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Abstract

The liberalization of electricity markets about ten years ago in the vast majority

of developed countries has introduced the need of modelling and forecasting electricity

prices. Moreover, it is interesting to compute accurate forecasts of electricity prices

both for the short-run and for the long term.

Thus, there is a need of providing methodology that is able to deal with the most

important features of electricity price series, that are well known for presenting not only

structure in conditional mean but also their conditional variance evolves over time.

In this work we propose a new model, that allows to extract conditionally het-

eroskedastic common factors from the vector of electricity prices. These common

factors, their relationship with the original vector of series, as well as the dynamics

affecting both their conditional mean and variance are jointly estimated. Considering

that ARCH and GARCH effects can be handled under the state-space formulation, the

estimation of the model is carried out in this way.
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The new model proposed is applied to extract seasonal common dynamic factors

as well as common volatility factors for electricity prices. Then, the estimation results

are used to forecast electricity prices and their volatilities in the Spanish Market.

1 Introduction

Electricity markets are deregulated in most developed countries for more than a decade.

This implies that, every day, producers and users submit their hourly bids for purchase and

sale, respectively, to the market operator. The marginal price for each hour is defined as

the bid submitted by the last generation unit that is needed to be producing for the whole

demand being satisfied. Thus, there is a marginal price for each of the 24 hours of the day,

and a 24-dimensional vector of prices is generated for each day. This procedure is illustrated

in Figure 1.

Figure 1: Market clearing price

Therefore, demand has long ago ceased to be the only variable of interest, and thus the

purpose of many researchers and electrical companies is now price modelling and forecast,

so a wide field of research is now opened.

The special features that electricity presents (not being able to be stored, and demand

to be satisfied instantaneously) are responsible for the largely unpredictable behavior of its
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price. This has created the need of developing specific models that deal with this problem,

since it has a great importance for a strategic sector in the economy of any country.

Besides, it must be considered that the high-dimensional vector of series of electricity

prices present structure both in the mean and in the variance. So, although similarities

with financial markets exist with respect to its operations, electricity price dynamics are

more complex, and the mean process of electricity log prices cannot be described simply by

a random walk because of its specific characteristics (Escribano et al., 2002 and Bunn and

Karakatsani, 2003).

There are many authors that have developed methodology for modelling and forecasting

electricity prices, and most of them deal with one-day-ahead forecasting (useful for scheduling

of the power generation units). But not many of them face the problem of reducing the risk

that every bilateral contract imply, this can be done by forecasting electricity prices with

an horizon that covers, at least, the length of the contract, usually one year, which means

long-term forecasting.

Some authors whose well known works are related to short-term forecasting are Nogales

et al. (2002), Contreras et al. (2003), Conejo et al. (2005) which used time series models

to produce one-step-ahead forecasts for electricity prices in some weeks, both in the Spanish

and the Californian Market. More recently, García-Martos, Rodríguez and Sánchez (2007)

provided a computational experiment to obtain the combination of univariate time series

models with the best global performance in the period under study (1998-2003). Weron

and Misiorek (2008) made a comparison among several parametric and non-parametric time

series methodologies.

On the other hand, Vehvilainen and Pyykkonen (2005) provided medium-term forecasts

for monthly electricity prices in the Nord Pool. They included exogenous variables that

affect the prices, such as temperature. Conejo et al. (2009) used the prices of the futures

market products as explanatory variables in the long term and provided the uncertainty

associated to pool prices in the medium and long term in the Leipzig Market (EEX). Alonso

et al. (2008) computed point forecasts and bootstrap forecast intervals for electricity prices

in the Spanish market using a Seasonal Dynamic Factor Model.

Higgs (2009) focused on modelling volatility inter-relationships in the Australian Na-

tional Electricity Market, after removing the structure in the conditional mean by auto-

regressive processes and fitting a multivariate GARCHmodel that is able to asses the volatil-
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ity spillovers between the 4 australasian markets (New South Wales, Queensland, Victoria

and South Australia).

Concerning the joint modelling of conditional mean and variance, Smith and Cottet

(2006) developed a bayesian approach for the estimation of a multivariate stochastic volatil-

ity model for the 48 half-hourly time series of prices from the New South Wales market in

Australia. Koopman, Ooms and Carnero (2007) provided novel periodic extensions of dy-

namic long-memory regression models with autoregressive conditional heteroskedastic errors

for the analysis of daily electricity spot prices in several european deregulated markets.

Moreover, it is important to produce not only daily but intradaily forecasts of the prices,

since some power generators are focused only on submitting their bids to cover peak prices

that occur at certain hours (Panagiotelis and Smith, 2008). They provided methodology for

building density forecasts of intradaily prices using multivariate skewed t distribution, and

carried out the estimation using Markov Chain Monte Carlo (MCMC) techniques.

