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1 Introduction

Evaluating density forecasts has been a very active field of research in recent years as both

academics and practitioners emphasize the broader information content of a density forecast

relative to a point forecast (see Tay and Wallis (2000) for a recent survey). Accurate density

forecasts facilitate decision making by policy makers and business managers alike. Prime

examples include the fields of financial risk management, e.g. Diebold et al. (1998), and

Berkowitz (2001), and monetary policy, e.g. Bache et al. (2010).

The pioneering work of Diebold et al. (1998) proposed using the probability integral trans-

formation (PIT) due to Rosenblatt (1952) to assess adequacy of predictive density models.

The PITs are defined as ut =
∫ yt
−∞ f(v|Ft−1)dv where f(yt|Ft−1) is the conditional density of

the process {yt}. Under correct model specification, the PITs should be i.i.d. U [0, 1]. Since

then numerous articles have proposed extensions and alternative testing approaches to assess

density forecasts by evaluating the statistical properties, uniformity and independence, of the

{ut}, see Corradi and Swanson (2006) for a recent survey. However, this literature has mostly

focused on univariate models and there has been only few studies that proposed methods

to deal explicitly with multivariate predictive densities.1 Diebold et al. (1999) generalized

Diebold et al. (1998) approach to the multivariate case by decomposing the joint predictive

distribution into its marginals and conditionals, whose respective PITs, as in the univariate

case, should be i.i.d. U [0, 1]. These properties are assessed by inspection of histograms and

autocorrelograms of the PITs. More recently, Bai and Chen (2008) adopted the martingale

transformation approach of Bai (2003) to the multivariate case, which requires the use of

single-indexed empirical processes to make the computation of the test feasible. Kalliovirta

(2008), extending the work of Berkowitz (2001) to the multivariate case, developed a battery

of test statistics based on a further transformation of PITs to normality, i.e. zit = Φ−1(uit) for

i = 1, 2, . . . , n. The resulting processes zit are also called quantile residuals of the assumed pre-

dictive model. Both Bai and Chen (2008) and Kalliovirta (2008) focus on in-sample dynamic

specification testing.
1There is a growing literature on testing the goodness of fit of various copula functions in the multivariate

context, see Berg (2009) for a recent survey and power comparison.
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In this paper we offer a new framework for out-of-sample evaluation of density forecasts

in a multivariate context. We build up on the “autocontour” approach of González-Rivera

et al. (2009) and González-Rivera and Yoldas (2010) applied to the second transformation of

the PITs to normality, i.e. quantile residuals, as in Berkowitz (2001) and Kalliovirta (2008).

The autocontour approach is based on the generalized residual of a location-scale time

series model, i.e. εt = (yt − µt|t−1)/σt|t−1 where µt|t−1 is the conditional mean and σt|t−1 is

the conditional standard deviation of the process. Under correct specification, the generalized

residual should be i.i.d. with density f(εt). The autocontour is the n-dimensional probability

contour of the multivariate density of the process {εt} under i.i.d-ness, i.e. for n = 2 and lag

i the bivariate density is given by f(εt, εt−i) = f(εt)f(εt−i). Fixing the probability contained

within a given autocontour is the basis of a testing procedure for model specification. We

generalize this methodology to evaluate out-of-sample predictive densities based on quantile

residuals. There are at least two advantages of working with quantiles residuals. First, it

allows for a broad range of specifications beyond the location-scale model, even though this

is the most common in the econometric literature. Secondly, the shape of autocontour may

be difficult to obtain when the density functional form of the generalized residual becomes

more complex. In this case we need to implement numerical procedures to obtain the right

probability mass of each autocontour, see González-Rivera et al. (2009). With the quantile

residual we only deal with Gaussian autocontours that are mathematical and graphically

very easy to implement. Our paper contributes to the limited literature on multivariate

predictive density evaluation by proposing a computationally simple approach that uniquely

combines formal testing with graphical illustration, making the visualization aspect one of

the great advantages of this methodology. The proposed tests target the joint hypothesis of

independence and normality of the quantile residual vector. The shape of the autocontours

is the key to detect violations in both directions. The statistical properties of the tests

developed in González-Rivera et al. (2009) translate easily into the out-of-sample context,

so that standard asymptotic distributions hold. In some instances parameter uncertainty is

asymptotically irrelevant but in those where parameter estimation may play a role, we show

that a parametric bootstrap procedure delivers very good finite sample properties of the tests.

We illustrate our methodology with an empirical application on daily returns to value and
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growth equity portfolios. We evaluate the bivariate density forecasts of these two portfolios

from 2006 to 2009. While in-sample, a DCC model with bivariate Student-t seems to be

adequate, out-of-sample our tests rejects this density because it is unable to accommodate

the high volatility events of 2007 and 2008.

