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Three Sets of Related Time Series

* Employment Growth Rates for n=51 U.S.
States (+DC)

 |ndustrial Production Growth Rates for n =
16 European Countries

* Inflation Rates for n =17 Consumption
Sectors

How Are They Related?

1. Similar Series, so similar DGPs

2. Correlated

Why is this useful for
Forecasting

o ‘Borrow’ information across series for
estimating parameter values

* Exploit lead-lag/Granger-causality




U.S. States Employment Growth Rates (1990m1-2019m12)
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U.S. States Employment Growth Rates|(1990m1-2019m12)
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Series are correlated
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Covariation: Scree Plots

Growth Rates AR(12) Residuals

(a) Employment Growth Rates (b) AR(12) Residuals
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Log-Spectrum
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Other Features

| (a) All States
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Other Features

(@) All States ,
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Other Features

Sum of GARCH Coefficients
Kurtosis/Outliers Stoch. Volatility (squint) _—_——a-ii-;4.;. .
distribution

across 51
GARCH(1,1)-t models for the AR(12) residuals ~ states

Cjt = Ojt€jt o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

: 2 _ . 72 o2
Wlth O-j,t — aj —|_ 61,]0-]',75—1 _|_ /82,]6]',15—1

t-Degrees of Freedom

aIld Ej,t ~ tyj 35




Other Features
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Kurtosis/Outliers

Stoch. Volatility (squint)

Time Varying Level ??

Other Features

p-values of Nyblom Tests

Persistence
(sum of AR(12) coefficients)

Level

14



What do we do in this paper?

Propose a sequence of tractable models that incorporate these features

Examine the empirical performance of these models using 3 datasets.
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What do we do in this paper?

Propose a sequence of tractable models that incorporate these features
* Linear and (conditionally) Gaussian
* Estimated using Bayes methods
* Careful attention to algorithms

* Estimation in seconds (Fortran, typical workstation)

Examine the empirical performance of these models using 3 datasets.
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Some Building Blocks
MCMC Bayes Methods: Gelman et al (2004), Geweke (2004), Meng and Wong (1996)...

Econometric methods and models:

Almuzara and Sbordonne (2022), Antolin-Diaz, Dreschel and Petrella (2024), Atkeson and Ohanian
(2001), Bai and Ng (2002), Banbura, Giannone and Reichlin (2010), Carriero, Clark and Marecellino
(2015), Carriero, Clark, Marecellino and Mertens (2015), Carriero, Pettenuzzo and Shekhar (2024),
Chan (2022), Chan and Jeliazkov (2009), Cogley and Sargent (2005), D’Agostino and Giannone (2012),
del Negro and Otrok (2008), Doan, Litterman and Sims (1984), Durbin and Koopman (2002),
Giannone, Lenza and Primiceri (2015), Kim, Shephard and Chib (1998), Litterman (1986), Omori,
Chib, Shephand and Nakajima (2007), Primiceri (2005), Sims (1993), Stock and Watson (several), ....

and many, many others.
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Simple Tools

Posterior Simulators:

Gibbs

Metropolis

Geweke Code Checking

Bayes Factors via Bridge Sampling

18



Related Time Series (RTS) Model

[Heavy tailed innovations}\ /

Univariate AR(p) Model

{ Pooled Information Across Series]

[ Additive Outliers ]/[

Tlme Varying Parameters]

[ Stochastic Volatility Common Factors ]

19



8 Models

0. AR(12) estimated by OLS
1. Same as (0), but estimated by Bayes Methods (shrinkage)

2. Same as (1), but using Hierarchical Priors (shrink toward common parameter
values

3. Same as (2), but add outliers (Student-t innovations)
4. Same as (3), but add additive outliers
5. Same as (4), but add time varying volatility

6. Same as (5), but add time varying conditional mean parameters

A

[7. Same as (6), but add common factors. ] RTS Model

20



Model Evaluation

Pseudo-out-of-sample forecasts: horizons h=1, 3,6

- Forecasting h-period growth rates: 4., = (1200/h) x In(Emp; s,/ Emp;;)
* Root mean square error
* Quantiles and Prediction Intervals

