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Abstract

We propose a model of exchange rates that jointly models associated re-
alized measures of volatility and covariances within the Realized GARCH
framework. The proposed model exploits identities arising from no arbitrage
conditions, that facilitates a relatively parsimonious modeling of a panel of
exchange rates. The model shares the simplicity of GARCH models while
taking advantage of realized volatility measures that are computed from high-
frequency (intraday) data. The latter leads to a better modeling of the vari-
ances and covariances, by providing a flexible modeling of their dynamic
properties. The model easily produce forecasts at any horizon. The model
is illustrated with an empirical application for exchange rates between the
currencies: EUR, USD and JPY. An out-of-sample comparison shows that
the proposed model dominates conventional benchmark models, in particular
at shorter horizons.

Keywords: Exchange rates volatility, Forecasting, Realized GARCH

1 Introduction

This paper gauges whether the availability of high-frequency financial data
enable the construction of more accurate forecasting models for the condi-
tional covariance of daily exchange-rate returns.
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Relatively accurate estimators of ex-post volatility and covariances of
daily returns, i.e. realized measures, can be computed from high-frequency
financial data, including the realized covariance, realized kernels, Markov
chain estimators, and other related measures (see Barndorff-Nielsen et al.,
2011; Hansen and Horel, 2009 and references therein). According to Hansen
and Lunde (2010), there are two main ways to exploit such realized mea-
sures in variance forecasting, labeled as reduced-form and model-based. If
the former type of forecast assumes a formal time-series model for the series
of realized measures, the latter specifies a parametric model for the return
distribution. Model-based forecasting hence relies on a GARCH-type struc-
ture where the realized measures are included as exogenous variables. An
appealing class of model-based approaches is the Realized GARCH frame-
work of Hansen et al. (2012a) where the dynamics of realized measures and
daily returns is jointly modeled. These models have been shown to lead
to a significant improvement in the empirical fit over traditional GARCH
models. Contrary to GARCH-X models, that are 'incomplete’ in the sense
that they are unable to provide information about volatility level beyond
one period into the future, realized models are 'complete’ and easy to use for
multi-period forecasting.

In this paper we hence build upon the Realized GARCH framework and
propose a multivariate model that improves the modeling and forecasting of
exchange rates volatility and covariances. The model is specifically designed
for the Forex market in the sense that it exploits the identities following
from no-arbitrage conditions. Triangular arbitrage opportunities arise if the
price quotes for currency pairs with correlating currencies do not match up.
However, this type of arbitrage opportunity arises quite seldom and lasts
only a few seconds. It follows that at a daily level the no-arbitrage hypoth-
esis is valid and the cross-rates are equalized. To illustrate this, consider
the triangular case of the EUR, USD, and JPY currencies. By absence of
triangular arbitrage, the continuously compounded return on the € /¥ cross
rate must be equal to the sum between the $/¥ and €/$ returns. For-
mally, the system in the left pane of figure 1 is characterized by the identity:
reU + Ty = TEs, Where r() denotes the return series for each exchange rate
(EUR/USD; USD/JPY; EUR/JPY). This has two key consequences: i) the
cross rate can be inferred from the two other sequences of returns and ii) we
can infer the variance of the cross rate as vg; = vgy + vy + 2cov(rey, v ),
where v(.) denotes the variance and cov(.) the covariance of the exchange-
rates (see Andersen et al., 2003a for a discussion on this topic). For a larger
system, e.g. EUR, USD, JPY and GBP, the number of identities is given by
the number of triangles the system can be split into (see the right pane in
figure 1 for a visual identification of the three triangles).
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Figure 1: Triangular arbitrage

(a) EUR / USD / JPY (b) EUR / USD / JPY / GBP
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There are mainly two ways to account for these identities within the
Realized GARCH framework. First, one can specify the full model, for all the
countries in the panel, while respecting the no-arbitrage constraints. Second,
one can estimate the minimum sufficient model, i.e. the model that includes
the minimum number of exchanges rates to define the interconnections within
the system, and infer the quantities associated with the other exchange rates.
In our example, graphically this comes down to relating the 3 (4) currencies
through any 2 (3) exchange-rates respectively. The more currencies, the
more possibilities among which to select the exchange-rates to be modeled
from the ones to be inferred. Generalizing to a panel of N countries, it is
clear that the minimum model is relatively more parsimonious than the full
one. It includes N — 1 exchange rates instead of N(N-1)/2. Similarly, only
N(N — 1)/2 covariance elements ought to be estimated for the minimum
model instead of roughly N*/8 in the full model.! This is why we choose
the minimum model as the multivariate Realized GARCH specification for
exchange rates.

This multivariate realized model has appealing properties relatively to
traditional multivariate GARCH models. It takes advantage of realized mea-
sures of variance, that have lower noise-to-signal ratio than the daily squared
return traditionally used in GARCH models to form expectations about the
future level of variance. The model is hence expected to react rapidly and
perform well in situations where volatility and correlations are subject to
abrupt changes. It has a dynamic covariance structure that is revised at
every period through the measurement equations relating the conditional
measures of volatility and correlation with the corresponding realized mea-
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sures. It provides a flexible modeling of the dynamic properties of variances
and covariances and it is simple to estimate by quasi-maximum likelihood.
Most importantly, this model easily produces forecasts at any horizon.