The rest of the paper is organized as follows. In Section 2 we present the testing framework

and we discuss the role of parameter estimation on the distributions of the proposed tests. In

Section 3 we provide a detailed assessment of the finite sample performance of the tests. In

Section 4, we offer an empirical application on evaluating predictive densities for value and

growth portfolios, and in Section 5 we conclude.

2 Testing Methodology

2.1 Quantile Residuals

Let yt = (y1t, . . . , ynt)′ denote the vector of interest with conditional density function f(yt|Ft−1)

where Ft−1 is the information set available at time t − 1, i.e. Ft−1 = σ{yt,yt−1, ...}.2 Con-

sider a parametric density forecast model for yt, say g(yt|xt−1 ,θ) where xt−1 is an Ft−1

measurable vector and θ is a vector of parameters such that θ ∈ Θ ⊂ Rk. Under correct

density model specification we have g(yt|xt−1 ,θ0) = f(yt|Ft−1) a.s. for some unknown true

parameter vector θ0 ∈ Θ. The predictive density function of yt can be decomposed as as

follows

g(yt|xt−1,θ) =
n∏
j=1

gj(yjt|xt−1,Aj−1,θ), (1)

2For simplicity we do not consider predictor variables in the information set, but the extension should be
straightforward.
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where Aj−1 = σ{Y1t, . . . , Yj−1,t}.3 Then, the PITs are given by ujt ≡ Gj(yjt|xt−1,θ) =∫ yjt
−∞ gj(u|xt−1,Aj−1,θ)du and the vector of quantile residuals take the following form

zt(θ) =



Φ−1(G1(y1t|xt−1,θ))

Φ−1(G2(y2t|xt−1,θ))
...

Φ−1(Gn(ynt|xt−1,θ))


, (2)

where Φ−1(.) denotes the inverse cumulative distribution function of the standard normal

distribution. Under mild regularity conditions and for the correct specification of the density

each Φ−1(ujt) should be i.i.d. N(0,1), so that the vector zt(θ0) will be i.i.d. N(0, In).

Furthermore Kalliovirta (2008) proposes a transformation of the vector of quantile residu-

als that yields a univariate stochastic process, which is also i.i.d. standard normal. Specifically,

by generalizing the transformation proposed in Clements and Smith (2000) and Clements and

Smith (2002), she shows that the univariate process vt(θ0) = wt(θ0)
∑n−1

j=0
(−1)j

j! [ln(wt(θ0))]j ,

where wt(θ0) = Πn
j=1Gj(yjt|xt−1,θ0), is i.i.d. uniformly distributed. Then, the transforma-

tion to normality qt(θ0) = Φ−1(vt(θ0)) delivers a quantile residual that is i.i.d. N(0, 1).

2.2 Test Statistics

The i.i.d. normality of the quantile residuals will hold only when the assumed conditional

density forecast model coincides with the true conditional density of yt, i.e. g(yt|xt−1 ,θ0) =

f(yt|Ft−1) a.s. Hence, the adequacy of any density forecast model can be evaluated by

checking the i.i.d. normality of the quantile residuals. For now we will assume that θ0 is

known. We will relax this assumption when we discuss the impact of parameter uncertainty

on the distribution of our test statistics.

We are interested in testing the following null hypotheses on

(i) the transformed vector of quantile residuals

H0 : qt(θ0) ∼ i.i.d.N(0, 1). (3)
3In general, the ordering does not have to be from 1 to n, i.e. the joint density can be decomposed in n!

ways. This does not have an impact on the results presented below.
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and

(ii) the vector of the quantile residuals

H0 : zt(θ0) ∼ i.i.d.N(0, In), (4)

In both cases H1 is simply negation of the null. We develop test statistics that are designed

to test the joint hypothesis of independence and density functional form on zt and qt.4

Let us now focus on the univariate aggregated quantile residual process and consider

the joint distribution of qt and qt−k for k ≤ K < ∞. Due to independence and normality

implied by the null hypothesis, their joint pdf is given by φ(qt, qt−k) = 1
2π exp

(
−1

2

(
q2t + q2t−k

))
.

For this process we define the autocontour, ACRα,kq , as the set of points in the hyperplane

(qt, qt−k) that results from horizontally slicing the joint density function at a fixed value, say

φα, to guarantee that the resulting set contains 100α% of observations. This is effectively the

probability contour plot of φ(qt, qt−k) with probability mass equal to α. The formal definition

of ACRα,kq is

ACRα,kq :=

{
B (qt, qt−k) ⊂ R2

∣∣∣∣∣
∫ √aα
−√aα

∫ h(qt)

−h(qt)

1
2π

exp
(
−1

2
(
q2t + q2t−k

))
dqtdqt−k ≤ α

}
, (5)

where B(., .) is a set in R2, aα = −2 ln(2πφα), and h(qt) =
√
aα − q2t . ACRα,kq will have

100α% coverage only when both assumptions under the null, correct dynamic specification

and density functional form, are satisfied. A graphical illustration for different coverage levels

is given in Figure 1.

