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Numbers reported here are preliminary
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Three Sets of Related Time Series

• Employment Growth Rates for n = 51 U.S. 
States (+DC)

• Industrial Production Growth Rates for n = 
16 European Countries

• Inflation Rates for n = 17 Consumption 
Sectors 
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Three Sets of Related Time Series

• Employment Growth Rates for n = 51 U.S. 
States (+DC)

• Industrial Production Growth Rates for n = 
16 European Countries

• Inflation Rates for n = 17 Consumption 
Sectors 

How Are They Related?

1. Similar Series, so similar DGPs

2. Correlated

Why is this useful for 
Forecasting

• ‘Borrow’ information across series for 
estimating parameter values

• Exploit lead-lag/Granger-causality 
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U.S. States Employment Growth Rates (1990m1-2019m12)
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U.S. States Employment Growth Rates (1990m1-2019m12)
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Series are correlated
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Covariation: Scree Plots

Growth Rates AR(12) Residuals
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Cross Section Percentile Across States

AR(12) innovation standard deviationsSpectra

Similar Dynamics
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Other Features

Kurtosis/Outliers
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Other Features

Kurtosis/Outliers

Stoch. Volatility (squint)
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Other Features

Kurtosis/Outliers Stoch. Volatility (squint)
Sum of GARCH Coefficients

t-Degrees of Freedom

distribution 
across 51 
states



13

Other Features

Kurtosis/Outliers
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Other Features

Kurtosis/Outliers

Stoch. Volatility (squint)

Time Varying Level ??

p-values of Nyblom Tests 

Level Persistence 
(sum of AR(12) coefficients)
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What do we do in this paper?

• Propose a sequence of tractable models that incorporate these features

• Examine the empirical performance of these models using 3 datasets. 
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What do we do in this paper?

• Propose a sequence of tractable models that incorporate these features

• Linear and (conditionally) Gaussian

• Estimated using Bayes methods
• Careful attention to algorithms
• Estimation in seconds (Fortran, typical workstation)

• Examine the empirical performance of these models using 3 datasets. 
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Some Building Blocks

MCMC Bayes Methods: Gelman et al (2004), Geweke (2004), Meng and Wong (1996)…  

Econometric methods and models:
 
Almuzara and Sbordonne (2022), Antolin-Diaz, Dreschel and Petrella (2024), Atkeson and Ohanian 
(2001), Bai and Ng (2002), Banbura, Giannone and Reichlin (2010), Carriero, Clark and Marecellino 
(2015), Carriero, Clark, Marecellino and Mertens  (2015), Carriero, Pettenuzzo and Shekhar (2024), 
Chan (2022), Chan and Jeliazkov (2009), Cogley and Sargent (2005), D’Agostino and Giannone (2012), 
del Negro and Otrok (2008),  Doan, Litterman and Sims (1984), Durbin and Koopman (2002), 
Giannone, Lenza and Primiceri (2015), Kim, Shephard and Chib (1998), Litterman (1986), Omori, 
Chib, Shephand and Nakajima (2007), Primiceri (2005), Sims (1993), Stock and Watson (several), ….  

and many, many others. 
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Simple Tools

Posterior Simulators:
• Gibbs
• Metropolis
• Geweke Code Checking
• Bayes Factors via Bridge Sampling 



19

Related Time Series (RTS) Model

Univariate AR(p) Model

Heavy tailed innovations

Additive Outliers

Stochastic Volatility

Pooled Information Across Series

Time Varying Parameters

Common Factors
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8 Models

0. AR(12) estimated by OLS

1. Same as (0), but estimated by Bayes Methods (shrinkage)

2. Same as (1), but using Hierarchical Priors (shrink toward common parameter 
values

3. Same as (2), but add outliers (Student-t innovations)

4. Same as (3), but add additive outliers

5. Same as (4), but add time varying volatility

6. Same as (5), but add time varying conditional mean parameters

7. Same as (6), but add common factors. RTS Model
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Model Evaluation

Pseudo-out-of-sample forecasts: horizons h = 1, 3, 6 

• Forecasting h-period growth rates:
• Root mean square error
• Quantiles and Prediction Intervals

