1, . . . , XK ] = (xij)

L,K
i,j=1. Note that

the trajectory matrix X is a Hankel matrix, which means that all the elements along the
diagonal i + j = const are equal.
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2nd step: Singular Value Decomposition (SVD)

The second step, the SVD step, makes the singular value decomposition of the trajectory
matrix and represents it as a sum of rank-one bi-orthogonal elementary matrices. Denote
by λ1, . . . , λL the eigenvalues of XXT in decreasing order of magnitude (λ1 ≥ . . . λL ≥ 0)
and by U1, . . . , UL the orthonormal system of the eigenvectors of the matrix XXT corre-
sponding to these eigenvalues. Set

d = max(i, such that λi > 0) = rank X.

If we denote Vi = XT Ui/
√

λi, then the SVD of the trajectory matrix can be written as:

X = X1 + · · ·+ Xd, (1)

where Xi =
√

λiUiVi
T .

SVD (1) is optimal in the sense that among all the matrices X(r) of rank r < d,
the matrix

∑r
i=1 Xi provides the best approximation to the trajectory matrix X, so that

‖ X− X(r) ‖ is minimum. Here the norm of a matrix Y is defined as
√
〈Y,Y〉, where the

scalar product of two matrices Y = (yij)
q,s
i,j=1 and Z = (zij)

q,s
i,j=1 is 〈Y,Z〉 =

∑q,s
i,j=1 yijzij.

Note that ‖ X ‖2 =
∑d

i=1 λi and ‖ Xi ‖2 = λi for i = 1, . . . , d. Thus, we can consider the

ratio λi/
∑d

i=1 λi as the characteristic of the contribution of the matrix Xi to expansion

(1). Consequently,
∑r

i=1 λi/
∑d

i=1 λi, the sum of the first r ratios, is the characteristic of
the optimal approximation of the trajectory matrix by the matrices of rank r .

2.2 Reconstruction

1st Step: Grouping

The grouping step corresponds to splitting the elementary matrices into several groups
and summing the matrices within each group. Let I = {i1, . . . , ip} be a group of indices
i1, . . . , ip. Then the matrix XI corresponding to the group I is defined as XI = Xi1 +
· · · + Xip . The spilt of the set of indices J = {1, . . . , d} into disjoint subsets I1, . . . , Im

corresponds to the representation

X = XI1 + · · ·+ XIm . (2)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping. For a
given group I the contribution of the component XI in the expansion (2) is measured by
the share of the corresponding eigenvalues:

∑
i∈I λi/

∑d
i=1 λi.

2nd Step: Diagonal averaging

The purpose of diagonal averaging is to transform a matrix to the form of a Hankel matrix
which can be subsequently converted to a time series. If zij stands for an element of a
matrix Z, then the k -th term of the resulting series is obtained by averaging zij over all
i, j such that i + j = k + 1. This procedure is called diagonal averaging, or Hankelization
of the matrix Z. The result of the Hankelization of a matrix Z is the Hankel matrix HZ.
Note that the Hankelization is an optimal procedure in the sense that the matrix HZ
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is the nearest to Z (with respect to the matrix norm) among all Hankel matrices of the
corresponding size (see [8], Sect. 6.2). In its turn, the Hankel matrix HZ uniquely defines
the series by relating the value in the diagonals to the values in the series.

By applying the Hankelization procedure to all matrix components of (2), we obtain

another expansion X = X̃I1 + . . . + X̃Im , where X̃I1 = HX. This is equivalent to the

decomposition of the initial series YT = (y1, . . . , yT ) into a sum of m series; yt =
∑m

k=1 ỹ
(k)
t ,

where Ỹ
(k)
T = (ỹ

(k)
1 , . . . , ỹ

(k)
T ) corresponds to the matrix XIk

. A sensible grouping leads to
the decomposition (1) where the resultant matrices XIk

are almost Hankel ones.

2.3 Forecasting Algorithm

Let us now describe the SSA forecasting algorithm (for more information see [8]):

Algorithm input:
(a) Time series YT = (y1, . . . , yT ).
(b) Window length L, 1 < L < T .
(c) Linear Space Lr ⊂ RL of dimension r < L. It is assumed that eL /∈ Lr, where

eL = (0, 0, . . . , 1) ∈ RL.
(d) Number M of points to forecast.

Notations and comments:
(a) X = [X1, . . . , XK ] is the trajectory matrix of the time series YT .
(b) P1, . . . , Pr is an orthonormal basis in Lr.

(c) X̂ = [X̂1 : . . . : X̂K ] =
∑r

i=1 PiP
T
i X. The vector X̂i is the orthogonal projection of

Xi onto the space Lr.
(d) X̃ = HX = [X̃1 : . . . : X̃K ] is the result of the Hankellization of the matrix X̂.
(e) For any vector Y ∈ RL we denote by YM ∈ RL−1 the vector consisting of the last

L − 1 components of the vector Y , while Y O ∈ RL−1 is the vector of the first L − 1
components of the vector Y .

(f) We set v2 = π2
1 + . . . + π2

r , where πi is the last component of the vector Pi (i =
1, . . . , r).

(g) Suppose that eL /∈ Lr(This implies that Lr is not a vertical space). Then v2 < 1.
It can be proved that the last component yL of any vector Y = (y1, . . . , yL)T ∈ Lr is a
linear combination of the first components (y1, . . . , yL−1) :

yL = a1yL−1 + . . . + aL−1y1.

Vector A = (a1, . . . , aL−1) can be expressed as

A =
1

1− v2

r∑
i=1

πiP
O
i

and dose not depend on the choice of a basis P1, . . . , Pr in the linear space Lr. In the
above notations, define the time series YT+M = (y1, . . . , yT+M) by the formula

yi =

{
ỹi for i = 1, . . . , T∑L−1

j=1 ajyi−j for i = T + 1, . . . , T + M
(3)
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The numbers yT+1, . . . , yT+M from the M terms of the SSA recurrent forecast. Let us
define the linear operator P(r) : Lr 7→ RL by the formula

P(r)Y =

(
YM

AT YM

)
, Y ∈ Lr

If setting

Zi =

{
X̃i for i = 1, . . . , K
P(r)Zi−1 for i = K + 1, . . . , K + M

(4)

the matrix Z = [Z1, . . . , ZK+M ] is the trajectory matrix of the series YT+M . Therefore,
(4) can be regard as the vector form of (3).

2.4 Multivariate singular spectrum analysis (MSSA)

The use of multivariate singular spectrum analysis (MSSA) for multivariate time series
was proposed theoretically in the context of nonlinear dynamics in [9]. There are numerous
examples of successful application of the multivariate SSA (see, for example, [1] and [10]).
Multivariate (or multichannel) SSA is an extension of the standard SSA to the case of
multivariate time series. We give a short description of MSSA method as follows.

Assume that we have an M -variate time series yj =
(
y

(1)
j , . . . , y

(M)
j

)
, where j = 1, . . . , T

and let L be window length. Similar to univariate version, we can define the trajectory
matrices X(i) (i=1, . . . , M) of the one-dimensional time series {y(i)

j } (i = 1, . . . ,M). The
trajectory matrix X can then be defined as

X =




X(1)

...
X(M)


 . (5)

3 Descriptive Analysis

In this section, we consider descriptive statistics of the 8 series measuring the monthly
seasonally unadjusted industrial production for important sectors of the UK economies.

3.1 The data

The data in this study are taken from Eurostat, the office for National statistics and
represents eight major components of industrial production in the UK. The two digit
category industrials examined in this research are seasonally unadjusted monthly indices
for real output in Food Products, Chemicals, Basic Metals, Fabricated Metals, Machinery,
Electrical Machinery, Vehicles and Electricity and Gas industries. The two-digit categories
examined in this research are as foloows:

The same 8 series, ending in 1995, have been previously analysed in [24], [25] and
ending in 2007 in [16]. As explained in these papers, these industries have been chosen
primarily because of their importance and that are the basis of the contribution to total
industrial production. Here we have updated the data and in all cases the sample period
starts from January 1978 and ends in July 2009, giving a long series of 380 observations.
In line with the usual convention for economic time series and for comparability, all time
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Short name Detail
Food product Manufacture of food products and beverages

Chemicals Manufacture of chemicals and chemical product
Basic metals Manufacture of basic metals

Fabricated metal Manufacture of fabricated metal products
Machinery Manufacture of machinery and equipment N.E.C.

Electrical machinery Manufacture of electrical machinery and apparatus N.E.C.
Vehicles Manufacture of motor vehicles, trailers and semi-trailers

Electricity and gas Electricity, gas and water supply

Table 1: Industrial production series.

series are analysed in the logarithmic form. Plots of these time series are presented below,
their movements are dominated by seasonality. They broadly represent periods of growths
in the 1980s and during 2000-2007s and periods of stagnation or recessions during the early
1990s and 2008-2009.