Full Sample: Bayes Factors

21



Model Evaluation

Squared error loss l(y,:&Model> = (y — gModel)Q
(I will show root mean squared error)

Model
. -Mode qly — fory > ¢
g™ -Quantile loss I(y, g% = { 1 _| q)ly Mldeq for < g

1

90-10 intervalloss (¥, 10, Goo) = (Goo — G10) + =0

((q10 —y) X Wy < qio) + (¥ — Goo) X L{y > Goo))

22



Model 0: AR(12)

(Notation is overly-complicated here — but will come into play in later models)

@on& yj for g =1,...,n and tD

yj,t = (.UUj’t (1)

Vit = Hj + Ut (2)
12

Ujt = Z Gjathj -1+ € (3)
=1

€jt = OjEjt (4)

et~ iidN (0, 1) (5)

Estimation: OLS, separately for each variable j using observations t = 13, ..., T™.

Pseudo-out-off-sample forecasting from 7™ = 100 to T

23



Model 0: AR(12)

(Notation is overly-complicated here — but will come into play in later models)

Observations: y,; for j =1,...,nandt=1,..,T

(1)
(2)

Yjt = WUj¢

Ujt = Hj T Ui
AR(12) model with constant(3)

(4)
(5)

12
Ujp = E il T €t
=1

€jt = OjEjt

£;0 ~ iidN(0,1)

Estimation: OLS, separately for each variable j using observations t = 13, ..., T™.

Pseudo-out-off-sample forecasting from 7% = 1999m12 to 7' = 2019m12 — h.
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Model 0: AR(12)

(Notation is overly-complicated here — but will come into play in later models)

Observations: y,; for j =1,...,nandt=1,..,T

Yt :@jt overall scale = 1 in this model (1)
V)t :@+th mean (2)

Ujp = 5 ‘th |+ €;¢  ARcoefficients (3)

ej,t j " innovation st. dev. (relative value) (4)

gt ~ 1idN(0,1) (5)

Estimation: OLS, separately for each variable j using observations t = 13, ..., T™.

Pseudo-out-off-sample forecasting from 7% = 1999m12 to 7' = 2019m12 — h.
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Model 0: AR(12)

(Notation is overly-complicated here — but will come into play in later models)

Observations: y,; for j =1,...,nandt=1,..,T

Yjt = W (1)

Uit = [+ Wt (2)
12

Wie = Y Qi + € (3)
[=1

€it = O0jEj¢ (4)

Benchmark for predictive distri@gltions

*

Estimation: OLS, separately for each variable j using observations ¢t = 13, ..., T™.

Pseudo-out-off-sample forecasting from 7% = 1999m12 to 7' = 2019m12 — h.
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POOS Root Mean Squared Error — Distribution across the 51 States

Quantile
min 0.10 0.25 0.50 0.75 0.90 max
h=1 1.82 2.16 2.43 2.78 3.28 4.18 5.78
h=3 1.25 1.50 1.58 1.77 2.12 2.49 4.25
h=6 1.11 1.30 1.43 1.62 1.87 2.16 2.83

Large ?
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Model 1

Model: Same as Model 0 Priors

S Diffuse priors for w and {g;}7_;. (Induces scale and location equivariance)
gt = WYy,

2
Vit = i + Ujy In(w”) ~ N(0,00) and p; ~ N(0, 00)

Minnesota-like priors for AR coefficients:

12
Ujt = Z Gjilji—1 + €t
1= b0~ N(0,(0.2/1)%)

€t = 0jEjt
gj¢ ~ 1idN(0,1)

] O'ji

In(0?) ~ N(0,1)

J

Initial conditions: {u;;};__;](#;, 0;) from a stationary Gaussian AR model:

wj—110/(0j, @) ~ N(0,075(¢;)) with £(¢) = Lar(co)

and the constant ¢ < 1 is chosen so that largest root of companion matrix is no larger than
0.98.
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Model 1