Let T and P denote the number of observations in the full sample and the prediction

sample respectively. We define an indicator series with respect to the ACRα,kq autocontour

as follows

Iα,kq,t = I
(

(qt, qt−k) /∈ ACRα,kq
)

t = R+ k + 1, . . . , T, (6)

4For ease of exposition we will suppress the parameter vector argument in the quantile residuals until we
deal with the parameter uncertainty problem.
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where R = T −P , and I(.) denotes the usual indicator function. For the normal autocontour,

we construct this indicator series as follows

Iα,kq,t = I
(
q2t + q2t−k > aα

)
, t = R+ k + 1, . . . , T. (7)

Given the quantile residuals, we only need to obtain the aα value to make this definition

operational. Since q2t + q2t−k is chi-squared distributed with two degrees of freedom, it follows

that aα = −2 ln(1−α). Let pα = 1−α, then it is straightforward to show that E[Iα,kq,t ] = 1−α

and V ar(Iα,kq,t ) = α(1− α). Furthermore, Iα,kq,t is autocorrelated with autocovariance function

Cov
(
Iα,kq,t , I

α,k
q,t−s

)
= I(s = k)

[
P
(
Iα,kq,t = 1, Iα,kq,t−s = 1

)
− p2

α

]
.

Hence, Iα,kq,t exhibits a dependence structure similar to a restricted MA(k) process. By ex-

ploiting the statistical properties of this indicator process under the null, we will evaluate the

adequacy of the one-step-ahead density forecast.

Two tests are provided. By fixing the probability α and the lag k, we can construct a

t-test based on the sample values of pα. Furthermore, by jointly analyzing several autocontour

coverage levels, say α = (α1, . . . , αm)′ we can construct a chi-squared test based on the the

corresponding sample values of the vector pα = (pα1 , . . . , pαm)′. Both statistics amount to

test for the independence and density functional form of the aggregated quantile residual qt.

A t-test to evaluate one-step-ahead density forecasts Define p̂α,kq = 1
P−k

∑T
t=R+k+1 I

α,k
q,t .

Under the null hypothesis given in Equation (3), we have

tα,kq =
√
P − k(p̂α,kq − pα)

σα,kq

d→ N(0, 1),

where σα,kq =
√
pα(1− pα) + 2Cov

(
Iα,kq,t , I

α,k
q,t−k

)
.

We can examine the lag structure of tα,kq for k = 1, . . . ,K and collect those t-statistics in

a graph, which we call autocontourgram, (see Section 4 for various empirical examples). In

certain applications, such as financial risk management, a specific coverage level may be of

particular interest, which makes tα,kq very useful. In other instances, it may be desirable to
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construct a test statistic that aggregates information from multiple autocontours and covers

the entire density instead of specific regions. This is provided by the following test statistic.

A chi-squared test to evaluate one-step-ahead density forecasts5 Let us consider a

set of coverage levels, say α = (α1, . . . , αm)′, and the vectors pα = (pα1 , . . . , pαm)′, p̂α,k
q =

(p̂α1,k
q , . . . , p̂αm,kq )′ where p̂αi,kq = 1

P−k
∑T

t=R+k+1 I
αi,k
q,t . Under the null hypothesis given in

Equation (3), we have

Jα,k
q = (P − k)(p̂α,k

q − pα)′Ξ−1(p̂α,k
q − pα) d→ χ2(m),

ξij = min(pαi , pαj )− pαipαj + Cov(Iαi,kq,t , I
αj ,k
q,t−k) + Cov(Iαj ,kq,t , Iαi,kq,t−k).

Now consider the vector of quantile residuals, zt and let rt = (z′t, z
′
t−k)

′. Then, rt is i.i.d.

N(0, I2n). In this case, the autocontour with 100α% coverage will be a 2n-dimensional sphere.

The formal definition is given by

ACRα,kz :=

{
B (rt) ⊂ R2n

∣∣∣∣∣
∫ h1

−h1

. . .

∫ h2n

−h2n

1
(2π)n

exp

(
−

2n∑
i=1

r2it

)
dr1t . . . dr2n,t ≤ α

}
, (8)

where h1 =
√
dλ, hi =

√
dλ −

∑i−1
j=1 r

2
jt for i = 2, . . . , 2n, λ ≤ α, and dα = inf{d : ℵ(d) ≤ α}

where ℵ(.) is the cdf of a chi-squared random variable with 2n degrees of freedom. Given the

dimension of the vector of quantile residuals and the coverage level, dα can be easily computed

with numerical methods.