Focusing on factor models: on the one hand, Stock and Watson (2002) explored dimen-

sionality reduction in panel data used to explain one variable, on the other hand, Peña and

Box (1987) proposed a simplifying structure for a vector of time series valid only for the

stationary case. Lee and Carter (1992) extended Principal Component Analysis to the case

in which the variables are time series, and computed long-run forecasts of mortality and fer-

tility rates by means of extracting a single common factor. Most recently, Peña and Poncela

(2004, 2006) extended the Peña-Box model to the Non-Stationary case, and Alonso et al.

(2008) provided the Seasonal Dynamic Factor Analysis. When dealing with financial time

series, we can quote the factor GARCH model of Engle (1987). More recently, Connor et al.

(2006) developed a dynamic approximate factor for extracting common and specific compo-

nents of dynamic volatility, and García-Ferrer, González-Prieto and Peña (2008) developed

a multivariate generalized independent factor GARCH model.

In this work we allow unobserved common factors extracted from the 24 hourly time series

of prices to be conditionally heteroskedastic, following a seasonal VARIMA plus ARCH or

GARCH processes, so not only the common structure in mean is extracted, but also the

common volatility factors. The Seasonal Dynamic Fator Analysis proposed by Alonso et al.

(2008), and the works by Diebold and Nerlove (1989) and Harvey, Ruiz and Sentana (1992)

for dealing with conditionally heteroskedastic disturbances in state space models are applied

and extended.
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The rest of the paper is organized as follows. In Section 2 a descriptive analyisis of

the dataset of prices in the period 1998-2007 in the Spanish Market is provided to justify

the methodology presented in this paper. In Section 3 the formulation of the Conditionally

Heteroskedastic Seasonal Dynamic Factor Analysis (GARCH-SeaDFA) is introduced, as well

as its estimation procedure by Quasi-Maximum Likelihood. Its application for modelling the

electricity prices in the Spanish Market for the period 1998-2007, as well as the computation

of hourly (one-day-ahead and year-ahead) forecasts for the prices for the whole year 2008 is

provided in Section 4, as well as volatility forecasts and prediction intervals that incorporate

conditional heteroskedasticity. Finally, in Section 5 concludes.

2 Descriptive analysis of electricity price data

In this paper the electricity prices coming from the Spanish Market are considered in the

period 1998-2008. The data coming for this Market are known for being more difficult to

forecast than others (Contreras et al., 2003), so checking the performance of the methodology

proposed in this paper for this market will be a challenging application.

Firstly, we provide a descriptive analysis of the data in the period 1998-2007, since the

last year would be used in Section 4 to validate the performance of the GARCH-SeaDFA in

terms of prediction accuracy.

Figures 2 and 3 show the boxplot of the hourly prices in the period under study (1998-

2007), and only differ between them on the scale. Variations affecting both the level and

variability of the prices depend on the hour of the day considered. These changes are related

to the load pattern provided in Figure 4.

According to Figures 2 and 3, we have selected hours 4, 9, 12 and 21 as representative

ones, just to plot the evolution over time of these hourly prices instead of all of them, that

would give a less clear figure.

Figure 5 shows the four dimensional vector of these series in the period of interest

(1998-2008). The last year is the one we are going to forecast (year-ahead forecasting and

also one-day-ahead reestimating the model to update the data daily) using the data of the

previous ones. A common pattern can be detected not only in the conditional mean but also

in the conditional variance. The common patterns can also be appreciated when plotting

all the series, the 24 ones (see Figure 6). The scale of the figures allow to detect that
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Figure 2: Boxplot of hourly prices (1998-2007).
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Figure 3: Boxplot of hourly prices (1998-2007). Y-Scale modified.
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Figure 4: Examples of the hourly load pattern, 8th-11th june 2004.

the periods in which there are high prices and volatilities for the 24 hourly time series of

electricity prices, so due to this common pattern not only in the dynamics of the conditional

mean but also in the dynamics of the conditional variance, this evidence suggests to try and

extract unobserved common factors in mean as well as common volatility factors.

Moreover, the hourly prices evolve over the time and the series present yearly patterns

and weekly seasonality.

Figure 7 shows the first differences of the log-prices for 4 of the 24 hourly time series

considered for the Spanish Market in the period 1998-2007. Clear patterns of volatility

clustering are shown. Apart from the typical features of daily prices from other financial

markets, it can be emphasized that the dynamics of electricity prices is more intrincate, since

not only the conditional variance is evolving over time, but also the conditional mean.