Model: Same as Model 0 Priors

o Diffuse priors for w and {;}7_;. (Induces scale and location equivariance)
Yjt = WUj¢
In(w?) ~ N(0,00) and p; ~ N(0, )

Ujt = My + Ut

e Minnesota-like priors for AR coefficients:

12
Ujt = Z Qjilji—1 + €4
1= b0~ N(0,(0.2/1)%)

€t = Ot

£50 ~ 1dN(0,1)

] O'ji

In(o7) ~ N(0,1)

e Initial conditions: {u;;}{__q;](¢;, 0;) from a stationary Gaussian AR model:

wj—110/(0j, @) ~ N(0,075(¢;)) with £(¢) = Lar(co)

and the constant ¢ < 1 is chosen so that largest root of companion matrix is no larger than
0.98.
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Model 1

Model: Same as Model 0 Priors

S Diffuse priors for w and {g;}7_;. (Induces scale and location equivariance)
gt = WYy,

2
Vis = [ + ujy In(w”) ~ N(0,00) and p; ~ N(0, 00)

Minnesota-like priors for AR coefficients:

12
Ujt = Z Qjilji—1 + €4
1= b0~ N(0,(0.2/1)%)

€t = 04t
gj¢ ~ 1WdN(0,1)

] O'ji

In(o7) ~ N(0,1)

Initial conditions: {u;;};__;](#;, 0;) from a stationary Gaussian AR model:

wj—110/(0j, @) ~ N(0,075(¢;)) with £(¢) = Lar(co)

and the constant ¢ < 1 is chosen so that largest root of companion matrix is no larger than
0.98.
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Model 1

Model: Same as Model 0 Priors

Diffuse priors for w and {g;}7_;. (Induces scale and location equivariance)

Yji = Wt In(w?) ~ N(0,00) and p; ~ N(0, 00)

Ujt = My + Ut

12 e Minnesota-like priors for AR coefficients:
Ujt = D Gjilji—1+ €
] ; Y : dj0 ~ N0, (0‘2/02)
€jt = 05Ej¢ ° 0
g+~ 16dN(0,1) In(o7) ~ N(0,1)

Initial conditions: {u;;};__;](#;, 0;) from a stationary Gaussian AR model:

wj—110/(0j, @) ~ N(0,075(¢;)) with £(¢) = Lar(co)

and the constant ¢ < 1 is chosen so that largest root of companion matrix is no larger than
0.98.
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Model 1

Model: Same as Model 0 Priors

S Diffuse priors for w and {g;}7_;. (Induces scale and location equivariance)
gt = WYy,

2
Vis = [ + ujy In(w”) ~ N(0,00) and p; ~ N(0, 00)

Minnesota-like priors for AR coefficients:

12
Ujt = Z Qjilji—1 + €4
1= b0~ N(0,(0.2/1)%)

€t = 04t
gj¢ ~ 1WdN(0,1)

] O'ji

In(o7) ~ N(0,1)

Initial conditions: {u;;};__;](#;, 0;) from a stationary Gaussian AR model:

wj—110/(0j, @) ~ N(0,075(¢;)) with £(¢) = Lar(co)

and the constant ¢ < 1 is chosen so that largest root of companion matrix is no larger than
0.98.
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Posterior Draws: Algorithm 1

Standard, but with a few wrinkles

1. {w,{o;}7_,}: Draw Inw?[{lnw? + Ino?}?_, from conjugate normal ob-

tained from (9) and (6), then update {o;}7_; according to new w. [The

Common scale factor w model depends on {w,{s;}7_,} only through the products {wo;}7_;, so
there is no additional contribution to the posterior.|

2. {Uj,ﬂj,l&j’fu;u, {Ej,t}g‘:l} lOOping over j

(a) Draw o;: Metropolis step with prior (9) and likelihood computed
. from Kalman filter with state (f;,uj¢—1,%j¢—2,...,Ujt—12), mea-
MetrOpOlIS for g; surement equation (2) and state evolution (3), initial state drawn
from p,; ~ N(0, 00) (approximated by using large but finite variance)
and (7)
(b) Draw {u;,u;_11.0,{€j,+}{—1 }|oj: Kalman smoother draw from same
state-space-system as in Step 2a.