As in the univariate case, we proceed to construct an indicator series with respect to this

autocontour as follows

Iα,kz,t = I
(
r′trt > dα

)
, t = R+ k + 1, . . . , T. (9)

This indicator process has the same statistical properties as those of the indicator for the

univariate case and, consequently the t and chi-squared test statistics will be constructed

exactly in the same way as describe above. We will denote these test statistics as tα,kz and
5The mathematical proofs for both tests are straightforward extensions of those provided in González-Rivera

et al. (2009)
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Jα,k
z . Finally, we can follow the same strategy for the individual elements of the vector of

quantile residuals to obtain a more refined picture of the properties of the density forecasts.

We will denote the corresponding test statistics as tα,kzi and Jα,k
zi .

These tests will have power to detect potential shortcomings of a density forecast, those

coming either from misspecified dynamics or from an incorrect density functional form or from

both. The fundamental reason is that the tests deal explicitly with both implications of the

null hypothesis through the shape of the autocontours. Discrepancies between the theoretical

autocontour under the null and the actual autocontour are the key to understand the power

of the tests. For example, assume that the postulated density forecast model belongs to the

location scale family and dynamics are correctly captured, but the assumed density form is

incorrect, e.g. the true density is leptokurtic while multivariate normality is assumed. The

neglected leptokurtosis in the underlying process will be reflected in the quantile residuals.

In that case zt (qt) will be still i.i.d. but not normally distributed. The actual autocontours

will deviate from the spheres (circles) implied by normality. The discrepancy between the two

autocontours will cause a difference in the actual versus assumed coverage levels, which will

cause the tests to reject the null model. Now suppose that the postulated model correctly

captures the density functional form, but the dynamics are not fully modeled so that there

is remaining linear dependence in quantile residuals. This will translate into actual elliptical

autocontours as opposed to circles implied by the null and again the null will be rejected.

Furthermore, whenever there is neglected linear dependence, both tα,kq and Jα,k
q (tα,kz and

Jα,k
z ) statistics will exhibit a fast decaying pattern with respect to the lag displacement as

linear dependence will die off rather quickly. On the other hand, they will display persistence

when dynamic misspecification is of nonlinear type, e.g. neglected ARCH effects in financial

data.

Up to now we have assumed that the parameters of the density model are known but

in practice the parameters will be estimated. Ignoring parameter uncertainty can result in

substantial size distortions of the tests, as shown in a recent paper by Chen (2010) in the

context of moment based tests for univariate density forecast models. In an out-of-sample

context, the relevance of parameter uncertainty depends on the forecasting scheme (fixed,

rolling, or recursive) as well as on the size of the prediction sample relative to the estimation
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sample. Here we provide a theoretical analysis in case of the fixed scheme, as in Hong et al.

(2007), but similar results can be obtained under recursive and rolling schemes.

Taking a mean value expansion of p̂α,kq (θ) around θ0 we can obtain the following equation

√
P
(
p̂α,kq (θ̂)− pα

)
=
√
P
(
p̂α,kq (θ0)− pα

)
+

√
P

R

√
R(θ̂−θ0)′ lim

P→∞
E

[
∂p̂α,kq (θ)
∂θ

∣∣∣∣∣
θ=θ0

]
+op(1),

(10)

where p̂α,kq (θ̂) = 1
P−k

∑T
t=R+k+1 I(q2t (θ̂) + q2t−k(θ̂) > aα) and θ̂ is the estimator obtained from

the first R observations.6 The parameter estimators are assumed to be
√
R-consistent, i.e.

(θ̂−θ0) = OP (R−1/2). In general, this condition will be easily satisfied by m-estimators, such

as the quasi maximum-likelihood (QML) estimator. If R→∞, P →∞, and P/R→ 0 as T →

∞, the second term on the right hand side of Equation (10) will be asymptotically negligible

provided that the gradient term is bounded. Therefore, as long as the ratio of the prediction

sample to the estimation sample tends to zero as the total sample size grows indefinitely, our

test statistics can be applied to quantile residuals based on estimated parameters without

any adjustments. In situations where the condition P/R → 0 is violated we can bootstrap

the tests to approximate their asymptotic distribution. This approach provides remarkable

results in case of our tests as shown by the following Monte Carlos simulation results.7 In our

context, a parametric bootstrap is particularly relevant as the null model completely specifies

the conditional distribution of the data. Specifically, we generate B samples of size T from

g(yt|xt−1, θ̂). Let θ̂b denote the estimator under the fixed scheme from the bth bootstrap

sample, then the quantile residuals are calculated from g(yt|xt−1, θ̂b). The resulting quantile

residuals are used to calculate the test statistics, tα,kq (b) for b = 1, . . . , B. Then, the bootstrap

approximation to the p-value is given by

p̃(tα,kq ) =
1
B

B∑
b=1

I
(
|tα,kq (b)| > |tα,kq |

)
. (11)

6The analysis here exclusively focuses on the t-statistic for the aggregated quantile residual and an individual
autocontour. The same line of reasoning applies to the vector of quantile residuals and the chi-squared statistic.