Besides, a common pattern in the volatility clusters can be observed in Figure 7, since

high and low volatilities correspond to same dates for all the hours presented. So, the

extraction of common volatility factors, as proposed in this paper is justified bearing in

mind those figures.

Once a common pattern has been detected not only in the dynamics of the conditional

mean but also in the conditional variance of the electricity prices in the Spanish Market, the

Conditionally Heteroskedastic Dynamic Factor Analysis is presented in the next section. It

will be used to model the 24-dimensional vector of prices in the period 1998-2007 and to
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Figure 5: Left to right and top to bottom, prices in the years 1998, 1999, 2000, 2001, 2002, 2003,

2004, 2005, 2006 and 2007.
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Figure 6: Prices for hours 4, 9, 12 and 21 in the period 1998-2008. Common pattern in conditional

mean as well as in the conditional pattern.
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Figure 7: First differences of log-prices. Hours 4, 9, 12 and 21.
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produce forecasts for the whole year 2008.

3 Formulation of the Model

3.1 Seasonal Dynamic Factor Analysis with Homoskedastic dis-

turbances

Alonso et al. (2008) developed the Seasonal Dynamic Factor Analysis (SeaDFA), which is

able to extract a r-dimensional vector of unobserved seasonal common factors from a m-

dimensional observed vector of time series (where r < m). They assume that vector yt can

be written as a linear combination of the unobserved common factors, ft, plus εt, to which

we will refer from now on as specific components or specific factors:

yt = Ω1ft + εt, εt ∼ NID(0, S) (1)

Besides, these common factors are allowed to follow a multiplicative seasonal Vector

AutoRegressive Integrated Moving Average, VARIMA(p, d, q)× (P,D,Q)s model:

(I−B)d(I−Bs)Dφ(B)Φ(Bs)ft = c1 + θ(B)Θ(B
s)w1

t , (2)

where c1 is the r-dimensional constant of the model of the common factors, φ(B) = (I −

φ1B − φ2B
2 − ... − φpB

p), Φ(Bs) = (I − Φ1B
s − Φ2B

2s − ... − ΦpB
Ps), θ(B) = (I −

θ1B − θ2B
2 − ...− θqB

q) and Θ(Bs) = (I−Θ1B −Θ2B
2s − ... −ΘQB

Qs) are polynomial

matrices r × r, B is the backshift operator such that Byt = yt−1, the roots of |φ(B)| = 0

and |Φ(Bs)| = 0 are on or outside the unit circle, the roots of |θ(B)| = 0 and |Θ(Bs)| = 0

are outside the unit circle and w1
t ∼ Nr(0,Q1) is serially uncorrelated for all leads and lags.

The homoskedastic SeaDFA is given by equations (1) and (2), and can be rewritten

under the state-space formulation, just reformulating them as an observation and transition

equation, (3) and (4), respectively:

yt = ΩFt + εt, εt ∼ NID(0, S), (3)

Ft = c+ΨFt−1 +wt,wt ∼ NID(0,Q). (4)

Concerning the evolution of the common factors over time, in general, taking into account

Ansley and Kohn (1986), any multiplicative seasonal VARIMA (p, d, q)×(P,D,Q)s model as
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given by equation (2), can be easily rewritten as a transition equation like (4). For example,

in the case of an unique seasonal ARI(p, d)×(P,D)12 common factor extracted from monthly

data (s = 12), Ψ has dimensions b× b, where b = r · (s · (D + P ) + d+ p).

Q =


 Q1 0r×(b−r)

0(b−r)×r 0(b−r)×(b−r)



b×b

, c =


 c1

0(b−r)×1



b×1b×1

and wt =


 w1

t

0(b−r)×1


 .

Focusing on equation (3), Ω = (Ω1 0r×(b−1)). For equations (3) and (4) Ft contains ft

and its (b− 1) lags.

We also assume that the disturbances εt andwt are uncorrelated for all lags, i.e. E(wtε
′
t−h) =

0,∀h.

Moreover, the model is unidentified under rotations, this problem is solved imposing re-

strictions like Q1= I or Ω′1Ω1 = I, as well as ωij = 0, for j > i, where the ωij’s are the

elements in Ω1. This is not restrictive at all since a rotation can be applied for interpreta-

tion purposes when needed. For further details on this identification issue see Geweke and

Singleton (1981).