3. {¢;,{€j+}1_,} looping over j: Metropolis-Hastings step with proposal gen-

erated from Kalman smoother draw from linear SSS with state (¢;1,...,¢;j12)
Metro po[is correction for initial values and measurement equation (3) and initial state drawn from (8). The pro-
L7(4?)

posal qﬁf is accepted over the current value ¢§ with probability 1 A @0
where Lz(¢;) is likelihood of (7).
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Forecasting Performance: State Employment

Relative Root Mean Squared Forecast Error
T=1999:12 through 2019:6

(a) Pooled Over States

Forecasting Forecast of Employment Growth Rate from T to T+h
Model h=1 h=3 h=6
Benchmark 1.00 1.00 1.00
(1) Bayes 0.97 0.99 1.02
(2)
(3)
(4)
(5)
(6)
(7)
(b) Distribution Across States
h=1 h=3 h=6
12— . : = ‘ — 12— . ‘ . . . 1.2 . . ‘
1.15 1.15 1157 _
1.1 1.1 1.1}
W ) 7]
2105 2105 2 105
P T 1 e 1L
o o o
09 0.9 09|
0.85 0.85 0.85 |
0.8 ] 2 3 4 5 5 7 08 1 2 3 4 5 6 7 08 1 2 3 4

Method Method Method



Quantile and 90-10 Relative Risk
(Pooled Over States)

h=3

Forecasting
Model

Quantile

0.05 0.25 0.75

0.95

90-10

Benchmark

1.00 1.00 1.00

1.00

1.00

(1) Bayes

1.04 1.03 1.00

0.98

1.02

(2)

3

4

6

~

(3)
(4)
(5)
(6)
(7)
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Model: Same as Model 1
Yjt = WUt
Ujt = My + Ut

12
Ujt = E D1+ €
(=1

€t = Ot

£50 ~ 1dN(0,1)

Model 2

Hierarchical Priors

Notation: Hierarchical Normal Distribution

Let {w;}}_, denote n random variables with
Wi | (Mg Vyp) ~ T8dN (Mg, Vi)

with
Moy ~ N (M s U, )

and
ln('Uw) ~ N(mln(v,w) 3 Uln(vw))'

We write this as

{wj}_?zl ~ HN(mmw » Uiy s TMln(w,,) s Uln(vw))
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Model 2

Model: Same as Model 1 Priors: Same as Model 1

(Shrink toward common values)
Yjr = Wjt
except now shrinkage location and strength

Vag = i+ Wiy :
Js i Js estimated from data

12
Ujt = E D1+ €
(=1

€it — 0j€ ¢t {gbj,l}?:l ~ HN(Ov (0'2/l)27 1n((0'2/l)2)7 1)

£50 ~ 1dN(0,1)

{In(o3)}1_; ~ HN(0,1,In(0.3%), 1)
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Minnesota versus Hierarchical Priors (shrinkage)
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Forecasting Performance: State Employment

(a) Pooled Over States

Forecasting Forecast of Employment Growth Rate from T to T+h
Model h=1 h=3 h=6
Benchmark 1.00 1.00 1.00
(1) Bayes 0.97 0.99 1.02
(2) H.Prior 0.94 0.94 0.96
(3)
(4)
(5)
(6)
(7)
(b) Distribution Across States
h=1 h=3 h=6
1.2 : ‘ - - 12— ‘ - = 12— -
1.1} 1.1 H 1.1 i
u 6 ] o
g 1 | E 1 l i E 1 il
2 2 2 )
T09 §09 T09 :
i s @
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Quantile and 90-10 Relative Risk
(Pooled Over States)

h=3
Forecasting Model Quantile 90-10
0.05 0.25 0.75 0.95

Benchmark 1.00 1.00 1.00 1.00 1.00
(1) Bayes 1.04 1.03 1.00 0.99 1.02
(2) H.Prior 0.93 0.96 0.97 0.97 0.96