7Even when P/R → 0 condition is satisfied we can obtain improvements in finite sample performance
through bootstrap as the test statistics are asymptotically distribution free under this condition, e.g. Horowitz
(2001).
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3 Finite Sample Performance

In this section we examine the size and power of the tests for several bivariate data generating

processes paying special attention to the size of the prediction sample relative to the estimation

sample.

3.1 Size

We simulate data from two VAR(1) systems under bivariate normality and bivariate Student-t:

Size 1 : yt = Ayt−1 + Σ1/2εt,

Size 2 : yt = Ayt−1 + Σ1/2εt,

(12)

where

A =

 0.15 0.05

0.15 0.45

 ,

Σ =

 1 0.3

0.3 1

 ,
εt is an i.i.d. standard Normal vector, and εt i.i.d. Student-t vector with degrees of freedom

equal to 5 with identity covariance matrix. We estimate A and Σ under the fixed fore-

casting scheme with Least Squares and apply our tests to the quantile residuals described

above. The number of Monte Carlo replications is 1000. We set T = 5000 and consider

P ∈ {250, 500, 1000, 2000}. The nominal size level is 5%. The set of autocontour coverage

levels is given by α = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Finally, we

set the number of bootrstrap replications equal to 500, i.e. B = 500.

The results for t-statistics are presented in Tables 1 and 2 and for the chi-squared statistics

in Table 3. The t-statistics in general have very good size properties for both tests, tq and

tz, and both assumed bivariate densities. For the smallest value of the evaluation sample

size considered (P = 250), the test statistics are slightly undersized in some cases, such

as t0.99,1
q under normal distribution. This is expected because there may not be enough

variation in the data at the extreme coverage levels to obtain a reliable estimate of the
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violation percentage for relatively small values of P . As P increases this tendency disappears

as expected. Another critical observation is that the parametric bootstrap scheme delivers

excellent results in situations where asymptotic irrelevance of parameter estimation is hard

to justify. This can be directly seen from the last rows of Tables 1 - 2 where P/R = 0.67.

The results for the chi-squared test statistics in Table 3 are similar to those of the t-

statistics. They enjoy empirical sizes fluctuating around the nominal size of 5% even in those

cases where the P/R ratio is high.8

3.2 Power

In order to assess the power of the tests, we choose the VAR(1) specification with bivariate

normality (described above as “Size 1”) as the model under the null hypothesis, and we

consider three alternative DGPs that deviate from the null in particular ways. First, we

consider a model with linear dynamics as in the null model but with a non-normal density.

Specifically we generate data from the multivariate Student-t distribution with 5 degrees of

freedom. This model corresponds to that described above as “Size 2” and we will name it

“Power 1”. With this model, we will assess deviations from density functional form in the

density forecast. The second DGP introduces non-linear dynamics in the conditional mean

vector:

Power 2 : yt = I(y1,t−1 < 0)A1yt−1 + I(y1,t−1 ≥ 0)A2yt−1 + Σ1/2εt, (13)

where,

A1 =

 0.7 0

0.3 0.7

 ,
A2 = −A1, and εt is an i.i.d. standard Normal vector. Since we maintain bivariate normality

of the vector of innovations, we would like to assess power in the direction of misspecified

dynamics in the density forecast. Finally, the third DGP will combine non-normality with

non-linear dynamics in higher moments than the mean. We consider a model with time-

varying variances and correlations as in the Dynamic Conditional Correlation (DCC) model
8When we completely rely on asymptotic irrelevance arguments and do not bootstrap the distributions of

the tests we observe some non-negligible size distortions especially when P/R is relatively large. These results
are available upon request.
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of Engle (2002). This third DGP is given by

Power 3 : yt = Ayt−1 + εt, (14)

where εt ∼ N(0,Ht), Ht = DtRtDt, Dt = diag{h11,t, . . . , hnn,t}, and each element of Dt is

modeled as a standard GARCH(1,1) process:

hii,t = ωi + αiε
2
i,t−1 + βihii,t−1, i = 1, . . . , n.

The model is complete by defining dynamics of the time-varying correlation matrix, Rt. Let

et = D−1
t εt, then Rij,t = γij,t/(

√
γii,t
√
γjj,t) where

Γt = (1− α− β)Γ + αet−1e′t−1 + βΓt−1,

and Γ = E [ete′t]. We set αi = 0.15, βi = 0.8, ωi = 1− αi − βi, α = 0.15, and β = 0.8.