3.2 Conditionally Heteroskedastic Seasonal Dynamic Factor Analy-

sis

In this paper we introduce the possibility of the unobserved common factors having structure

both in mean and variance, since we allow for seasonal VARIMA+ARCH/GARCH (Gen-

eralized Autorregressive Conditionally Heteroskedastic, Engle, 1982 and Bollerslev, 1986)

unobserved common factors. For this purpose the conditionally heteroskedastic disturbances

w∗
t are added in the transition equation:

yt = ΩFt + εt, εt ∼ NID(0, S) (5)

Ft = c+ΨFt−1 +w
∗
t , (6)

Disturbances εt,w
∗
t , which appear in equations (5) and (6) are mutually independent, and

w∗
t =


 w∗1

t

0(b−r)×1



b×1

. In the simplest case, we allow the disturbances of the transition

equation to follow univariate ARCH(1) models:
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w∗1
t |It−1 ∼ N

(
0r×1, diag(σ

2
1t, σ

2
2t, ..., σ

2
rt)
)
= N(0r×1,Q1t),

w∗
t |It−1 ∼ N

(
0b×1, diag(σ

2
1t, σ

2
2t, ..., σ

2
rt, 0(b−1))

)
= N(0b×1,Qt)

w∗j,t = σjtajt, ajt ∼ NID(0, 1), σ2jt = α0j + αjw
∗2
j,t−1, for j = 1, ..., r (7)

where It−1 refers to all the information available at time t− 1.

It cannot be forgotten that this is a Dynamic Factor Analysis, and that the restric-

tions provided in the homoskedastic case remain here, since otherwise the model would be

unidentified under rotations.

3.2.1 Quasi-Maximum Likelihood Estimation and Augmented Kalman filter

For estimating the parameters involved in this model, we must maximize the log-likelihood

function, and it is well known that this function is calculated for models expressed under

state space formulation using the expression:

logL = −
1

2

T∑

t=1

log((2π)n|Σt|)−
1

2

T∑

t=1

υtΣ
−1
t υ′t,

where υt are the innovations and Σt its variance-covariance matrix. For calculating these

quantities, υt and Σt, the Kalman Filter must be run, and some difficulties arise when

conditional heteroskedasticity is present in the disturbances. The equations of the Kalman

Filter (see Durbin and Koopman, 2001 for details about Kalman filtering and likelihood

evaluation) are:

Ft|t−1 = c+ΨFt−1|t−1 (8)

Pt|t−1 = ΨP ′
t−1|t−1Ψ

′ +Qt = ΨP ′
t−1|t−1Ψ

′ + diag(σ21t, σ
2
2t, ..., σ

2
rt, 0(b−r)) (9)

υt = yt − ΩFt|t−1 (10)

Σt = ΩP
′
t|t−1Ω + S (11)

Ft|t = Ft|t−1 + P ′
t|t−1ΩΣ

−1
t υt (12)

Pt|t = Pt|t−1 − P ′
t|t−1ΩΣ

−1
t ΩPt|t−1 (13)

When processing equation (9) the computation of the matrix whose diagonal contains

(σ21t, σ
2
2t, ..., σ

2
rt) is needed. Bearing in mind (7), we realize that for obtaining (σ21t, σ

2
2t, ..., σ

2
rt),
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the terms w∗2j,t−1, for j = 1..., r, must be calculated. Since they are unobservable, the equa-

tions of the Kalman Filter (8) to (13) cannot be operated directly. For solving this problem

Harvey, Ruiz and Sentana (1992) proposed substituting w∗2j,t−1 in (7) by their condicional

expectations:

σ2jt = α0j + α1jw
∗2
j,t−1 → σ2jt = α0j + α1jE(w

∗2
j,t−1|It−1) for j = 1, ..., r. (14)

Here, we propose extending the Homoskedastic Seasonal Dynamic Factor Analysis to the

Conditionally Heteroskedastic case, by means of the idea introduced by Harvey, Ruiz and

Sentana (1992), which consists of including the conditionally heteroskedastic shocks of the

common factors into the "original" state vector. This is needed because the expectation of

w∗2j,t−1 conditional on the information available at time t − 1, i.e. E(w∗2j,t−1|It−1), must be

calculated. This quantity is obtained as an output from the Kalman Filter if w∗j,t−1 is a

latent or state variable. For the transition equation, incorporating w∗
t in the "original" state

vector gives:

 Ft

w1∗
t


 =


 c

0r×1


+


Ψb×b 0b×r

0r×b 0r×r




Ft−1
w∗
t−1


+


w

∗
t

w1∗
t





 Ft

w1∗
t


 =


 c

0r×1


+


Ψb×b 0b×r

0r×b 0r×r




Ft−1
w∗
t−1


+




Ir

0(b−r)×r

Ir


w

1∗
t , (15)

and its matrix form:

FAt = c
A +ΨAFAt−1 +G

AvAt , (16)

where FAt =


 Ft

w1∗
t


 , cA =


 c

0r×1


 ,GA =




Ir

0(b−r)×r

Ir


 andΨA =


 Ψ 0b×r

0r×b 0r×r


 . Be aware

also that in equation (15), the r-dimensional, w1∗
t are playing both roles of state-vector

and disturbances, vAt denotes w1∗
t when it is a disturbance. The conditional expectation

E(vAt v
A′
t |It−1) = QA

t = diag(σ21t, ..., σ
2
rt).