To investigate short term movements and the degree of seasonality, Table 2 shows
the descriptive statistics for the first difference of each series. Sample means and sample
standard deviations are scaled by 100 and since the data are logarithmically transformed,
they effectively refer to monthly percentage changes in the original series. Table 2 shows
that, with the exception of Food, Chemicals and Electricity and Gas, the production
series have declined over the period. In particular, Chemicals shows substantial growth
over the period with an average increase of about 0.2% per month (2.24% per year) and
Basic Metals and Vehicles show an average decline of 0.17% per month or 2% per year.
The sample standard deviations indicate that the series have broadly similar variability,
with Food less volatile and Vehicles more volatile than the others. In the table, R2 is a
measure of seasonality and is calculated from a regression of the first differences against
twelve monthly dummy variables. The highest seasonality for these series is for production
of Electricity and Gas. These values which are obtained on longer time series are lower
than the R2 reported in [24].

Series Weight Mean S.D. seas R2

Food products 7.6 0.07 6.99 0.52
Chemicals 8.6 0.19 8.10 0.55
Basic metals 4.5 -0.17 11.98 0.74
Fabricated metal 7.2 -0.08 10.06 0.63
Machinery 13.6 -0.09 10.05 0.72
Electrical machinery 5.6 -0.06 10.46 0.68
Vehicles 10.4 -0.17 15.69 0.68
Electricity and Gas 6.5 0.01 10.36 0.79

Table 2: Descriptive statistics of the data.
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Food Chemical

Basic Metal Fabricated Metal

Machinery Electrical Machinery

Vehicle Electricity and Gas

Figure 1: The UK industrial production series.
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3.2 Normality Tests

Univariate Normality test

The Anderson-Darling (A-D), Ryan-Joiner (R-J), and Kolmogorov-Smirnov (K-S) tests
are used to test if a sample of data came from a population with a specific distribution.
The A-D and K-S tests are based on the empirical distribution function and the R-J
(similar to Shapiro-Wilk) is based on regression and correlation [28].

All three tests tend to work well in identifying a distribution as not normal when the
distribution under consideration is skewed. All three tests are less discriminating when
the underlying distribution is a t-distribution and non-normality is due to kurtosis. In
general, among the tests based on the empirical distribution function, the A-D tends to
be more effective in detecting departures in the tails of the distribution. In practice, if
departure from normality at the tails is the major concern, many statisticians would use
the A-D test as the first choice. Here we use all the above mentioned tests in order to
have a comprehensive view of non-normality test results for the series.

The tests reject the hypothesis of normality when the p-value is less than or equal
to 0.05. Failing the normality test allows us to state with 95% confidence the data does
not fit the normal distribution. Table 3 represents the results of the normality test. The
symbol ∗ indicates the 5% levels of significance. As can be seen from the results, except the
Fabricated series, the other series are not distributed normally. Note also that, the results
of non normality test for the series Machinery and Electrical Machinery are different.

Series A-D R-J K-S
Food products 1.597∗ 0.993∗ 0.056∗

Chemicals 5.182∗ 0.978∗ 0.089∗

Basic metals 2.053∗ 0.985∗ 0.058∗

Fabricated metal 0.326 0.999 0.031
Machinery 0.725 0.996∗ 0.039
Electrical machinery 0.876∗ 0.995∗ 0.041
Vehicles 3.091∗ 0.986∗ 0.069∗

Electricity and gas 3.034∗ 0.985∗ 0.078∗

Table 3: Normality tests.

Multivariate Normality test

Almost all of the industrial production series have complex structure with nonlinear trends
and complex seasonality. It is worth mentioning that the SSA technique does not assume
linearity or normality of the data either in finite samples or asymptotically. To assess
the normality aspect of our data set, we used the Doornik-Hansen Omnibus, DHO, mul-
tivariate normality test [29]. This is a multivariate version of Shenton and Bowman’s
[30] univariate omnibus test for normality, based on transformed skewness and kurtosis
coefficients.

The DHO(p) test statistic is approximately distributed as let p be the number of time
series under consideration, then the DHO statistic is:

DHO(p) = Z
′
1Z

′
1 + Z

′
2Z

′
2 (6)
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where Z
′
1 = (z11 , . . . , z1p) and Z

′
2 = (z21 , . . . , z2p); z1i

is a transformation of the standard
univariate skewness coefficient

√
b1, applied to the i-th series, due to D’Agostino [28], and

z2i
is a transformation of the standard kurtosis coefficient

√
b2, from a gamma distribution

to and then to standard normal, applied to the i-th series; see [29] for details.
Two cases of interest reported here. In the first case, the test is applied pairwise

between each two series in each country. The results are represented in Table 4. As the
results show, all table entries exceed the 99% quantile, indicating that there is strong
evidence of non-normality.

The second case is when all 8 variables of each country are considered together, so
that the null hypothesis corresponds to multivariate normality with p = 8. Again, the
results with strong evidence, DHO statistics is 72.96∗, confirm that the multivariate data
are distributed from a multivariate non-normal distribution.

Series FP CH BM FM MA EM VE EG

Food 26.28∗ 43.06∗ 303.5∗ 195.4∗ 70.27∗ 51.36∗ 97.83∗ 25.09∗

products (FP)

Chemicals (CH) 15.33∗ 440.5∗ 474.3∗ 62.89∗ 19.01∗ 110.3∗ 44.99∗

Basic 275.7∗ 231.8∗ 335.9∗ 397.8∗ 179.1∗ 234.8∗

metals (BM)

Fabricated 163.8∗ 125.5∗ 195.4∗ 115.9∗ 136.6∗

metal (FM)

Machinery (MA) 33.83∗ 37.63∗ 39.36∗ 45.74∗

Electrical 11.66∗ 69.05∗ 32.27∗

machinery (EM)

Vehicles (VE) 67.28∗ 76.63∗

Electricity 14.28∗

and gas (EG)

Table 4: Multivariate normality test.

3.3 Assessing nonlinear dependence

If a time series is the output of a non-deterministic, linear dynamic system, then measures
of linear association such as the standard correlation coefficient can be used for measuring
dependencies, for example, between two time series. However, if the data are outputs
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from a nonlinear process, a measure should be used that has the ability to capture the
nonlinearities of series. Granger and Lin [26] defined the following measure

λ =
(
1− exp[−2I(X, Y )]

) 1
2
. (7)

where I is the mutual information between the series (for more information see [27], [31]).
Table 5 shows the nonlinear correlation (the value of λ) and and the linear correlation

(the second value in each cell) between the series for each country. All table entries are
significant at the 5% level as indicated by *. These results strongly suggest that there is
a significant degree of nonlinear dependence among the series.

Series CH BM FM MA EM VE EG

Food 0.87∗ 0.51∗ 0.55∗ 0.42∗ 0.54∗ 0.53∗ 0.65∗

products (FP) 0.86∗ -0.16∗ 0.26∗ 0.005 0.24 0.53∗ 0.63∗

Chemicals (CH) 0.62∗ 0.65∗ 0.56∗ 0.69∗ 0.68∗ 0.72∗

-0.14∗ 0.28∗ -0.14∗ 0.25∗ 0.63∗ 0.72∗

Basic 0.66∗ 0.56∗ 0.71∗ 0.62∗ 0.49∗

metals (BM) 0.58∗ 0.53∗ 0.69∗ 0.42∗ -0.12∗

Fabricated 0.66∗ 0.76∗ 0.64∗ 0.44∗

metal (FM) 0.73∗ 0.44∗ 0.69∗ 0.10∗

Machinery (MA) 0.51∗ 0.47∗ 0.45∗

0.35∗ 0.32∗ -0.16∗

Electrical 0.56∗ 0.54∗

machinery (EM) 0.55∗ 0.52∗

Vehicles (VE) 0.55∗

0.53∗

Table 5: Linear and nonlinear correlation.

Therefore, taken together, the measures of nonlinear dependence and tests for non
normality show that it would be unwise to adopt a linear forecasting framework, whether
univariate or multivariate, for these series.

3.4 Non-linearity tests

The performance of various non-linearity tests has been investigated in [32]. It is known
that no single test dominates all the others for a variety of data generating process [32]. In
the light this finding, various tests for non linearity, have been performed. The test applied
are those of McLeod and Li [33], Tsay [35], Ramsey (RESET) test [34] and White [36].
To remove seasonality all tests were computed using models based on seasonal differences
(D12). Before testing for non linearity data were filtered by an AR model and tests are
calculated from the estimated residual of a linear fit. The choice of antoregressive lag
length can be made on various criteria such as maximising R2 or minimising the Akaike
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Information Criterion (AIC) or Bayesian Information Criterion (BIC) (see, for example,
[37]). Alternatively the minimum number of lags that ensures the Ljung Box, Q, statistic
is insignificant can be used. Table 6 presents the results for the UK. Here we have selected
the lag length to a maximum of 6 by BIC; lag 12 was always included to allow for stochastic
seasonality.

Series McLeod Tsay RESET NN Lags
Food 0.163 0.007* 0.034 0.215 1-4,12
Chemicals 0.000* 0.0005* 0.490 0.002* 1-3,12
Basic metals 0.000* 0.0002* 0.156 0.0001* 1-3,12
Fabricated metal 0.000* 0.0027* 0.025 0.104 1-3,12
Machinery 0.008* 0.0028* 0.693 0.177 1-3,12
Electrical machinery 0.04 0.0030* 0.281 0.002* 1-3,12
Vehicles 0.196 0.0000* 0.001* 0.000* 1-4,12
Electricity and Gas 0.000* 0.000* 0.0002* 0.000* 1-2,12

Table 6: Nonlinearity tests.