(3)

(4)

(5

)
(6)
(/)
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Model: Same as Model 2

Yjp = WUt

Ujt = Mj =+ U

12
Ujp = E it + €y
=1

€jt = Oj€jt

except

Model 3

Ejt ™ Z%dT(VJ)

Student-t errors

Priors: Same as Model 2

additionally with
[{ln(i/j —2)}i_) ~ HN(In(12 - 2), 1, In(0.5%), 1)]
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‘Prior’ distribution of degrees of freedom (evaluated at posterior mean)
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Forecasting Performance: State Employment

(a) Pooled Over States

Forecasting

Forecast of Employment Growth Rate from T to T+h

Model h=1 h=3 h=6
Benchmark 1.00 1.00 1.00
(1) Bayes 0.97 0.99 1.02
(2) H.Prior 0.95 0.94 0.96
(3) t-innovations 0.94 0.94 0.95
(4)
(5)
(6)
(7)
(b) Distribution Across States
1.2 h=1 1.2 h = 3 19 h = 6
1.1 1.1} 1.1
w L 7 L L :
g 1 % 1 T % 1+ j T
F o o =
To9 F ©o9 09/
2 4 &
08" 0.8 0.8
0.7 5 3 4 o7 1 2 3 4 5 6 7 o7 1 2 4 5
Method Method Method
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Quantile and 90-10 Relative Risk
(Pooled Over States)

Forecasting Model Quantile 90-10
0.05 0.25 0.75 0.95

Benchmark 1.00 1.00 1.00 1.00 1.00

(1) Bayes 1.04 1.03 1.00 0.99 1.02

(2) H.Prior 0.93 0.96 0.97 0.97 0.96

(3) t-innovations 0.92 0.95 0.95 0.98 0.95

(4)

5

(5)
(6)
(7)
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Model 4

Model: include additive outliers Priors: Same as Model 3, but including
yie = wvje 4 oj,t] {In(s7)}_y ~ HN(In(0.1%),1,1n(0.3%),1)
— 0, are additive outliers
[ Ot = Kjlljt and it~ T(2)] Note: no dynamics

Vg = Mj+ Ujy n HN Prior for outlier scale

12

Ujt = E Qi+ €5y
=1
€jt = Oj&j¢

Ejjt ~ ’L’LdT(VJ)

— Sameas Model 3
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Posterior distribution of o) and K;

25

1.5}

0.5/

0.2

0.4

0.6

0.8

1.2

1.4 1.6 1.8

HJ?/(O'? + f{?) ~ (

20
18
16
14
12

10

0.122

0.52 4+ 0.122

0.08 0.1

) = 0.05
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Forecasting Performance: State Employment

(a) Pooled Over States

Forecasting Forecast of Employment Growth Rate from T to T+h
Model h=1 h=3 h=6
Benchmark 1.00 1.00 1.00
(1) Bayes 0.97 0.99 1.02
(2) H.Prior 0.95 0.94 0.96
(3) t-innovations 0.94 0.94 0.96
(4) A-outliers 0.94 0.94 0.95
(5)
(6)
(7)
(b) Distribution Across States
1.2 h=1 12— h=3 12 h=6
1.1 14 1.1
w L L
2 1 Al = 1
%:J H | — g i ﬁ f g
go_g. 3 go.g- - - go.g-
08l 0.8} 0.8;
0.7 07 1 2 3 4 5 6 7 07 4 5
1 2 3 Me:hod Method Method
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Quantile and 90-10 Relative Risk

(Pooled Over States)
h=3
Forecasting Model Quantile 90-10
0.05 0.25 0.75 0.95

Benchmark 1.00 1.00 1.00 1.00 1.00
(1) Bayes 1.04 1.03 1.00 0.99 1.02
(2) H.Prior 0.93 0.96 0.97 0.97 0.96
(3) t-innovations 0.92 0.95 0.95 0.98 0.95
(4) a-outliers 0.92 0.95 0.95 0.97 0.95