Table 4 summarizes rejection rates for tz statistics at the 5% nominal size level. When the

data is generated from “Power 1” the tests are extremely powerful in detecting deviations from

normality. We observe rejection rates larger then 90% even with small prediction samples P =

250. The relatively high rejection rates at small and large coverage levels are due to neglected

leptokurtosis. When the data is generated from “Power 2”, the rejection rates are not as

high as those from “Power 1” and it seems that we need larger samples than 250 to obtain

rejection rates above 70%, but overall the results are quite satisfactory. The largest rejection

rates when neglected nonlinearity is at stake happen for autocontours with probability mass

0.1 ≤ α ≤ 0.4 and α = 0.99. This means that small to intermediate autocontours and the

autocontour associated with the tail of the distribution are more sensitive to this form of

deviation from the null. For α ∈ {0.8, 0.9} the rejection rates are very low implying that the

null and the alternative are close to each other for those particular coverage levels. Finally,

when we consider time varying variance and correlations under the alternative, we observe

that the rejection rates tend to be larger than those for “Power 2” but smaller than those

for “Power 1”. For a given prediction sample, the power seems to be more uniform across

autocontours than in “Power 1” and “Power 2”. In Table 5 we present the rejection rates
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for the test with aggregated quantile residuals tq. The conclusions are similar to those for

Table 4, however the statistics tz are more powerful than the tq tests across the three DGPs

considered.

Table 6 summarizes the results for the chi-squared tests. Similar to the case of t-statistics,

the chi-squared statistics based on the vector of quantile residuals are more powerful than

those based on the aggregated process. For DGPs “Power 1” and “Power 3”, the rejection

rates are similar with respect to the lag order. This is due to misspecification of density

functional form (Power 1) and to neglected variance/correlation dynamics (Power 3) that

create leptokurtic behavior in the quantile residuals at all lags. In DGP ’Power 2’, the sharp

drop in the rejection rates of both Jz and Jq from k = 1 to k ≥ 2 is particularly noteworthy as

it distinguishes the case of misspecified mean dynamics from other sources of misspecification.

4 Empirical Illustration

In this section we apply our methodology to the daily returns on value and growth portfolios.

Value and size are the most common styles in equity investments. For example, Morningstar

provides an equity style box as a nine-cell grid that is used to identify the investment styles of

domestic equity funds with respect to value and size. Style portfolios became subject of ex-

tensive academic research especially after the seminal work of Fama and French (1993). Even

though they have been analyzed for portfolio allocation decisions at the monthly frequency,

e.g. Guidolin and Timmermann (2008) and Patton (2004), to our knowledge no existing study

has investigated the bivariate density forecast model for value and growth portfolios at the

daily frequency.

We use the Fama-French data set available from the online Data Library of Kenneth

R. French. Stocks are sorted into small and big categories with respect to their market

capitalization. They are also sorted with respect to the ratio of market value to book value into

three categories: value, neutral, and growth. Fama and French then consider the intersection

of these categories to form a six cell grid.9 We construct our value (growth) portfolio as the
9For further details regarding the construction of portfolios and calculation of returns please refer to Kenneth

French’s web site.
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average of small value (growth) and big value (growth) portfolios. Formally, we have

rV aluet =
1
2

(Small Capitalization Value + Big Capitalization Value),

rGrowtht =
1
2

(Small Capitalization Growth + Big Capitalization Growth).
(15)

Then, the vector of interest is given by rt = (rV aluet , rGrowtht )′. Our daily sample runs from

January 2, 1990 to October 30, 2009, providing a total of 5001 observations and we hold back

the last 1000 observations for out-of-sample evaluation. Summary statistics of returns (%)

can be found in Table 7. The mean daily return is close to zero for both portfolios in the

estimation and prediction samples. We observe that the standard deviation, the range, and

the kurtosis of both portfolios are substantially larger in the prediction sample than in the

estimation sample. We should keep in mind that the prediction sample includes the turbulent

financial events of 2008 and 2009.

We set the conditional mean equal to zero for the vector of returns, which is common

practice when modeling conditional distributions of daily/weekly returns, e.g. J.P.Morgan

(1996), and Capiello et al. (2006). This is mainly because the first moment is difficult to

model at daily and higher frequencies due to the presence of noise. Furthermore, variation in

the first moments is an order of magnitude smaller than the variation in the second moments

for high frequency returns (see Andersen et al. (2010) for a detailed illustration of this point).