Applying multiple tests for the same null hypothesis (linearity against possible non-
linearity) implies that our overall level of significance may be substantially higher than
the nominal one. Therefore for a sign of non-linearity we look at either for strong rejection
of linearity (at 1%) or rejections in at least two tests. There is strong evidence of non-
linearity for all production series, except food products, in that two or more tests indicate
non-linearity at the 1% level of significance. The results for Food products are marginal
with two rejections, one at 1% and one at 5% level of significance.

3.5 Cross Correlations for industries

We also assessed the potential of other production series for forecasting a specific in-
dustry by computing the cross correlations of each production series with lags of other
productions. Figure 2 presents these cross correlations. For these figures, first the pro-
ductions series were smoothed by combining the seasonal differences with differences over
one quarter. This is the same as summing three values of the first and seasonal differenced
series.

The figures show that the strongest correlations are generally at lag zero (contempo-
raneous information) or at very short lags. In particular, the results indicate that Food
products, Chemicals and Gas have high cross correlations and Food may lead Gas by three
months. Generally the strongest correlations for Basic metals are exhibited with Machin-
ery and Fabricated metals and strongest correlations for Fabricated metal are associated
with Machinery and Vehicles. The results also show that productions of machinery have
strong correlations with Basic and Fabricated metals. Cross correlations for Vehicles are
also relatively high with Chemicals and Food, with also a very strong contemporaneous
correlation with Fabricated metal.
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Food Chemical
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Machinery Electrical Machinery
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Figure 2: The value of cross industry correlations for the UK industrial production series.
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4 Forecasting Results

In this section, the performance of the SSA technique is assessed by applying it to 8 series
measuring the monthly seasonally unadjusted industrial production for important sectors
of the UK economies.

The SSA technique is especially useful for analyzing and forecasting series with com-
plex seasonal components and non-stationarity. Thus, unlike ARIMA models, choosing
an appropriate degree of differencing is not an issue in SSA. The data considered in this
study has a complex structure; as a consequence, we found superiority of SSA over clas-
sical techniques. The results are compared with those obtained using ARIMA and VAR
models.

4.1 Comparison of the accuracy of the forecasts

We consider forecasting performance of the SSA (univariate and multivariate), with
ARIMA and VAR techniques at different horizons h, up to one year. The results are
provided for h = 1, 3, 6 and 12 (months). We use the data up to the end of 2007 as in-
sample (to perform SSA decomposition and to estimate parameters of ARIMA and VAR
models). Thus, with approximately two year and 8 months of the out-of-sample data, we
have N = 32, 30, 27 and 21 out-of-sample forecast errors at the horizons h = 1, 3, 6 and
12, respectively.

Here, we use the ratio of the root mean squared error (RRMSE) and the percentage of
forecasts that correctly predict the direction of change to measure the forecast accuracy1

(see appendix A for the definition of these measures). Note that if RRMSE < 1, then the
SSA outperforms the other methods (either ARIMA or VAR).

In computing Box-Jenkins ARIMA forecasts, we need to choose the lags, the degree of
differencing and the degree of seasonality (p, d, q), (P,D, Q)s, where s = 12. To do that we
use the maximum order of lags, set by the software, and apply the Bayesian Information
Criterion (BIC). The SSA parameters, the window length L and the number of eigentriples
r, are chosen based on the eigenvalue spectra and separability. The parameters (L, r) of
the SSA and the orders (p, d, q), (P, D, Q)s of the ARIMA models are given when the
models are estimated using data up to the end of 2007. Here we used L = 24 and r = 14
for all series.

Table 7 shows the out-of-sample RMSE ratios for the UK. Some summary statistics
(average RRMSE of SSA models to the VAR and ARIMA models for each horizon) are
also given at the bottom of each table. The summary statistics are the RRMSE averages
and the scores. The score is the number of times when SSA model yields lower RMSE.
For the VAR model, we use the series as a supportive series which provides the minimum
RMSE in forecasting one step ahead. The series were shown in bracket. For example,
for forecasting the Food products series in the VAR model, the Chemical series was used.
This series was chosen as the results of one step ahead forecast of the Food series gives
minimum RMSE if we use the Chemical series as the second series. The same series is
also used for MSSA. Fig. 3 shows all chosen pairs of the series. The series in the bold
line indicates the main series and the series in thin line indicates the supportive series.

1We have also computed other measures based on the magnitude of forecast errors, such as relative
root mean absolute errors. These measures yield qualitatively similar results to RMSE; we thus do not
report them.
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Note also that the Granger causality test confirms that there exists a Granger causality
between two series considered here. We have indicated this with ¿ in Table 7.

The averages and the scores for h-step ahead show that SSA forecasts are much better
than the forecasts obtained by ARIMA model. The averages and the scores for 1 and
3-steps ahead forecast show that VAR forecasts are also much better than the forecasts
obtained by ARIMA model. However, the advantage of the VAR, relative to ARIMA,
reduces for forecasting at the horizons greater than 3. The scores also confirm that the
SSA forecasts outperform the forecasts produced by ARIMA model, at all horizons. For
all the series (8 cases), SSA outperforms ARIMA 7, 7, 7 and 6 times at h = 1, 3, 6 and 12
horizons respectively. Similarly, for all the series (8 cases), VAR outperforms the ARIMA
8, 5, 3 and 2 times at h = 1, 3, 6 and 12 horizons, respectively. MSSA also outperforms
the ARIMA model 7, 7, 8 and 8 times at h = 1, 3, 6 and 12 horizons.

As can be seen from Table 7, MSSA outperforms ARIMA much more than the VAR
model. On average, the results obtained by MSSA are up to 43%, 38%, 24% and 18%
better than for ARIMA. The results also indicate that MSSA outperforms the VAR model.
On average, the results obtained by MSSA are up to 15%, 37%, 34% and 26% better than
for the VAR model. In fact, MSSA outperforms the VAR model 5, 8, 8 and 7 times at
h = 1, 3, 6 and 12 horizons.

The results confirm that the quality of SSA forecasts (both univariate and multivariate)
at horizons h = 1, 3, 6 and 12 is much better than the quality of ARIMA and VAR
forecasts. This observation serves as a confirmation of the following facts:

(i) most of the series considered here have a complex structure of trend and seasonality;

(ii) this structure is well recovered by SSA;

(iii) in most cases, existence of a structural break in the series reduces the performance
of the ARIMA and VAR models. Note that the current recession happened at the
period which we have considered as the out-of-sample forecast period. It is well
known that ARIMA and VAR models are very sensitive to the structural break of
this type. The quality of the forecast can be extremely high or low for classical
methods depending on whether there is a structural change in the series in the
out-of-sample period;

(iii) the SSA forecasts are more robust than ARIMA and VAR forecasts with respect to
the presence of this shock in the series.

Using the modified Diebold-Marino statistics, given in [49], we test for the statistical
significance of the results of the forecasts. The symbol ∗ indicates the results at the
5% level of significance or less. Comparing the SSA forecasts with the ARIMA, SSA
outperforms the ARIMA significantly 6, 5, 3 and 5 times at h = 1, 3, 6 and 12 horizons
respectively at 5% significance level or less. MSSA also outperforms VAR significantly
3, 7, 8 and 5 times at h = 1, 3, 6 and 12 horizons respectively at 5% significance level or
less. In fact, the scores for all the horizons in Table 7 show that both the SSA and MSSA
have outperformed the ARIMA and VAR models.

4.2 Descriptive Statistics of the Errors

We also use descriptive statistics to describe the main features of the forecast errors,
obtained by ARIMA, VAR, SSA and MSSA, in quantitative terms. We have considered
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Food (bold) - Chemical (thin) Chemical (bold) - Electricity and Gas (thin)

Basic (bold) - Fabricated (thin) Fabricated (bold) - Vehicle (thin)

Machinery (bold) - Electrical Machinery (thin) Electrical Machinery (bold) - Machinery (thin)

Vehicle (bold) - Basic (thin) Electricity and Gas (bold) - Chemical (thin)

Figure 3: The series used in the multivariate forecasting approach.
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two types of descriptive measures; measures of central tendency (mean and median) and
measures of dispersion (standard deviation, minimum and maximum). Table 8 represents
a summary statistics of the out-of-sample absolute forecast errors for ARIMA, VAR, SSA
and MSSA at horizons up to one year. The first column shows that the results obtained
by MSSA have smaller bias than those obtained using the VAR model. For example,
for one step ahead forecast, the average of the out-of-sample forecast errors for MSSA is
−0.0015 whilst this is −0.0021 for the VAR model. The performance of MSSA for h = 3, 6
and 12 is much better than the VAR model. The results also show that the SSA bias
forecast is smaller than for ARIMA model at all considered horizons. Therefore, we can
conclude that SSA and MSSA outperform the ARIMA and the VAR models in terms of
bias criterion. It should be noted that the forecast bias has been reduced from ARIMA
to VAR and also from SSA to MSSA. For example, for one step ahead forecast, the bias
of the ARIMA forecast is −0.0623, whilst this value has been reduced to −0.0021 for
the VAR model. Similarly, the bias of the SSA forecast error is −0.0105 while this has
been reduced to −0.0015 for MSSA. This pattern can be seen for the other horizons too.
This can be considered as a confirmation that the multivariate forecasting has a better
performance than the univariate, at least for these series.