Moreover, the observation equation must be replaced by:

yt =
(
Ω 0m×r

)

 Ft

w1∗
t


+ εt, (17)
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or in its matrix formulation:

yt = Ω
AFAt + εt, and E(εtε

′
t) = S, (18)

where ΩA =
(
Ω 0m×r

)
.

Once we have the formulation of the Conditionally Heteroskedastic SeaDFA given by

equations (18) and (16), the Kalman filter can be run for this "augmented" formulation.

Kalman filter recursions for the augmented formulation are given by:

FAt|t−1 = cA + ΦAFAt−1|t−1

PA
t|t−1 = ΨAPA

t−1|t−1Ψ
A′ +GAQA

t G
A′ (19)

υAt = yt − Ω
AFAt|t−1

ΣAt = ΩAPA
t|t−1Ω

A′ + S

FAt|t = FAt|t−1 + PA
t|t−1Ω

A′(ΣAt )
−1υAt

PA
t|t = PA

t|t−1 − PA
t|t−1Ω

A(ΣAt )
−1ΩAPA

t|t−1

For the calculation of QA
t in equation (19), σ21t, ..., σ

2
rt must be computed. For this purpose

the approximation given in equation (14) is used, and E(w∗j,t−1|It−1) and E(w∗2j,t−1|It−1) for

j = 1, ..., r must be calculated. But now, in the "augmented" formulation, this is easy since

w∗
t−1 can be expressed in terms of :

w∗
t−1 = E(w∗

t−1|It−1)− (E(w
∗
t−1|It−1)−w

∗
t−1), (20)

where E(w∗
t−1|It−1) are given by the last r elements in fAt−1|t−1. Besides, concerning the

variances, they can be expressed as:

E(
(
w∗
t−1

)2
|It−1) =

(
E(w∗

t−1|It−1)
)2
+ E

[
(w∗

t−1 −E(w∗
t−1|It−1))

2
]
, (21)

where E
[
(w∗

t−1 − E(w∗
t−1|It−1))

2
]
are given by the elements (b+ 1) to (b+ r) in the diagonal

of PA
t−1|t−1. So the elements in the diagonal of QA

t , i.e., σ
2
1t, ..., σ

2
rt are calculated using (14),

(20) and (21), and all the involved quantities are given by the Augmented Kalman Filter:

σ2jt = α0j + α1jE(w
∗2
j,t−1|It−1) =

= α0j + α1j

{(
E(w∗2j,t−1|It−1)

)2
+ E

[
(w∗j,t−1 −E(w∗j,t−1|It−1))

2
]}

. (22)
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Finally, the parameters of the model are estimated maximizing the expression for the

log-likelihood in the "augmented" formulation:

logLA = −
1

2

T∑

t=1

log((2π)n|ΣAt |)−
1

2

T∑

t=1

υAt
(
ΣAt
)−1

υA′t . (23)

To let the model being more general, it should manage not only transitory disturbances

following ARCH processes, but also GARCH ones, since in practice the conditional variance

of most of the data can be sufficiently described by a GARCH(1,1) model (for a revision

of these models see Tsay, 2005). So, if equation (7) is modified in such a way that the

disturbances are allowed to follow univariate GARCH(1,1) processes, then the evolution

over time of the transitory disturbances is given by:

w∗
t |It−1 ∼ N

(
0r×1, diag(σ

2
1t, σ

2
2t, ..., σ

2
rt, 0(b−r))

)
,

w∗j,t = σjtajt, ajt ∼ NID(0, 1), σ2jt = α0j + αjw
∗2
j,t−1 + βjσ

2
j,t−1, for j = 1, ..., r (24)

When the values σ2jt are needed in the Augmented Filter to calculate QA
t in equation (19),

the slight modification introduced consists of considering an additional term β1jσ
2
j,t−1, since

σ2jt = α0j + α1jw
∗2
j,t−1 + β1jσ

2
j,t−1. Thus, the following approximation is applied to calculate

QA
t :

σ2jt = α0j+α1jw
∗2
j,t−1+β1jσ

2
j,t−1 → σ2jt = α0j+α1jE(w

∗2
j,t−1|It−1)+β1jE(σ

2
j,t−1|It−2), j = 1, ..., r.

where E(w∗2j,t−1|It−1) is obtained in (22) and E(σ2j,t−1|It−2) = σ̂
2
j,t−1, for j = 1, ..., r, and it is

available from QA
t−1 = diag(σ21,t−1, ..., σ

2
r,t−1).