We consider the DCC model of Engle (2002) under bivariate Normal and bivariate Student-t

distributions to model the fat tails and the time varying second moments of the data. The

model is given by

rt = H1/2
t εt, (16)

where Ht = DtRtDt, and Dt = diag{h11,t, . . . , h22,t}. In this setup, Rt is the time-varying

correlation matrix. Based on model selection criteria and specification tests we model the

individual variances as a threshold GARCH process as in Glosten et al. (1993):

hii,t = ωi + αir
2
i,t−1 + βihii,t−1 + I(ri,t−1 < 0)δir2i,t−1, i = 1, 2.
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This specification captures the well known negative correlation between realized returns and

volatility (the leverage effect/ the volatility feedback), e.g. Bollerslev et al. (2006). Let et =

D−1
t rt. Then, the dynamics of the correlation matrix is given by Rij,t = γij,t/(

√
γii,t
√
γjj,t)

where

Γt = (1− α− β)Γ + αet−1e′t−1 + βΓt−1,

and Γ = E [ete′t].
10 The density forecast model is complete with the specification of the dis-

tribution of εt. We consider two popular densities to this end: multivariate normal and mul-

tivariate Student-t distributions. For the Student-t distribution, we still estimate the model

under normal likelihood with a QML interpretation. The degrees of freedom for Student-t

distribution is then estimated with the method of moments based on the conventional stan-

dardized residuals of the DCC model for each series, e.g. Bontemps and Meddahi (2005). The

average of the estimates is taken as the common degrees of freedom for the density forecast

model e.g. Pesaran et al. (2010). Based on this procedure we estimate the joint degrees of

freedom parameter as 10. Finally, we set the prediction sample P = 1000 and consider a fixed

scheme.

The results for the chi-squared statistics are presented in Figures 2 (under normality)

and 3 (under Student-t). All p-values are calculated using the parametric bootstrap scheme

outlined in the previous section. From Panel-a of Figure 2 we observe that Jα,kz takes large

values, with an average of approximately 38, and it is significant for all lags at 5% level. The

monotonic behavior of the test statistic with respect to the lag order indicates that the DCC

model does a satisfactory job of capturing the dynamics of the data. Similar observations

apply to Jα,kq statistic, presented in Panel-b of Figure 2. Under Student-t, Figure 3, the

values of the statistics Jα,kz and Jα,kq are smaller than those under normality indicating that

the Student-t density forecast is a better fit than the Normal density forecast. However, Jα,kz

points towards a mild rejection while Jα,kq indicates a clear rejection of the Student-t density

forecast at the conventional 5% significance level.
10We also considered the asymmetric DCC model proposed in Capiello et al. (2006) and found that there

is a weak but statistically significant leverage effect in correlation dynamics. However, this model created
convergence problems in bootstrap replications.
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To understand where the rejection comes from, we examine the t-statistics tα,kq for different

α coverage levels. In Figures 4 and 5 we report the values of the t-statistics for normal and

Student-t for α ∈ {0.1, 0.95}. For a normal density forecast, the tests fail to reject for the

central autocontour (α = 0.1) while it clearly rejects for the tail autocontour (α = 0.95).

For a Student-t density forecast, the rejection comes from both autocontours, though the

rejection is much stronger for the 95% autocontour. Overall, the DCC model provides a good

specification of the dynamics of the data and the bivariate Student-t density forecast is an

improvement over the normal density forecast, but it is not entirely satisfactory as there are

significant outlier returns in both portfolios, value and growth, coming from the high volatile

periods in late 2008 and early 2009. The improvement provided by the Student-t distribution

is also evident from Figure 6, which provides (qt, qt−1) scatter plots with normal autocontours

superimposed on the quantile residuals.

Though not directly comparable, our results are in contrast with those of Bai and Chen

(2008). They provide in-sample evaluation of a bivariate system of monthly returns on IBM

Stock and S&P 500 index and fail to reject a bivariate GARCH model coupled with Student-t

distribution. On the other hand, we agree with Pesaran and Pesaran (2010) who conducted

an out-of-sample evaluation of an equally-weighted porfolio of 17 assets. They apply the

Kolmogorov-Smirnov test to the PITs of the Student-t DCC model and do not reject the

null but they reject the Student-t DCC model with respect to VaR violations. They argue

that tests focusing on the tail of the distribution prove to be more powerful. Our results are

consistent with this conclusion, which illustrates the usefulness of our methodology in terms

of the flexibility it allows to focus on the entire distribution and/or specific regions.

5 Concluding Remarks

Noting that the literature in multivariate predictive densities is rather thin, we have aimed

to develop a new framework for the out-of-sample evaluation of multivariate density forecasts

building up on the concept of “autocontour” introduced in González-Rivera et al. (2009). The

main advantage of our method is that the autocontours for a multivariate normal density are

mathematically tractable regardless of the complexity of the dynamics of the model and the
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functional form of the assumed multivariate density. Once we obtain the quantile residuals

of the model, through a second transformation of PITs to normality, we implement a battery

of tests with standard asymptotic distributions and superior finite sample properties. In an

out-of-sample context, the uncertainty created by parameter estimation depends on the size of

the prediction sample relative to the estimation sample, which may be controlled easily by the

researcher. Nonetheless we have shown that in all instances, whether parameter uncertainty

is relevant or irrelevant, there are advantages to implementing a parametric bootstrap to

correct mild size distortions in the tests. We have illustrated our approach by evaluating the

bivariate density forecast of value and growth portfolio returns and concluded that a bivariate

Student-t DCC density forecast is not fully satisfactory to model the events of 2008 and 2009.