The second column represents standard deviation (SD) of the forecast errors. As the
results show, MSSA results provide the minimum SD, at all considered horizons, among
others. In fact, MSSA has the best performance compared to VAR, ARIMA and SSA in
terms of standard deviation criterion. For example, for one step ahead forecast, the SD
of the out-of-sample forecast errors for MSSA is 0.0704 whilst this is 0.0838 for the VAR
model. Note also that the performance of the MSSA forecast is much better than for the
VAR model at longer horizons. Similar results are obtained for SSA relative to ARIMA
model. We also provide some extra descriptive statistics such as median, minimum and
maximum value. Again, similar conclusion can be obtained from these statistics. The
overall conclusion is that, without exception, SSA outperforms ARIMA in the univariate
forecasting, and MSSA outperforms VAR model in multivariate forecasting.

4.3 Empirical Cumulative Distribution Function of the Fore-
casting Errors

Let us now examine the empirical cumulative distribution function (c.d.f.) for the absolute
value of the forecasting errors for all the methods considered. If the c.d.f. graph produced
by one method is strictly above the graph of another c.d.f., then we can conclude that the
errors obtained by the first method are stochastically smaller than the errors of the second
method. Note also that the Kolmogorov-Smirnov test is based on cumulative distribution
functions and can be used to test to see whether two empirical distributions are different.
The c.d.f. of the absolute values of the out-of-sample errors (for all eight series) obtained
by ARIMA, SSA, VAR and MSSA forecasts are presented in Fig. 4. We can see from Fig.
4 that for h = 1, 3, 6 and 12, the SSA forecasting errors are stochastically smaller than the
errors of the ARIMA model. In addition, it can be seen that the MSSA forecast errors
are much smaller than the VAR forecast errors. We therefore conclude that the errors
obtained by SSA are stochastically smaller than those obtained by ARIMA in univariate
case. Similarly, MSSA forecast errors are stochastically smaller than those obtained by
the VAR model. The results obtained from the empirical cumulative distribution function
are in line with those concluded from descriptive statistics. That is, the SSA outperforms
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the ARIMA model in the univariate approach, and that MSSA outperforms VAR model
in multivariate approach.

4.4 Direction of change predictions

As another measure of forecast accuracy, in addition to the above criteria, we also compute
the percentage of forecasts that correctly predict the direction of change (for more details
see appendix A).

Table 9 provides the percentage of forecasts that correctly predict the direction of
change, at h = 1, 3, 6 and 12 horizons. It also shows whether they are significantly greater
than the pure chance (p = 0.50). The symbol ∗ in the table indicates the 5% levels of
significance. A set of summary results is also given at the bottom of the table. The
summary statistics are the average of correct signs for all eight series at h = 1, 3, 6 and
12 horizons. The percentage of correct signs are generally smaller than those reported in
[16]. This is due to the fact that the results for directional change are particulary sensitive
to structural change in the out-of-sample period. Similar to those stated for quality of
the forecast, the percentage of correct signs can be very high or low for ARIMA and
VAR models depending on whether there is a structural change in the series in the out-
of-sample period. The overall percentage of correct signs for MSSA are 82%, 80%, 80%
and 73% at h = 1, 3, 6 and 12, respectively. These values for SSA are 74%, 76%, 76% and
72% at h = 1, 3, 6 and 12, respectively. For ARIMA, these results are 68%, 74%, 77% and
63%, respectively, which are slightly lower than the SSA and significantly lower than for
MSSA. The VAR model has produced slightly better results (76% and 72%) at horizons
h = 1 and h = 12, whilst it has produced lower (80%) at h = 3 and 6 horizons. For all 32
cases (h = 1, 3, 6 and 12 horizons) MSSA has produced 28 significant cases at the 5% level,
while this value for VAR is 16 significant cases. The results indicate that MSSA enables us
to improve the series movement prediction relative to SSA at all horizons. However, this
is not the case for the VAR model. The VAR model only produce better results for h = 1
and 12 relative to ARIMA, whilst it fails for h = 3 and 6. Therefore, the overall conclusion
from the direction of change results is: taking into account a suitable additional series
for the SSA technique enables us to improve the series movement prediction in short and
long horizon forecasting, whilst having extra information in the VAR model helps us to
improve the results only in short term forecasting. Another remark is that, the relation
between the series movement in a multivariate system is captured much better by SSA
than by the VAR model.

5 the Causality Tests Using the Singular Spectrum

Analysis

A question that frequently arises in time series analysis is whether one economic variable
can help in predicting another economic variable. One way to address this question
was proposed in [38]. Granger [38] formalized a causality concept as follows: process X
does not cause process Y if (and only if) the capability to predict the series Y based
on the histories of all observables is unaffected by the omission of X’s history (see also
[39]). Testing causality, in the Granger sense, involves using F -tests to test whether lagged
information on one variable, say X, provides any statistically significant information about
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another variable, say Y , in the presence of lagged Y . If not, then “Y does not Granger-
cause X.”

Criteria for Granger causality typically have been realized in the framework of multi-
variate Gaussian statistics via vector autoregressive (VAR) models. It is worth mentioning
that the linear Granger causality is not causality in a broader sense of the word. It just
considers linear prediction and time-lagged dependence between two time series. The
definition of Granger causality does not mention anything about possible instantaneous
correlation between two series XT and YT . (If the innovation to XT and the innovation to
YT are correlated then it is sometimes called instantaneous causality.) It is not rare when
instantaneous correlation between two time series can be easily revealed, but since the
causality can go either way, one usually does not test for instantaneous correlation. In this
paper, several of our causality tests incorporate testing for the instantaneous causality.
One more drawback of the Granger causality test is the dependence on the right choice of
the conditioning set. In reality one can never be sure that the conditioning set selected is
large enough (in short macro-economic series one is forced to choose a low dimension for
the VAR model). Moreover, there are special problems with testing for Granger causality
in co-integrated relations [40].

The original notion of Granger causality was formulated in terms of linear regression,
but there are some nonlinear extensions in the literature (see, for example, [41]). Hiemstra
and Jones [42] also propose a nonparametric test which seems to be most used test in
testing nonlinear causality. However, this method also has several drawbacks: i) the
test is not consistent, at least against a specific class of alternatives [43], ii) there are
restrictive assumptions in this approach [44] and iii) the test can severely over-reject the
null hypothesis of non-causality [45].

It is also important to note that Granger causality attempts to capture an important
aspect of causality, but it is not meant to capture all. A method based on the information
theory has realized a more general Granger causality measure that accommodates in
principle arbitrary statistical processes [46]. Su and White [47] propose a nonparametric
test of conditional independence based on the weighted Hellinger distance between the
two conditional densities. There are also a number of alternative methods, but they are
rarely used.

We overcome many of these difficulties by implementing a different technique for cap-
turing the causality; this technique uses the singular spectrum analysis (SSA) technique;
a nonparametric technique that works with arbitrary statistical processes, whether linear
or nonlinear, stationary or non-stationary, Gaussian or non-Gaussian.

The general aim of this study is to assess the degree of association between two arbi-
trary time series (these associations are often called causal relationships as they might be
caused by the genuine causality) based on the observation of these time series. We develop
new tests and criteria which will be based on the forecasting accuracy and predictability
of the direction of change of the SSA algorithms.

5.1 Causality Criteria

Forecasting accuracy based criterion

The first criterion we use here is based on the out-of-sample forecasting, which is very
common in the framework of Granger causality. The question behind Granger causality
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is whether forecasts of one variable can be improved using the history of another variable.
Here, we compare the forecasted value obtained using the univariate procedure, SSA, and
also the multivariate one, MSSA. If the forecasting errors using MSSA is significantly
smaller than the forecasting error of the univariate SSA, we then conclude that there is a
casual relationship between these series.

Let us consider in more detail the procedure of constructing a vector of forecasting
error for an out-of-sample test. In the first step we divide the series XT = (x1, . . . , xT )
into two separate subseries XR and XF : XT = (XR, XF ) where XR = (x1, . . . , xR), and
XF = (xR+1, . . . , xT ). The subseries XR is used in reconstruction step to provide the
noise free series X̃R. The noise free series X̃R is then used for forecasting the subseries
XF using either the recurrent or vector forecasting algorithm. The subseries XF will be
forecasted using the recursive h-step ahead forecast with SSA and MSSA. The forecasted
points X̂F = (x̂R+1, . . . , x̂T ) are then used for computing the forecasting error, and the
vector (xR+2, . . . , xT ) is forecasted using the new subseries (x1, . . . , xR+1). This procedure
is continued recursively up to the end of series, yielding the series of h-step-ahead forecasts
for univariate and multivariate algorithms. Therefore, the vector of h-step-ahead forecasts
obtained can be used in examining the association (or order h) between the two series.
Let us now consider a formal procedure of constructing a criterion of SSA causality of
order h between two arbitrary time series.