(5)

(6)

(7)
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Model: include stochastic volatility

Yit = w(vje + 0j¢)
Oj,t = ’ijnj,t and 77]",5 ~ T(2>

Ujt = My + Ui

12
Ujp = § D1 T €y

ll/

€t 4.t

gjt ~ udT (v))

Model 5

In(g;,) evolves as ‘random walk’
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Low Frequency approximation to random walk

Lt

50 100 150 200

N
\/ 50 /100
P

ot =&+ ) ik
=1

P, L=1,..,p

P
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Model 5

Model: include stochastic volatility Priors: Same as Model 4, but including

gj,l ~ N(mfp Uf)
Yjt = w(vjt + 051) with 1, ~ N(0,0.01%) and In(ve) ~ N (In(0.01%), 1)
Oj,t = ’fjnj,t and 77]",5 ~ T(Z)

Vjt = Hj + Ujy

12
Ujp = E D1 T €y
=1

p
€jt = 0j1€j¢ In(o?,) = In(07) + > @uséju with p = | T/36]
£i0 ~ HdT (1) =1
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Model 5

Model: include stochastic volatility Priors: Same as Model 4, but including

&u ~ N (mg, ve)
Yit = w(vje + 0j¢) with 77, ~ N(0,0.012) and In(ve) ~ A(In(0.01%),0.55%)

Oj,t = ’ijnj,t and 77]",5 ~ T(Z)

Ujt = My + Ui

12
Ujp = E D1 T €y
=1

P
€jt = 0545t In(o,) =In(0F) + > @&y with p = |T/36]
gje ~ 1dT (v)) -
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Common Volatility Path

0.4

t—1/2 ~
Z?:l ! ( T/ ) s

Posterior mean

-0.4 - | \ I
1990 1995 2000 2005 2010 2015 2020

Date
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Forecasting Performance: State Employment

(a) Pooled Over States

Forecasting Forecast of Employment Growth Rate from T to T+h
Model h=1 h=3 h=6
Benchmark 1.00 1.00 1.00
(1) Bayes 0.97 0.99 1.02
(2) H.Prior 0.95 0.94 0.96
(3) t-innovations 0.94 0.94 0.96
(4) A-outliers 0.93 0.93 0.95
(5) Stoch. Vol. 0.93 0.93 0.95
(6)
(7)
(b) Distribution Across States
12 h=1 12 h=3 12 — h=6
1.1 110 1.1
B
w L L L
2 L % 1) T + g % i 1 |
z = = : || B85 5 5 e || B EH OB
go_g_ B + 509 - ; 509 : ) i i
4 2 i
0.7 . : %y 2 s 4 s 6 7 o 1 2 3 4 5
! 2 8 Me’:lhod Method Method

54



Quantile and 90-10 Relative Risk

(Pooled Over States)
h=3
Forecasting Model Quantile 90-10
0.05 0.25 0.75 0.95

Benchmark 1.00 1.00 1.00 1.00 1.00
(1) Bayes 1.04 1.03 1.00 0.99 1.02
(2) H.Prior 0.93 0.96 0.97 0.97 0.96
(3) t-innovations 0.92 0.95 0.95 0.98 0.95
(4) A-outliers 0.92 0.95 0.95 0.97 0.95
(5) Stoch. Vol. 0.92 0.94 0.93 0.90 0.92

(6)

(7)
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In(o

2

Model 6

Model: include time varying
conditional mean parameters

0j = Knif and n;, ~ T(2)
12
=1

€t = Ot

p
7)) =1n(0?) + > @&y with p = | T/36)

[=1

Ejt ™ ZZdT(V])

w(ujt + 0j¢) — Evolve as random walks

|

piz ~ BW (g, 7)) and @00 ~ BW (00,75
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Model 6