Full Sample: Bayes Factors
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Model Evaluation

Squared error loss
(I will show root mean squared error)

qth -Quantile loss

90-10 interval loss
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Model 0: AR(12)
(Notation is overly-complicated here – but will come into play in later models)
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Model 0: AR(12)
(Notation is overly-complicated here – but will come into play in later models)

AR(12) model with constant
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Model 0: AR(12)
(Notation is overly-complicated here – but will come into play in later models)

overall scale = 1 in this model

mean

AR coefficients

innovation st. dev. (relative value)
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Model 0: AR(12)
(Notation is overly-complicated here – but will come into play in later models)

Benchmark for predictive distributions
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POOS Root Mean Squared Error – Distribution across the 51 States

Large ?
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Model 1

Model: Same as Model 0 Priors
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Model 1

Model: Same as Model 0 Priors
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Model 1

Model: Same as Model 0 Priors
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Model 1

Model: Same as Model 0 Priors
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Model 1

Model: Same as Model 0 Priors
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Posterior Draws: Algorithm 1

Standard, but with a few wrinkles

Common scale factor ω 

Metropolis for σj

Metropolis correction for initial values
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Forecasting Performance: State Employment
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Model 2

Model: Same as Model 1 Hierarchical Priors

Notation: Hierarchical Normal Distribution
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Model 2

Model: Same as Model 1 Priors: Same as Model 1
(Shrink toward common values)

except now shrinkage location and strength 
estimated from data
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Minnesota versus Hierarchical Priors (shrinkage)
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Forecasting Performance: State Employment



40



41

Model 3

Model: Same as Model 2 Priors: Same as Model 2

except

Student-t errors

additionally with 
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‘Prior’ distribution of degrees of freedom (evaluated at posterior mean)
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Forecasting Performance: State Employment
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Model 4

Model: include additive outliers Priors: Same as Model 3, but including

oj,t are additive outliers
Note: no dynamics

Same as Model 3

HN Prior for outlier scale
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Posterior distribution of σj and κj

σj κj
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Forecasting Performance: State Employment
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Model 5

Model: include stochastic volatility

ln(σj,t ) evolves as ‘random walk’
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Low Frequency approximation to random walk
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Model 5

Model: include stochastic volatility Priors: Same as Model 4, but including
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Model 5

Model: include stochastic volatility Priors: Same as Model 4, but including
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Common Volatility Path

Posterior mean
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Forecasting Performance: State Employment
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Model 6

Model: include time varying 
conditional mean parameters

Evolve as random walks
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Model 6

Model: include time varying 
conditional mean parameters

Priors: Same as Model 5, but including
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Forecasting Performance: State Employment
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Model 7: Include Common Factors

Same as Model 6, 
but now for j=1,…,n+1

Common factors

c is distributed lag of an AR(12)

μ is a common RW trend

o is an outlier
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Model 7

Model

Priors: Same as Model 6
but now including
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Forecasting Performance: State Employment
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Log-Bayes Factors – Model 7 versus
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Summary of Empirical Analysis: State Employment 

Forecasting
• Gains from Hierarchical Priors

• Exploit similar DGPs
• Gains for covariance/lead-lag
• Predictive quantile gains gains from 

• fat tails
• stochastic volatility
• time-varying mean parameters 

Which model fit better? 
Full-Sample Bayes Factors

• All features are important
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Two New Datasets
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IP Growth: 16 European Countries
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U.S. PCE Inflation: 17 Sectors
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Forecasting Performance of RTS model – through 2019m6
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Forecasting in the Aftermath of Covid
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Forecasting in the Aftermath of Covid
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Wrapping Up

What have we done ? What have we learned?

• 7 Increasingly Rich Models to 
Capture Characteristics of Related 
Macroeconomic Time Series

• Algorithms for efficiently 
computing forecasts

• 3 Empirical Applications

• Hierarchical Models help

• Common Factors Help

• Other features help for 
predictive quantiles, but not 
so much for point forecasts

Open Questions?

• Comparative 
performance 
of alternative 
models

• Why are 
predictive  R2 
so low?
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