Criterion

Let XT = (x1, . . . , xT ) and YT = (y1, . . . , yT ) denote two different time series of length T .
Set window lengths Lx and Ly for the series XT and YT , respectively. Here, for simplicity
assume Lx = Ly. Using the embedding terminology, we construct trajectory matrices
X = [X1, . . . , XK ] and Y = [Y1, . . . , YK ] for the series XT and YT .

Consider an arbitrary loss function L. In econometrics, the loss function L is usually
selected so that it minimizes the mean square error of the forecast. Let us first assume that
the aim is to forecast the series XT . Thus, the aim is to minimize L(XK+Hx − X̂K+Hx),
where the vector X̂K+Hx is an estimate, obtained using a forecasting algorithm, of the
vector XK+Hx of the trajectory matrices X. Note that, for example, when Hx = 1, X̂K+1

is an estimate of the vector XK+1 = (xT+1, . . . , xT+h) where h varies between 1 and L. In
a vector form, this means that an estimate of XK+1 can be obtained using the trajectory
matrix X consisting of vectors [X1, . . . , XK ]. The vector XK+Hx can be forecasted using
either univariate SSA or MSSA. Let us first consider the univariate approach. Define

∆XK+Hx
≡ L(XK+Hx − X̂K+Hx), (8)

where X̂K+Hx is obtained using univariate SSA; that is, the estimate X̂K+Hx is obtained
only from the vectors [X1, . . . , XK ].

Let XT = (x1, . . . , xT ) and YT+d = (y1, . . . , yT+d) denote two different time series to be
considered simultaneously and consider the same window length L for both series. Now,
we forecast xT+1, . . . , xT+h using the information provided by the series YT+d and XT .
Next, compute the following statistic:

∆XK+Hx |YK+Hy
≡ L(XK+Hx − X̃K+Hx). (9)

where X̃K+Hx is an estimate of XK+Hx obtained using multivariate SSA. This means that
we simultaneously use vectors [X1, . . . , XK ] and

[
Y1, . . . , YK+Hy

]
in forecasting vector
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XK+Hx . Now, define the criterion:

F
(h,d)
X|Y =

∆XK+Hx |YK+Hy

∆XK+Hx

(10)

corresponding to the h step ahead forecast of the series XT in the presence of the series
YT+d; here d shows the lagged difference between series XT and YT+d, respectively. Note

that d is any given integer (even negative). For example, F
(h,0)
X|Y indicates that we use

the same series length in h step ahead forecasting series X; we use the series XT and YT

simultaneously. F
(h,0)
X|Y can be considered as a common multivariate forecasting system for

time series with the same series length. The criterion F
(h,0)
X|Y can then be used in evalu-

ating two instantaneous causality. Similarly, F
(h,1)
X|Y indicates that there is an additional

information for series Y and that this information is one step ahead of the information
for the series X; we use the series XT and YT+1 simultaneously.

If F
(h,d)
X|Y is small, then having information obtained from the series Y helps us to have

a better forecast of the series X. This means there is a relationship between series X and
Y of order h according to this criterion. In fact, this measure of association shows how
much more information about the future values of series X contained in the bivariate time
series (X,Y ) than in the series X alone. If F

(h,d)
X|Y is very small, then the predictions using

the multivariate version are much more accurate than the predictions by the univariate
SSA. If F

(h,d)
X|Y < 1, then we conclude that the information provided by the series Y can be

regarded as useful or supportive for forecasting the series X. Alternatively, if the values
of F

(h,d)
X|Y ≥ 1, then either there is no detectable association between X and Y or the

performance of the univariate version is better than the multivariate version (this may
happen, for example, when the series Y has structural breaks which may misdirect the
forecasts of X).

To asses which series is more supportive in forecasting, we need to consider another
criteria. We obtain F

(h,d)
Y |X in a similar manner. Now, these measures tell us whether

using extra information about time series YT+d (or XT+d) supports XT (or YT ) in h-step

forecasting. If F
(h,d)
Y |X < F

(h,d)
X|Y , we then conclude that X is more supportive than Y , and if

F
(h,d)
X|Y < F

(h,d)
Y |X , we then conclude that Y is more supportive than X.

Let us now consider a definition for a feedback system according to the above criteria.
If F

(h,d)
Y |X < 1 and F

(h,d)
X|Y < 1, we then conclude that there is a feedback system between

series X and Y . We shall call it F-feedback (forecasting feedback) which means that using
a multivariate system improves the forecasting for both series. For a F-feedback system,
X and Y are mutually supportive.

Statistical test

To check if the discrepancy between the two forecasting procedures are statistically sig-
nificant we may apply the Diebold and Mariano [48] test statistic, with the corrections
suggested in [49]. The quality of a forecast is to be judged on some specified function
L as a loss function of the forecast error. Then, the null hypothesis of equality of ex-
pected forecast performance is E(Dt) = 0, where Dt = (DXK+Hx |YK+Hy

− DXK+Hx
) and

DXK+Hx |YK+Hy
and DXK+Hx

are the vectors of the forecast errors obtained with the uni-
variate and multivariate approaches, respectively. In our case, L is the quadratic loss
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function. The modified Diebold and Mariano statistic for a h step ahead forecast and the
number of n forecasted points is

S = D̄

√
n + 1− 2h + h(h− 1)/n

n v̂ar(D̄)

where D̄ is the sample mean of the vector Dt and v̂ar(D̄) is, asymptotically n−1
(
γ̂0 + 2

∑h−1
k=1 γ̂k

)
,

where γ̂k is the k-th autocovariance of Dt and can be estimated by n−1
∑n

t=k+1(Dt −
D̄)(Dt−k− D̄). The S statistic has an asymptotic standard normal distribution under the
null hypothesis and its correction for a finite samples follows the Student’s t distribution
with n− 1 degrees of freedom.

5.2 Direction of change based criterion

Ash [50] argue that for some purposes, it may be more harmful to make a smaller predic-
tion error yet fail in predicting the direction of change, than to make a larger directionally
correct error. Clements and Smith [51] discuss that the value of a model’s forecasts may
be better measured by the direction of change. Heravi [25] argue that the direction of
change forecasts are particularly important in economics for capturing the business cycle
movement relating to expansion versus contraction phases of the cycle. Thus as another
measure of forecasting performance, we also compute the percentage of forecasts that
correctly predict the direction of change.

Criterion

The direction of change criterion shows the proportion of forecasts that correctly predict
the direction of the series movement. For the forecasts obtained using only XT (uni-
variate case), let ZXi

take the value 1 if the forecast observations correctly predicts the
direction of change and 0 otherwise. Then Z̄X =

∑n
i=1 ZXi/n shows the proportion of

forecasts that correctly predict the direction of the series movement (in forecasting n data
points). The Moivre-Laplace central limit theorem implies that, for large samples, the
test statistic 2(Z̄X − 0.5)N1/2 is approximately distributed as standard normal. When
Z̄X is significantly larger than 0.5, then the forecast is said to have the ability to predict
the direction of change. Alternatively, if Z̄X is significantly smaller than 0.5, the forecast
tends to give the wrong direction of change.

For the multivariate case, let ZX|Y,i takes a value 1 if the forecast series correctly
predicts the direction of change of the series X having information about the series Y and
0 otherwise. Then, we define the following criterion:

D
(h,d)
X|Y =

Z̄X

Z̄X|Y
(11)

where h and d have the same interpretation as for F
(h,d)
X|Y . The criterion D

(h,d)
X|Y characterizes

the improvement we are getting from the information contained in YT+h (or XT+h) for
forecasting the direction of change in the h step ahead forecast.

If D
(h,d)
X|Y < 1, then having information about the series Y helps us to have a better

prediction of the direction of change for the series X. This means that there is an asso-
ciation between the series X and Y with respect to this criterion. This criterion informs
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us how much more information we have in the bivariate time series relative to the infor-
mation contained in the univariate time series alone with respect to the prediction of the
direction of change. Alternatively, if D

(h,d)
X|Y > 1, then the univariate SSA is better than

the multivariate version.
To find out which series is more supportive in predicting the direction of change, we

consider the following criterion. We compute D
(h,d)
Y |X in a similar manner. Now, if D

(h,d)
Y |X <

D
(h,d)
X|Y , then we conclude that that X is more supportive (with respect to predicting the

direction) to Y than Y to X.
Similar to the consideration of the forecasting accuracy criteria, we can define a feed-

back system based on the criteria characterizing the predictability of the direction of
change. Let us introduce a definition for a feedback system according to D

(h,d)
X|Y and D

(h,d)
Y |X .

If D
(h,d)
Y |X < 1 and D

(h,d)
X|Y < 1, we conclude that there is a feedback system between the se-

ries X and Y for prediction of the direction of change. We shall call this type of feedback
D-feedback. The existence of a D-feedback in a system yields that the series in the system
help each other to capture the direction of the series movement with higher accuracy.

Statistical test

Let us describe a statistical test for the criterion D
(h,d)
X|Y . As in the comparison of two

proportions, when we test the hypothesis about the difference between two proportions,
first we need to know whether the two proportions are dependent. The test is differ-
ent depending on whether the proportions are independent or dependent. In our case,
obviously, ZX and ZX|Y are dependent. We therefore consider this dependence in the
following procedure. Let us consider the test statistic for the difference between ZX and
ZX|Y . Assume that ZX and ZX|Y , in forecasting n future points of the series X, are
arranged as Table 10.