4 Application to electricity price data

There are two interesting problems to be solved concerning electricity price forecasting. On

the one hand, power generation units must be scheduled for the forthcoming day (24-hour

ahead) trying to maximize their profits. For this purpose the disposal of accurate one-step-

ahead forecasts is crucial.

On the other hand, the risk that bilateral contracts imply should be reduced. By means

of a bilateral contract consumers agree to purchase some amount of energy at a certain price

to a seller for a long period of time, usually a year. But everyday the sellers must go to

16



the pool and submit its own bid to buy the energy needed to cover the needs of all their

customers. So, there is also a need of computing accurate year-ahead forecasts.

4.1 The model for electricity price data in the Spanish Market

(1998-2007).

In this subsection, the results obtained when estimating the Conditionally Heteroskedastic

Seasonal Dynamic Factor Analysis for the prices in the Spanish Market are provided. In

Section 2, some of the most important features of prices were remarked, illustrating them

by means of a descriptive analysis. A common pattern (not only in conditional mean but

also in conditional variance) arose. So, conditionally heteroskedastic common factors could

be extracted. The model proposed and explained in the previous section, is able obtain from

a vector of time series, the common factors for the common structure in conditional mean.

Since these factors can present ARCH or GARCH disturbances, also common volatility

factors are extracted.

First of all, and using the test proposed by Peña and Poncela (2004) the number of

common factors is selected. Concerning the data under, the m = 24 hourly time series of

electricity prices in the period 1998-2007, r = 2 common factors are extracted. Moreover,

electricity prices exhibit a weekly seasonal pattern since there is an instantaneous relation-

ship between load and price and the consumption heavily depends on the day of the week

(see García-Martos et al., 2007), so seasonality of order s = 7 is present. The model chosen

for the common factors is a VARIMA(1,0,0)×(1,1,0)7 with univariate GARCH(1,1) distur-

bances. So, the dimensions of the transition matrix Ψ is b× b, with b = 30. The celebrated

GARCH(1,1), Bollerslev (1986) is well-known for being able to capture the structure in the

vast majority of series whose conditional variance evolves over time.

Thus, the GARCH-SeaDFA model given by (17) and (15) that is estimated for the the

particular case of Spanish Market in the period 1998-2007 is given by the following equations:
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(yt)24×1 =
(
(Ω1)24×2 024×28 024×2

)

(Ft)28×1
(w1∗

t )2×1


+ (εt)24×1 ,


 Ft

w1∗
t


 =


c30×1
02×1


+


Ψ30×30 030×2

02×30 02×2




Ft−1
w∗
t−1


+




I2

0(28)×2

I2


w

1∗
t ,

where ω12 = 0, w1∗
t has dimension 2 and contains the GARCH disturbances, and c =

(c1, c2, 01×28). Notice that from the 30× 30 matrix Ψ, only 8 parameters must be estimated

(those involved . This parameters, or linear and nonlinear relationships between them,

appear in the first r = 2 rows. All the elements in rows from r + 1 to b, are ones or zeros

(see Ansley and Kohn, 1986 for details and Alonso et al., 2008, for an example).

Figure 8 shows the 24- dimensional vector of hourly prices as well as the conditionally

heteroskedastic common factors estimated.

In Figure 9 the loading matrix that relates observed series of prices and unobserved

common factors is provided. Loads of hourly series in the first factor are all positive and

higher in those hours in which the variability is higher according to Figure 3. Besides, the

loads relating observed series and second common factors are positive for these hours in the

nigth and positive. There is a clear realtionship between the loads estimated and the pattern

of load given in Figure 4.

Figure 10 shows the common factors, their estimated GARCH(1,1) disturbances, w∗
t , and

volatilities σ21t and σ22t, where w
∗
t |It−1 ∼ N (02×1, diag(σ

2
1t, σ

2
2t)).

The results here provided, are used to compute long and short-term forecasts of electricity

prices in the Spanish Market. These forecasts are provided in the next two subsections.