The rejection is not due to the dynamics provided by DCC, which seem to be adequate, but

rather to the functional form of the bivariate density that seems to require even fatter tails

in the prediction sample.
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Figure 1: Illustration of Autocontours
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Table 3: Size of chi-squared Statistics

P Jα,1
z Jα,2

z Jα,3
z Jα,4

z Jα,5
z Jα,1

q Jα,2
q Jα,3

q Jα,4
q Jα,5

q

Size 1

250 4.8 4.6 5.0 4.9 5.3 5.1 5.1 4.6 5.1 4.9

500 5.6 4.1 5.6 3.9 5.1 4.7 4.4 4.3 4.2 4.6

1000 5.6 4.9 5.7 4.9 5.4 4.8 4.0 4.6 4.5 3.8

2000 4.5 4.4 5.0 4.2 5.2 5.9 5.1 4.9 4.4 4.8

Size 2

250 6.1 4.8 4.6 5.2 5.5 4.3 4.4 6.1 5.5 4.8

500 5.6 5.7 3.9 5.2 5.5 5.4 5.2 4.9 5.4 4.1

1000 5.0 5.1 5.0 6.1 4.3 5.4 5.6 5.5 4.6 5.0

2000 4.2 4.9 4.3 4.6 5.1 3.8 5.0 5.9 5.5 5.7

Notes: This table reports simulated size of chi-squared statistics based on a para-

metric bootstrap approximation to the finite sample distribution of the test statis-

tics. T = 5000, the number of Monte-Carlo replications is 1000, the num-

ber of bootstrap replications is 500, the nominal size level is 5%, and α =

{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Details of the DGPs are given

in the main text.
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Table 6: Power of chi-squared Statistics

P Jα,1
z Jα,2

z Jα,3
z Jα,4

z Jα,5
z Jα,1

q Jα,2
q Jα,3

q Jα,4
q Jα,5

q

Power 1

250 88.9 88.4 90.1 87.3 86.8 42.1 42.1 40.8 41.5 40.7

500 99.9 100 99.9 100 100 79.4 80.3 80.6 80.6 79.8

1000 100 100 100 100 100 99.1 99.1 99.2 98.9 99.2

Power 2

250 47.5 25.1 24.1 24.1 24.3 20.6 11.0 11.4 10.0 12.0

500 86.6 50.4 49.4 50.3 51.2 49.3 17.0 19.0 19.8 22.4

1000 99.7 89.2 86.5 87.2 86.3 84.3 37.9 40.5 43.8 45.4

Power 3

250 72.9 72.5 70.9 73.5 69.7 46.5 45.2 45.2 46.8 45.7

500 94.7 93.6 94.8 94.6 93.5 71.3 72.7 69.7 69.1 69.3

1000 99.7 100 99.7 99.8 99.9 93.1 92.4 91.9 91.5 92.0

Notes: This table reports simulated power of chi-squared statistics for the

nominal size level of 5%. T = 5000, the number of Monte-Carlo repli-

cations is 1000, the number of bootstrap replications is 500, and α =

{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Details of the DGPs are given

in the main text.

Table 7: Descriptive Statistics

Full sample Estimation sample Evaluation sample

Growth Value Growth Value Growth Value

Mean 0.017 0.033 0.023 0.040 -0.005 0.001

Std Dev 1.205 1.140 1.089 0.786 1.584 2.007

Skewness -0.164 -0.444 -0.235 -0.469 -0.032 -0.254

Kurtosis 9.168 18.057 6.590 7.055 9.476 8.761

Min -8.888 -11.439 -7.430 -6.004 -8.888 -11.439

Max 10.757 9.177 5.919 4.283 10.757 9.177

Notes: The full sample runs from January 2, 1990 to October 30, 2009, with a total of

5001 observations. The evaluation sample is from November 10, 2005 to October 30,

2009 with a total of 1000 observations.
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Figure 2: Chi-squared Statistics under Normal Distribution

Panel-a: Jα,k
z

Panel-b: Jα,k
q
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Figure 3: Chi-squared Statistics under Student-t Distribution

Panel-a: Jα,k
z

Panel-b: Jα,k
q
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Figure 4: tα,kq -Statistics under Normal Distribution

Panel-a: α = 0.1

Panel-b: α = 0.95
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Figure 5: tα,kq -Statistics under Student-t Distribution

Panel-a: α = 0.1

Panel-b: α = 0.95
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Figure 6: Data and Autocontours for the Aggregated Quantile Residual Process

Panel-a: Normal DCC

Panel-b: Student-t DCC
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