Then the estimated proportion using the multivariate system is PX|Y = (a+ b)/n, and
the estimated proportion using the univariate version is PX = (a + c)/n. The difference
between the two estimated proportions is

π = PX|Y − PX =
a + b

n
− a + c

n
=

b− c

n
(12)

Since the two population probabilities are dependent, we cannot use the same approach
for estimating the standard error of the difference that is used for independent case. The
formula for the estimated standard error for the dependent case was given in [52]:

ˆSE(π) =
1

n

√
(b + c)− (b− c)2

n
. (13)

Let us consider the related test for the difference between two dependent proportions,
then the null and alternative hypotheses are:

H0 : πd = ∆0

Ha : πd 6= ∆0
(14)

The test statistic, assuming that the sample size is large enough for the normal approxi-
mation to the binomial to be appropriate, is:

Tπd
=

π −∆0 − 1/n

ˆSE(π)
(15)
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where 1/n is the continuity correction. In our case ∆0 = 0. The test statistic then
becomes:

Tπd
=

(b− c)/n− 1/n

1/n
√

(b + c)− (b− c)2/n
=

b− c− 1√
(b + c)− (b− c)2/n

(16)

The test is valid when the average of the discordant cell frequencies, (b + c)/2, is
equal or more than 5. However, if this is less than 5, a binomial test can be used. Note
that under the null hypothesis of no difference between samples ZX and ZX|Y , Tπd

is
asymptotically distributed as standard normal.

5.3 Comparison with Granger causality test

Linear Granger causality test

Let XT and YT be two stationary time series. To test for Granger causality we compare
the full and the restricted model. The full model is given by

xt = φ0 + φ1xt−1 + . . . + φpxt−p + ψ1yt−1 + . . . + ψpyt−p + εtx|y (17)

where {εtx|y} is an iid sequence with zero mean and variance σx|y, φi and ψi are model
parameters. The null hypothesis stating that YT does not Granger cause XT is:

H0 = ψL+1 = ψ2 = . . . = ψp = 0 (18)

If the null hypothesis holds, the full model (17) is reduced to the restricted model as
follows:

xt = φ0 + φ1xt−1 + . . . + φpxt−L+1 + εtx (19)

where εtx is iid sequence with zero mean and variance σx. The forecasting results obtained
by the restricted model (19) are compared to those obtained using the full model (17) to
test for Granger causality. We then apply the F-test (or some other similar test) to obtain
a p-value for whether the full model results are better than the restricted model results.
If the full model provides a better forecast, according to the standard loss functions,
we then conclude that YT Granger causes XT . Thus, YT would Granger cause XT if
YT occurs before and contains information useful in forecasting XT . As the formula of
Granger causality shows, the test, in fact, is a mathematical formulation based on the
linear regression modeling of two time series. Therefore, the above formulation of Granger
causality can only give information about linear features of the series.

Let us now compare the similarity and dissimilarity of the proposed algorithm which
is based on the SSA forecasting algorithm with the Granger causality procedure. As
mentioned in the description of the SSA forecasting algorithm, the last component XL of
any vector X = (x1, . . . , xL)T ∈ Lr is a linear combination of the first L− 1 components
(x1, . . . , xL−1) such that:

xL = α1xL−1 + . . . + αL−1x1.

where A = (α1, . . . , αL−1) can be estimated using the eigenvectors of the trajectory matrix
X. Thus, the univariate version of SSA is given by

xt = α1xt−1 + . . . + αL−1xt−L+1 (20)
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As can be seen from (20), a univariate SSA forecasting formula is similar to the restricted
model. However, the procedure of parameter estimation in the SSA technique and the
Granger model are quite different. Both are linear combinations of previous observations,
and from this point of view both are similar. The multivariate version of SSA is a system
in which XT and YT are considered simultaneously to estimate vectors A and B as follows.
The multivariate forecasting system is:

(
xt

yt

)
=

(
α1xt−1 + . . . + αL−1xt−L+1

β1yt−1 + . . . + βL−1yt−L+1

)
(21)

where the vectors A = (α1, . . . , αL−1) and B = (β1, . . . , βL−1) are estimated using the
eigenvectors of the trajectory matirx M = [X Y]T . As equation (21) shows, the mul-
tivariate SSA is not similar to the Granger full model. An obvious discrepancy is that
we use the value of the series Y in parameter estimation and also in forecasting series
X in the Granger based test, while we use the information provided in the subspaces
generated by Y in multivariate SSA and not the observed values. More specifically, the
Granger causality test uses a linear combination of the values of both series X and Y in
the full model, whereas multivariate SSA uses the information provided by X and Y in
construction of the subspace and not the observations themselves.

Nonlinear Granger causality test

It is worth mentioning that the simultaneous reconstruction of the trajectory matrices
X and Y in the MSSA technique is also used in testing for Granger causality between
two nonlinear time series. Let us consider the concept of nonlinear Granger causality in
more detail. Let Z = [X,Y] be the joint trajectory matrix with lagged difference zero
(same value of K in the trajectory matrices X and Y). In the joint phase space consider
a small neighborhood of any vector. The dynamics of this neighborhood can be described
via a linear approximation and a linear autoregressive model can be used to predict the
dynamics within the neighborhood. Assume that the vectors of prediction errors are given
by eX|Y and eY |X . The reconstruction and the fitting procedure are now employed for the
individual time series XT and YT in the same neighborhood and the vector of prediction
errors eX and eY are then computed. Now, we compute the following criteria

V ar(eX|Y )

V ar(eX)
,

V ar(eY |X)

V ar(eY )
(22)

The above procedure is then repeated for various regions on the attractor, each column
of trajectory matrices X and Y, and the average of the above criteria are used. The
above criteria, clearly, can be considered as a function of neighborhood size. If the ratios
are smaller than 1, we then conclude that there is a nonlinear Granger causal relation
between two series. The similarity of nonlinear Granger causality test with SSA causality
test is only in the construction of the trajectory matrices X and Y using embedding
terminology, which is only the first step of SSA. Otherwise, the Granger nonlinear test is
different from the test considered here. Moreover, the major drawback of the standard
nonlinear analysis is that it requires a long time series, while the SSA technique works
well for short and long time series [12].
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Further discussion of the difference between Granger causality and the SSA-
based techniques

One of the main drawbacks of the Granger causality is that we need to assume that
the model is fixed (we then just test for significance of some parameters in the model);
model can be (and usually is) wrong. The test statistics used for testing the Granger
causality are not comprehensive. In the certain case of the linear model, testing for
Granger causality consists in the repeated use of the standard F-test which is sensitive to
various deviations from the model, and the Granger causality is only associated with the
lag difference between the two series.

In our approach, the model of dependence (or causality) is not fixed a priori; instead,
this is built into the process of analysis. The models we build are non-parametric and are
very broad (in particular, causality is not necessarily associated with a lag) and flexible.

The tests for Granger causality consider the past information of other series in fore-
casting the series. For example, in the linear Granger causality test, we use the series X
up to time t and the series Y up to time t− d; and the series YT−d is used in forecasting
series XT . Whereas in the proposed test here, the series YT+d is employed in forecasting
series XT .

Furthermore, the tests for Granger causality are based on the forecasting accuracy.
In this paper, we have also introduced another criterion for capturing causality which is
based on the predictability of the direction of change.

The definition of Granger causality does not mention anything about possible instan-
taneous correlation between two series XT and YT , where the criteria introduced enable
an interpretation of an instantaneous causality. In fact, the proposed test is not restricted
to the lagged difference between two series. It works equally well when there is no lagged
difference between series.

Furthermore, real world time series are typically noisy (e.g., financial time series), non-
stationary, and can have small length. It is well known that the existence of a significant
noise level reduces the efficiency of the tests (linear and nonlinear) for capturing the
amount of dependence between two financial series [53].

There are mainly two different approaches to examine causality between two time
series. According to the first one, that is utilized in current methods, the criteria of
capturing causality is computed directly from the noisy time series. Therefore, we ignore
the existence of the noise, which can lead to misleading interpretations of causal effects.
In our approach, the noisy time series is filtered in order to reduce the noise level and
then we calculate the criteria. It is commonly accepted that the second approach is more
effective than the first one if we are dealing with the series with high noise level [5].

5.4 Empirical results

The results presented in previous section showed that the VAR model is not a suitable
choice in predicting the UK industrial production series, while SSA (specifically, multivari-
ate SSA) decisively outperforms the VAR model. We also found that the UK industrial
production series series are nonlinear, non-stationary and are not normally distributed.
Moreover, the Granger causality test confirms that there is a Granger causality between
series considered in multivariate forecasting approach.

Next we consider the proposed test for finding causality between, the Food and the
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Chemical series using the criteria we have introduced in previous section. For more
application of the proposed tests on exchange rate series and the final vintage of the
Index of Industrial Production series see [20]. It is very clear that the Food and Chemical
series are highly correlated (indeed, the linear and nonlinear correlation coefficient between
each two series are about 0.75 and 0.85, respectively). Fig. 5 shows both the Food and
Chemical series over the period Feb-1978 to Aug-2009.