4.2 Long-run forecasting

The conditionally heteroskedastic dynamic factor model estimated for the data in the period

1998-2007 is used to compute forecasts for the whole year 2008, which are very useful for the

negotiation of bilateral contracts as explained at the beginning of this section. No matter

which day in 2008 the hourly forecasts are being computed for, the last data used corresponds

to the 31st December 2007.
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Figure 8: Vector of hourly prices and unobserved conditionally heteroskedastic common factors

(1998-2007).
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Figure 9: Estimated loading matrix, Ω̂A.

20



1998 2000 2002 2004 2006 2008
-10

0

10

20

f
1,t

1998 2000 2002 2004 2006 2008
-10

-5

0

5

10

15

f
2,t

1998 2000 2002 2004 2006 2008
-10

-5

0

5

10

w
1,t

*

1998 2000 2002 2004 2006 2008
-10

-5

0

5

10

w
2,t

*

1998 2000 2002 2004 2006 2008
0

2

4

6

8

10

12

σ
1t

2

1998 2000 2002 2004 2006 2008
0

2

4

6

8

10

12

σ
2t

2

Figure 10: Common factors, f1,t and f2,t, conditionally heteroskedastic disturbances w1t and w2,t,

and its σ21t and σ22t.
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The accuracy metrics used to check the performance of the model proposed in this paper,

are those usually encountered in previous works (Conejo et al., 2005). These accuracy metrics

are the Mean Average Percentage Error (MAPE) and the MAPE2, defined respectively as:

MAPE =
1

D

D∑

d=1

emeand,

MAPE2 =
1

D

D∑

d=1

emediand,

where emeand = mean(e1,d, ...e24,d) and emediand = median(e1,d, ...e24,d). The percentage

error at hour h, day d, eh,d is given by the expression:

eh,d =
|ph,d − p̂h,d|

ph,d
,

where ph,d is the real price at hour hour h of day d, and p̂h,d is its forecast computed using

the conditionally heteroskedastic dynamic factor analysis.

In Table 1 the monthly MAPE and MAPE2 for the whole year 2008, using the model

estimated with the data from 1998 up to 2007 are shown.

It should be pointed out, that the models usualy handled to compute one-day-ahead

forecasts are no longer valid for year ahead forecasting (long-term). For example, using the

Mixed Model provided in García-Martos et al. (2007) the errors for the predicitions in 2008

are above 35%, much bigger than the 16.15% we get using the Conditionally Heteroskedastic

Model developed in this paper. This Mixed Model is used as benchmarking since is the

one with the smallest errors when dealing with short-term forecasts. Moreover, it should

be emphasized that the Mixed Model is doing intervention analysis for the outliers, and the

GARCH-SeaDFA is not, so although in this aspect the comparison is not fair, GARCH-

SeaDFA gets much better results.

4.3 One-day-ahead forecasting

The GARCH-SeaDFA model not only produce accurate forecasts in the long-run, but also

in the short-term. If the model is reestimated everyday, and one-day-ahead forecasts are

computed for all the days in 2008.
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Table 1: Year-ahead forecasting errors.

Month MAPE (%) MAPE2 (%)

January 2008 20.25 19.87

February 2008 18.00 17.91

March 2008 13.06 12.20

April 2008 13.31 12.40

May 2008 12.82 12.20

June 2008 11.10 10.38

July 2008 16.63 15.94

August 2008 18.30 17.73

September 2008 20.66 18.93

October 2008 17.31 15.60

November 2008 14.98 14.17

December 2008 17.39 15.27

TOTAL 16.15 15.22

Usually, in previous works dealing with electricity price forecasting, the last week or the

one before last week, depending on which one is a complete week, are used to evaluate the

results obtained. (Conejo et al., 2005).

In Table 2, the MAPE for these weeks is provided, as well as those obtained using the

Mixed Model by García-Martos et al. (2007). The Mixed Model was specifically designed for

one-day-ahead forecasting, and intervention analysis is performed to deal with outliers. In

the GARCH-SeaDFA model presente d in this paper, we are not incorporating intervention

analysis to the QML estimation procedure described in Section 3. This could be done as

further research, since it exceeds the goals of this paper, thus, the forecasting errors could

be improved.

Anyway, the results for the short-term are slightly better using the GARCH-SeaDFA

provided here, compared to Mixed Model. Nevertheless for long-run forecasting the fore-

casts produced with Mixed Model give much bigger errors as pointed out in the previous

Subsection.

23



Table 2: Day-ahead forecasting errors for the third week of each month in 2008.