Model: include time varying Priors: Same as Model 5, but including

conditional mean parameters
{In(v;))}j=1 ~ HN(In(0.005%), 4,1n(0.3%),1)

9 n 9 9
Vit = i +w(ug+ 054) {ln<7¢(j,l) g=1 ¥ HN(In((0.005/1)%),1,In(0.3%),1)

Oj’t = K’jnj,t and nj,t ~ T(2)

12
=1

€it — 0;5tE ¢t
p
In(0?,) = In(0?) + > e with p = [T/36)
=1
Ejt ZZdT(V])

it ~ RW(NJ': ?’3(3-)) and ¢ ~ RW(ij,la 735(3:,[))
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Forecasting Performance: State Employment

(a) Pooled Over States

Forecasting

Forecast of Employment Growth Rate from Tto T+h

Model h=1 h=3 h=6

Benchmark 1.00 1.00 1.00

(1) Bayes 0.97 0.99 1.02

(2) H.Prior 0.95 0.94 0.96

(3) t-innovations 0.94 0.94 0.96

(4) A-outliers 0.93 0.93 0.95

(5) Stoch. Vol. 0.93 0.93 0.95

(6) TV mean parms 0.93 0.92 0.94
(7)

1.2

1.1

Relative RMSE

Method

(b)

1.2

Relative RMSE

b
®

o
~

-h

o
©

Distribution Across States
h;3 _ _ _ _ _ _ h?G

T
|
Relative RMSE
o - -
© - - ™
I

o
®

©
~
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Quantile and 90-10 Relative Risk

(Pooled Over States)
h=3
Forecasting Model Quantile 90-10
0.05 0.25 0.75 0.95

Benchmark 1.00 1.00 1.00 1.00 1.00

(1) Bayes 1.04 1.03 1.00 0.99 1.02

(2) H.Prior 0.93 0.96 0.97 0.97 0.96

(3) t-innovations 0.92 0.95 0.95 0.98 0.95
(4) A-outliers 0.92 0.95 0.95 0.97 0.95
(5) Stoch. Vol. 0.92 0.94 0.93 0.90 0.92
(6) TV mean parms 0.87 0.93 0.94 0.91 0.91

(7)
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Model 7: Include Common Factors

Yjt = Hjt T w(uj,t + 0t T [Cj,t + Unt1t T 0n+1,t])
\ J

5
Cit = E )\j,l,tun+l,t—l
[=0

At~ BW (X, )

12
[=1

€jt = OjtEjt

p
ln(ait) = ln(a?) + Z p14&51 with p = | T/36]
(=1

Ej’t ~ ZZdT(Vj)
0+ = kN and nj; ~ T(2)

| Common factors —

S—

—

c is distributed lag of an AR(12)

b is a common RW trend

o is an outlier

—

Same as Model 6,
but now for j=1,...,n+1
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Model 7
Model

Yit = fit +w(Wje + 05 + (¢ + Mg + Ont1g))
Priors: Same as Model 6

Cjt = Z Aj’l’tun+1’t_l but now including
Njie ~ BW (N1, v30) Dol ~ HN(1,0.5% 1n(0.3%), 1)
DAYy ~ HA(O, (0.5/(L + 1)), 1n(0.8%), 1) for j > 0
wie = Y Bjrstis1+ € fin(v2 ) Vit ~ HAN (n((0.0005/(1 + 1))), 4, In(0.3%), 1)

€jt=0jt5jt

ln(ait) In(os) + Z 1.4&5 with p = |T/36]
=1

Ej,t ~ ’LZdT(VJ)
01 = K;jn;¢ and 1, ~ T (2)
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Forecasting Performance: State Employment