We perform h = 1, 3, 6 and 12 step ahead forecasting based on the most up-to-date
information available at the time of the forecast. We use both series simultaneously,
e.g. we use the Food series in forecasting the Chemical series and vice versa. We use d-
step ahead information of the Food series as additional information in forecasting h step
ahead of the Chemical series and vice versa. We denote these statistics F

(h,d)
F |C and F

(h,d)
C|F ,

respectively. Note that we select window length 24 for both single and multivariate SSA
in forecasting these series. In model selection for VAR model we use Akaike Information
criterion, AIC, and Schwarz Information Criterion, SC, values to identify the VAR model
order. The symbol ∗ indicates the significant results on the 1% level.

As we mentioned earlier the Granger causality test results confirm that there is a
significant relationship between the Food and the Chemical series. To examine this using
the SSA technique, next we consider MSSA with d additional observations for one series.
For example, we use the Food series up to time t, and the Chemical series up to time
t + d in forecasting h step ahead of the Food series to compute F

(h,d)
F |C . We use similar

procedure in forecasting the Chemical series. We expect this additional information to
give better results in both forecasting accuracy and the direction of change prediction.

Let us first consider the results obtained for the Food series using extra information
of Chemical series. As can be seen from Table 11, the accuracy of the results obtained
using MSSA are better than those obtained using SSA for h ≥ 6 with respect to F

(h,d)
F |C

column MSSA
SSA

. The MSSA also improved predictability of the direction of change of the

Food series for all considered horizon (according to D
(h,d)
C|F column MSSA

SSA
in Table 12). The

results show that, for the Food series, we have improved both accuracy and direction of
change of the forecasting results for h ≥ 6. Furthermore, the prediction of correct change
has been improved for h ≤ 6. This indicates that we can at least improve the direction of
change predictability for the Food series using extra information of the Chemical series.

Note also that, F
(h,d)
F |C for h = 1, . . . , 6 is equal to 1 or slightly grater than 1 which

indicates that the multivariate version could not help in short horizon forecasting. To
examine this more precisely, we need to increase our forecasting period. In average, we
were able to improve both forecasting accuracy and direction of change predictability by
4%. As the results show, the VAR model can not help us in forecasting the Food series
using extra information of the Chemical series according to the results provided in the
second column of Tables 11 and 12. To have more comparison, we have compared VAR
results and those obtained by MSSA. As it can be seen from the tables, the results obtained
by MSSA are much better than those provided using the VAR model. On average, the
MSSA results are up to 50% and 13% better than the VAR model in forecasting accuracy
and predictability of the direction of change.

Let us now consider the results of forecasting the Chemical series having extra ob-
servation of the Food series. As can be observed from columns F

(h,d)
C|F , D

(h,d)
C|F , the errors

for the MSSA forecast and direction of change, with d additional observations, are much
smaller than those obtained for the univariate SSA. These results are also better than the
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results obtained using multivariate approach with zero lag difference. This is not surpris-
ing as the additional data used for forecast is highly correlated with the values we are
forecasting. As the results show the accuracy performance of MSSA has been significantly
increased. However, it seems that this correlation, either linear and nonlinear, does not
capture by the VAR model properly.

For example, in forecasting one step ahead of the Chemical series having extra infor-
mation of the Food series, comparing to univariate case, we have improved the accuracy
and the direction of change of the forecasting results up to 45% and 35% (column 4 of
Tables 11 and 12), respectively. On average, the forecasting accuracy results have been
improved up to 39% and 22% using MSSA and VAR model, respectively. However, the
direction of change results, presented in table 12 for the Chemical series, confirm that
even though VAR model could help us to improve the forecasting accuracy, it fails to
improve the direction of change predictability. Comparing MSSA prediction of change
results and forecasting accuracy results relative to VAR model indicates that the MSSA
technique are up to 24% and 9% better than the VAR model, respectively.

Moreover, F
(h,d)
C|F > F

(h,d)
F |C indicates that, in forecasting this period of the series, the

Food series is more supportive than the Chemical series in terms of forecasting accuracy.
Furthermore, the results of Table 12 confirm that there exists D-feedback between

the Food and Chemical series for h = 1, . . . , 12. This means that considering both the
Food and Chemical series simultaneously and using SSA, we are able to improve the
predictability of the direction of change. On average, the MSSA results has improved
the percentage of correct prediction of the series movement up to 4% and 22% for the
Food and the Chemical series, respectively. Moreover, there exists F-feedback between
the Food and the Chemical series for h = 6, . . . , 12.

Finally, comparing VAR results and ARIMA results in terms of forecasting accuracy
and direction of change predictability confirms that for the Food series VAR models
can not help us to improve our results whilst there exists Granger causality between
series. However, as the results show, VAR model can improve the results obtained for
the Chemical series except for h = 7 and 9 (this probably happened as our out-of-sample
size is short). On average, for the Chemical series, MSSA and VAR model enable us to
improve the forecasting accuracy up to 34% and 12%, respectively. However, there is no
improvement for the direction of change prediction using VAR model for both the Food
and the Chemical series.

6 Summary and conclusion

Given that the dynamics of the economy of many countries has gone through many
political and structural changes over different periods of time, one needs to make certain
that the method of prediction is not sensitive to the dynamical variations.

In this regard the Singular Spectrum Analysis (SSA) technique can be considered as a
technique which is not too sensitive to the structural breaks. The data considered in this
study has a complex structure and contains structural changes; as a consequence, we found
superiority of SSA over classical techniques. We are motivated to use SSA because of its
capability in dealing with stationary as well as non-stationary series. Moreover, contrary
to the traditional methods of time series forecasting (both autoregressive or structural
models that assume normality and stationarity of the series), the SSA technique is non-
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parametric and makes no prior assumptions about the data.
In this report, we have described the methodology of SSA and demonstrated that SSA

can be successfully applied to the analysis and forecasting of the industrial production
series for the United Kingdom. This research has illustrated that the SSA technique
performs well in the simultaneous extraction of harmonics and trend components even in
circumstances where there is a structural break in series. The comparison of forecasting
results showed that SSA is more accurate than ARIMA model confirming the results
obtained in [16]. The multivariate SSA also outperformed the VAR model in predicting
the values and the direction of the production series according to the RMSE criterion and
the direction of change results.

We also considered empirical cumulative distribution function and descriptive statistics
of the errors obtained by SSA, MSSA, ARIMA and the VAR model. The results confirmed
that the errors obtained by SSA are stochastically smaller than those obtained by ARIMA
in the univariate case. Similarly, MSSA forecast errors are stochastically smaller than
those obtained by the VAR model. The results obtained from the empirical cumulative
distribution function were in line with those concluded from descriptive statistics. The
overal conclusion according to these criteria is, the SSA outperforms the ARIMA model
in the univariate approach, and MSSA outperforms VAR model in multivariate approach.

We therefore conclude that the SSA technique can be considered as a reliable method
for predicting recessions and expansions. The series considered in this research are some
examples of different seemingly complex series with potential structure which can be easily
analysed by SSA and could provide a typical example of a successful application of SSA.

We also developed a new approach in testing for causality between two arbitrary uni-
variate time series. We introduced a family of causality tests which are based on the
singular spectrum analysis (SSA) analysis. The SSA technique accommodates, in princi-
ple, arbitrary processes, including linear, nonlinear, stationary, non-stationary, Gaussian,
and non-Gaussian. Accordingly, we believe our approach to be superior to the tradi-
tional criteria used in Granger causality tests, criteria that are based on autoregressive
integrated moving average (p, d, q) or multivariate vector autoregressive (VAR) represen-
tation of the data; the models that impose restrictive assumptions on the time series
under investigation.

Several test statistics and criteria are introduced in testing for casuality. The criteria
are based on the idea of minimizing a loss function, forecasting accuracy and predictability
of the direction of change. We use the univariate SSA and multivariate SSA in forecasting
the value of the series and also prediction of the direction.

The performance of the proposed test was examined using the Food production series
and the Chemical series for the United Kingdom. It has been shown that, on average,
the Chemical series causes the Food series and the Food series causes the Chemical series
in terms of direction of change predictability. Therefore, we conclude that there exists a
SSA causal relationship between the Food and the Chemical series in forecasting direction
of change. We also found that there exist one way causality between the Food and the
Chemical series in terms of forecasting accuracy criterion for horizon longer than 6 months.
On the other hand the VAR model fails to use the dependence between the Food and the
Chemical series.
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Series RRMSE
h SSA

ARIMA
V AR

ARIMA
MSSA

ARIMA
MSSA
V AR

Food products 1 1.01 0.98 1.07 1.09
(Chemical) 3 1.00 1.36 1.03 0.75
¿ 6 0.96 1.37 0.95 0.70∗

12 0.95 1.32 0.94 0.71∗

Chemicals 1 0.81∗ 0.54∗ 0.56∗ 1.03
(Electricity and Gas) 3 0.89 0.90 0.54∗ 0.60∗

¿ 6 0.96 1.19 0.68∗ 0.57∗

12 1.03 1.38 0.52∗ 0.38∗

Basic metals 1 0.68∗ 0.54∗ 0.51∗ 0.94
(Fabricated metal) 3 0.61∗ 1.28 0.53∗ 0.41∗