Week MAPE MAPE

(GARCH-SeaDFA) Mixed Model (García-Martos et al., 2007)

21-27 January 2008 6.59 8.30

18-24 February 2008 9.13 7.59

24-30 March 2008 6.60 9.86

21-27 April 2008 6.72 5.14

19-25 May 2008 6.72 6.22

23-29 June 2008 5.40 5.18

21-27 July 2008 5.76 5.31

25-31 August 2008 6.77 5.52

22-28 September 2008 6.41 4.33

20-26 October 2008 6.65 9.98

17-23 November 2008 7.35 7.80

22-28 December 2008 5.66 15.61

AVERAGE 6.65 % 7.57 %
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Finally, and just to illustrate some of the results given in Table 2, Figure 11 shows the

forecasts obtained using GARCH-SeaDFA and those coming from the Mixed Model for the

week 22nd−28th December 2008. Usually this is a week difficult to forecast, since peak

demand due to Christmas affects the prices. MAPE using GARCH-SeaDFA is 5.66% and

using the Mixed Model is 15.61%.

20
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50

60

70

80

90

100

real prices
pred mixed model

pred GARCH-SeaDFA

Figure 11: One-day-ahead forecasts and real prices, 22nd−28th December 2008.

4.3.1 Volatility forecasting and prediction intervals for electricity prices

Once the model has been estimated, and price forecasts computed, it is also possible to com-

pute one-step-ahead forecasts for the common volatility factors, w∗
t . Thus, those volatility

forecasts can be used to compute prediction intervals for the prices that take into account

the fact that electricity price data present structure both in conditional mean and variance.

Given equations (5) and (6) where w∗
t |It−1 ∼ N(0, Qt), and assuming that the future

prediction errors are normally distributed, prediction intervals for electricity prices are given

by (see Rodríguez and Ruiz (2009) for details):

(ŷT+k|T − z1−α/2
√
ΣT+k|T , ŷT+k|T + z1−α/2

√
ΣT+k|T ),

where the point prediction ŷT+k|T , and its MSE, ΣT+k|T are obtained assuming known para-

meters. In practice we replace them by consistent estimates ontained by the QML procedure
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described in subsection 3.2. QML estimators have nice asymptotic properties (Durbin and

Koopman, 2001).

The results shown here to illustrate the procedure described, are one-step-ahead forecasts

for the week 17th-23rd November 2008. In general the third week of each month and more

specifically the third one in November are used by different authors to check the performance

of different forecasting methodologies applied to electricity markets. (Nogales et al., 2002,

Conejo et al., 2005).

The results shown here illustrate the procedure described, are one-step-ahead forecasts

for the week 17th− 23rd November 2008. In general, the third week of each month and more

specifically the third one in November are used by different authors to check the performance

of different forecasting methodologiesapplied to electricity markets (Nogales et al., 2002 and

Conejo et al., 2005).

Figure 12 shows real prices, point forecasts and prediciton intervals for the prices in the

third week in November 2008. These intervals incorporate conditionally heteroskedasticity

present in common factors.

5 Conclusions

This paper faces the important problem of forecasting electricity prices and their volatili-

ties in deregulated markets. Moreover, the problem of computing short-term forecasts and

specially that of long-run forecasting is still an open problem, and the methodology here

introduced is motivated by these important issues.

Electricity prices present structure both in the conditional mean and conditional vari-

ance, so it is necessary to develop methodology that is able to capture jointly both dynamics.

Although electricity prices share some features with those data coming from financial mar-

kets, also the structure in the conditional mean must be modelled. The high dimension

of the problem, 24 hourly time series, justifies the applicaion of dimensionality reduction

techniques.

In this paper we develop the Conditionally Heteroskedastic Seasonal Dynamic Factor

Analysis, allowing for unobservable common factors that exhibit conditional heteroskedas-

ticity.

The methodology developed by Harvey, Ruiz and Sentana (1992) is applied to extend
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Figure 12: Point forecasts and forecasting intervals in the week 17th−23rd November 2008.
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the Homoskedastic Seasonal Dynamic Factor Analysis by Alonso et al. (2008), to the case in

which the common factors present conditional heteroskedasticity. This new model proposed

is able to extract conditionally heteroskedastic common factors from any high-dimensional

vector of time series.

Detailed numerical results are provided for the Spanish Market, in which the prices and

volatilities have been modelled for the period 1998-2007 using the new GARCH-SeaDFA

model. Moreover, concerning forecasting, the results for all the hourly prices in the year

2008 are calculated and validated, both for the short and long term, comparing these results

with other methodologies that had been published recently and that are used here as bench-

marking models. In terms of prediction accuracy a very good performance of the model here

presented is shown both for the short and long-term. Moreover, results concerning volatility

forecasting are also included, as well as forecasting intervals that incorporate the evolution

of volatility over time.

The methods here proposed, in which the common trend of a vector of series is cap-

tured both for the conditional mean and variance, could be of application in the field of

macroeconomic data.
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