(a) Pooled Over States

Forecasting
Model

Forecast of Employment Growth Rate from T to T+h

h=1 h=3 h=6
Benchmark 1.00 1.00 1.00
(1) Bayes 0.97 0.99 1.02
(2) H.Prior 0.95 0.94 0.96
(3) t-innovations 0.94 0.94 0.96
(4) A-outliers 0.93 0.93 0.95
(5) Stoch. Vol. 0.93 0.93 0.95
(6) TV mean parms 0.93 0.93 0.95
(7) Com. Factors 0.90 0.89 0.91
(b) Distribution Across States
12 LLL 12 Ll 12 L
1.1 1.1} 1.1
w L L _ ‘
SR - (é) 1 T 1 % ! RS S T
s T P B e E T PR 2 =E=N=g=)
% 0.9 1 Fy § 0.9 : - :Eg 0.9 j
0.8 0.8 0.8
0.7 . Ty 2 s 4 s e 7 07 2 3 4 5
1 2 3 Met4hOd Method Method
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Quantile and 90-10 Relative Risk

(Pooled Over States)
h=3
Forecasting Model Quantile 90-10
0.05 0.25 0.75 0.95

Benchmark 1.00 1.00 1.00 1.00 1.00

(1) Bayes 1.04 1.03 1.00 0.99 1.02

(2) H.Prior 0.93 0.96 0.97 0.97 0.96

(3) t-innovations 0.92 0.95 0.95 0.98 0.95
(4) A-outliers 0.92 0.95 0.95 0.97 0.95
(5) Stoch. Vol. 0.92 0.94 0.93 0.90 0.92
(6) TV mean parms 0.87 0.93 0.94 0.91 0.91
(7) Com. Factors 0.86 0.90 0.90 0.85 0.87
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Log-Bayes Factors -

Yit = fit +w(Wje + 05 + (¢ + Mg + Ont1g))

5
Cijt — E )\j,l,tun+1,t—l
=0

Njpe ~ RW (A, ’7,2\(3',1))

12
Ujt = E D11+ €y
(=1

€jt = Ojt€5¢

p
In(07,) =In(a7) + > _ ¢us€js with p = |T/36)
=1

E4t ™ ’LZdT(Vj)
0j+ = KNt and nj; ~ T(2)

Model 7 versus

Restricted Model In(BF)

Reduce hierarchical priors for (¢,0) | 86
Increase v in T (v;) for g, 14
Reduce outliers 0;; and 0y, 414 11
Reduce stochastic volatility 31
Reduce time variation in ¢ 18
Reduce time variation in g 6
Reduce variance of c;; factor 3.2
Reduce time variation in A 18
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Summary of Empirical Analysis: State Employment

Forecasting Which model fit better?
* Gains from Hierarchical Priors Full-Sample Bayes Factors
* Exploit similar DGPs
* Gains for covariance/lead-lag * Allfeatures are important
* Predictive quantile gains gains from
* fattails

* stochastic volatility
* time-varying mean parameters
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Two New Datasets
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IP Growth: 16 European Countries

N | I | I

(@) All Countries l
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U.S. PCE Inflation: 17 Sectors

[

(a) All Sectors

o il
M Il |
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Forecasting in the Aftermath of Covid
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Forecasting in the Aftermath of Covid

POOS forecast period Forecast of Employment Growth Rate
from 7' to T+h
h=1 h=3 h=6

(a) Root-MSFE (percentage points at an
annual rate) of the benchmark AR(12) model

199m12-2019m6 3.1 2.0 1.7
2020m6-2024m4 27.7 17.4 8.1
2021m6-2024m4 4.1 2.4 1.8
(a) Relative root-MSFE of Model 7
199m12-2019m4 0.90 0.88 0.89
2020m6-2024m4 0.19 0.19 0.28
2021m6-2024m4 0.86 0.73 0.69




What have we done ?

7 Increasingly Rich Models to
Capture Characteristics of Related
Macroeconomic Time Series

Algorithms for efficiently
computing forecasts

3 Empirical Applications

Wrapping Up

What have we learned?

* Hierarchical Models help
e Common Factors Help
* Otherfeatures help for

predictive quantiles, but not
so much for point forecasts

Open Questions?

Comparative
performance
of alternative
models

Why are
predictive R?
so low?
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