¿ 6 0.87 1.49 0.60∗ 0.40∗

12 1.00 1.42 0.65∗ 0.45∗

Fabricated metal 1 0.46∗ 0.82∗ 0.44∗ 0.54∗

(Vehicles) 3 0.48∗ 0.76∗ 0.46∗ 0.61∗

¿ 6 0.59∗ 0.76∗ 0.58∗ 0.77∗

12 0.74∗ 0.79∗ 0.65∗ 1.17

Machinery 1 0.62∗ 0.65∗ 0.44∗ 0.78∗

(Electrical machinery) 3 0.68∗ 0.90 0.52∗ 0.58∗

¿ 6 0.77∗ 0.92 0.67∗ 0.73∗

12 0.77∗ 0.80∗ 0.72∗ 0.90

Electrical machinery 1 0.56∗ 0.46∗ 0.48∗ 1.04
(Machinery) 3 0.65∗ 0.79∗ 0.61∗ 0.78∗

¿ 6 1.04 1.26 0.97 0.77∗

12 0.94 1.03 0.94 0.91

Vehicles 1 0.69∗ 0.78∗ 0.66∗ 0.84∗

(Basic metal) 3 0.86 1.14 0.82∗ 0.72∗

¿ 6 0.99 1.22 0.92∗ 0.75∗

12 0.86∗ 1.06 0.90 0.85∗

Electricity and Gas 1 0.35∗ 0.34∗ 0.33∗ 0.97
(Chemicals) 3 0.46∗ 0.74∗ 0.49∗ 0.70∗

¿ 6 0.60∗ 0.79∗ 0.56∗ 0.76∗

12 0.66∗ 1.08 0.60∗ 0.61∗

Average 1 0.61 0.63 0.53 0.85
3 0.69 0.99 0.62 0.63
6 0.86 1.14 0.76 0.66
12 0.89 1.11 0.82 0.74

Score 1 7 8 7 5
3 7 5 7 8
6 7 3 8 8
12 6 2 8 7

Table 7: Forecasting results for the UK industrial production series using ARIMA, SSA,
VAR and MSSA methods.
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Method N Mean SD Min Median Max
1-step ahead

ARIMA 256 -0.0623 0.1246 -0.549 -0.0223 0.252
SSA 256 -0.0105 0.0854 -0.419 -0.0071 0.216
VAR 256 -0.0021 0.0838 -0.410 -0.0180 0.193
MSSA 256 -0.0015 0.0704 -0.293 -0.0002 0.159

3-step ahead
ARIMA 240 -0.0760 0.1290 -0.582 -0.0259 0.246
SSA 240 -0.0217 0.1053 -0.468 -0.0112 0.225
VAR 240 -0.0492 0.1513 -0.584 -0.0221 0.261
MSSA 240 -0.0172 0.1001 -0.463 -0.0048 0.121

6-step ahead
ARIMA 216 -0.0779 0.1367 -0.6082 -0.0289 0.177
SSA 216 -0.0424 0.1274 -0.5938 -0.0251 0.154
VAR 216 -0.0670 0.1795 -0.6816 -0.0271 0.279
MSSA 216 -0.0382 0.1182 -0.3880 -0.0125 0.124

12-step ahead
ARIMA 168 -0.1280 0.1559 -0.6922 -0.0670 0.134
SSA 168 -0.0952 0.1496 -0.6310 -0.0579 0.129
VAR 168 -0.0869 0.2045 -0.7128 -0.0474 0.283
MSSA 168 -0.0759 0.1323 -0.5740 -0.0412 0.117

Table 8: Descriptive statistics for out-of-sample absolute forecasting errors.
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ARIMA-SSA (1 step ahead) VAR-MSSA (1 step ahead)

ARIMA-SSA (3 step ahead) VAR-MSSA (3 step ahead)

ARIMA-SSA (6 step ahead) VAR-MSSA (6 step ahead)

ARIMA-SSA (12 step ahead) VAR-MSSA (12 step ahead)

Figure 4: The empirical cumulative distribution functions for the absolute forecasting
errors of ARIMA, SSA, VAR and MSSA. 33



Series h ARIMA SSA VAR MSSA
Food products 1 0.87∗ 0.77∗ 0.77∗ 0.84∗

3 0.77∗ 0.83∗ 0.77∗ 0.77∗

6 0.89∗ 0.89∗ 0.93∗ 0.93∗

12 0.67 0.71∗ 0.76∗ 0.76∗

Chemicals 1 0.71∗ 0.55 0.77∗ 0.71∗

3 0.70∗ 0.67 0.53 0.70∗

6 0.74∗ 0.74∗ 0.52 0.81∗

12 0.67 0.62 0.62 0.81∗

Basic metals 1 0.68∗ 0.81∗ 0.74∗ 0.81∗

3 0.80∗ 0.80∗ 0.50 0.83∗

6 0.70∗ 0.67 0.44 0.70∗

12 0.71∗ 0.76∗ 0.29 0.76∗

Fabricated metal 1 0.61 0.71∗ 0.81∗ 0.81∗

3 0.70∗ 0.83∗ 0.60 0.83∗

6 0.70∗ 0.67 0.59 0.70∗

12 0.48 0.71∗ 0.90∗ 0.81∗

Machinery 1 0.74∗ 0.77∗ 0.74∗ 0.87∗

3 0.80∗ 0.73∗ 0.57 0.90∗

6 0.74∗ 0.74∗ 0.70∗ 0.89∗

12 0.52 0.67 0.76∗ 0.67

Electrical machinery 1 0.68∗ 0.74∗ 0.77∗ 0.77∗

3 0.77∗ 0.70∗ 0.70∗ 0.80∗

6 0.67 0.70∗ 0.56 0.59
12 0.71∗ 0.76∗ 0.48 0.67

Vehicles 1 0.65 0.71∗ 0.68∗ 0.81∗

3 0.77∗ 0.67 0.70∗ 0.67
6 0.74∗ 0.70∗ 0.67 0.74∗

12 0.67 0.81∗ 0.67 0.71∗

Electricity and Gas 1 0.48 0.87∗ 0.81∗ 0.94∗

3 0.63 0.87∗ 0.53 0.93∗

6 0.96∗ 1.00∗ 0.52 1.00∗

12 0.57 0.71∗ 0.62 0.67∗

Average 1 0.68 0.74 0.76 0.82
3 0.74 0.76 0.61 0.80
6 0.77 0.76 0.62 0.80
12 0.63 0.72 0.64 0.73

Table 9: Direction of change results for the UK industrial production series using ARIMA,
SSA, VAR and MSSA methods.
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ZX|Y ZX number
1 1 a
1 0 b
0 1 c
0 0 d

Total n = a + b + c + d

Table 10: An arrangement of ZX and ZX|Y in forecasting n future points of the series X.

Figure 5: The UK Food production (bold) and Chemical series (thin) over the period
Feb-1978 to Aug-2009.

h F
(h,d)
F |C F

(h,d)
C|F

MSSA
SSA

V AR
ARIMA

MSSA
V AR

MSSA
SSA

V AR
ARIMA

MSSA
V AR

1 1.05 1.08 0.62* 0.55* 0.72* 0.83*
2 1.03 1.10 0.55* 0.74* 0.61* 0.86*
3 1.02 1.11 0.50* 0.69* 0.72* 0.85*
4 1.03 1.14 0.52* 0.73* 0.80* 0.86*
5 1.00 1.12 0.53* 0.67* 0.98 0.83*
6 0.90 1.15 0.48* 0.85* 1.00 0.73*
7 0.85* 1.17 0.44* 0.60* 1.06 0.74*
8 0.87* 1.08 0.45* 0.60* 0.95 0.72*
9 0.85* 1.06 0.43* 0.53* 1.08 0.60*
10 0.83* 1.07 0.39* 0.54* 0.97 0.59*
11 0.92 1.09 0.49* 0.42* 0.92 0.68*
12 0.97 1.07 0.66* 0.45* 0.80* 0.78*

Average 0.96 1.10 0.50 0.61 0.88 0.76

Table 11: The value of RRMSE in forecasting h step aheads for Food and Chemical series
for d = 12.
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h D
(h,d)
F |C D

(h,d)
C|F

MSSA
SSA

V AR
ARIMA

MSSA
V AR

MSSA
SSA

V AR
ARIMA

MSSA
V AR

1 0.89 1.08 0.93 0.65* 0.96 1.00
2 0.96 1.00 0.88 0.90 0.91 1.05
3 0.93 1.29 0.78* 0.95 1.29 0.89
4 0.92 1.14 0.85* 0.90 1.11 0.95
5 0.96 1.25 0.80* 0.81* 1.25 0.76*
6 0.96 1.19 0.84* 1.00 1.67 0.63*
7 0.98 1.21 0.86* 0.57* 1.06 0.74*
8 1.00 1.17 0.78* 0.84* 1.00 0.89
9 0.95 1.05 0.86* 0.88 1.13 0.94
10 1.00 1.00 0.90 0.86* 1.07 1.07
11 1.00 0.93 1.07 0.53* 1.08 0.87*
12 0.92 0.73 0.85* 0.50* 0.67* 1.07

Average 0.96 1.09 0.87 0.78 1.10 0.91

Table 12: Post sample relative percentage of the corrected forecast sign for Food and
Chemical series.
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