The model is also related with the work of Hansen et al. (2012b), who
propose a hierarchical bivariate model for stock returns’ conditional beta
in a Realized GARCH framework. It hence exploits the information from
the correlation between the market and each individuals stock market in a
parsimonious way. Another complete model for stock returns is the mul-
tivariate HEAVY by Noureldin et al. (2012) which operates with multiple
latent volatility processes.

In an empirical application for the EUR, USD and JPY currencies we find
that the multivariate realized model outperforms the traditional multivariate
GARCH benchmarks, i.e. ¢cDCC (Aielli, 2013), BEKK (Engle and Kroner,
1995), CCC (Engel and Hamilton, 1990) as well as the univariate Realized
EGARCH model (Hansen et al., 2012a) up to 10 periods ahead. This is
the case not only for the covariance-matrix forecasting but also for each of
its components taken independently. What is more surprising is that the
bivariate realized model dominates its competitors in the case of the inferred
exchange-rate. This result emphasizes the proposed model’s good forecasting
abilities, since the bivariate realized model does not directly model the data
for the cross rate, whereas the two competing models, i.e. GARCH and
Realized EGARCH, use the cross rate historical series of returns and realized
measure of volatility.

The paper proceeds as follows. Section 2 introduces the multivariate
Realized GARCH model. We also discuss the estimation of the model and the
multi-step forecasting procedure. Section 3 contains an empirical application
on the EUR / USD / JPY currencies. Finally, section 4 concludes.

2 Methodology

In this section we introduce the minimum multivariate realized model for
exchange rates that encompasses information offered by the realized measures
of volatility. We discuss first the general formulation of the model. Then we
present the estimation method and subsequently we show how it can be used
for forecasting.

2.1 The Minimum Realized Model

To formally introduce the model, let r, = (ro, .;TN_14) denote the N —
1 x 1 vector of low-frequency, typically daily, returns associated with the



exchange rates directly included in the model. The series of correspond-

ing high-frequency derived realized measures of variance are given by x; =

(2ot ...,:L"N_Lt)/. Let us further denote by vy, = i+, for @ # j, i > j,

i,7 € {1, N — 1}, the vector of realized measures of daily correlation. These

observable variables lead to the natural filtration F;_y = o(ri—1, Ts—1, Y—1,

Ti_2, Ti—2, Yi—2, -..) that includes both past realized measures and low-frequency
returns.

The multivariate Realized GARCH model can be structured in three sets
of equations: the ones for the returns, the multivariate GARCH system and
the measurement equations. In vector form, the equation for the returns is
given by

re= g+ v hiz (1)

where pis a N — 1 x 1 vector of intercepts, hy = (R4, ..., hy—1,)" represents
the vector of conditional variances and z; = (214, ..., 2ny—14)  is the vector of
itd Ny_1(0, 1)-distributed studentized residuals.

Let us measure the dependence between the exchange-rate returns by the
conditional correlation, p;. From the equations in (1) it can easily be seen
that each element p;;; in the (N — 1)(N — 2)/2 x 1 vector of correlations
pr corresponds also to the conditional covariance of the studentized returns,
ie. piju = cov(ziy, zj4|Fio1), for i # 4,4 > j and i,j € {1, N — 1}. Let
us further denote by F' : (—=1,1) — R the Fisher transformation F(p) =
+log (14 p)/(1 — p)), that maps the correlations p;;; from the bounded in-
terval (—1,1) to R.

Next, we specify the multivariate GARCH system. We jointly model
the dynamics of the log-conditional variances as well as the dynamics of the
Fisher transformed conditional correlation as a VARMA(1,1) system:

Vi=m=a+ BV + 12+ 7% + U (2)
with

2 Ut,t—1

21— 27, 1 —1 ’

vV, = log(ht) o bt * 1i-1 U,—
t = F( ) , Zt— ’Zt_ , U= ”
Pt 5 2 1 N-1;t-1
N-1,t-1 AN-1t-1 vy

and where a is a N(N — 1)/2 x 1 vector of intercepts,  and ~ are squared
N(N —1)/2x N(N —1)/2 matrices, while 7 and 7% are N(N —1)/2x N —1
matrices.



To complete the specification of our model, we further introduce the mea-
surement equations. They define the dynamics of the realized measures of
variance x; = (Z14,...,tn-14) and correlation v, = {yi;:}, @ # 4, 1 > 7,
i,j € {1, N — 1} as:

log(zt) = § + @log(hy) + d(z) +0"(2) + w (3)
F(y) = ¢+ F(py) + v (4)

where u; = (14, ...,uy—14) & and ¢ are N — 1 x 1 vectors of intercepts and
v, 0, 6" and 1) are N — 1 x N — 1 diagonal matrices.

The conditional variances are modeled via EGARCH equations augmented
with information on the correlations between the exchange-rate returns. Hence
the model preserves the ARMA structure of the traditional GARCH mod-
els while the logarithmic transformation ensures that the variance is always
positive definite. Note also that the log-linear specification can be moti-
vated by the well-known fact that the realized measures of variance are
closely connected to the squared returns and hence to the conditional vari-
ance log(r, — p)? = log(h;) + log(2?) (see Hansen et al., 2012a and Hansen
et al., 2012b). The logarithmic measurement equations further make the
logarithmic GARCH specification convenient.

The quadratic terms

T(2) =7(2021) + 7°(27_) and 8(z) = 6(2z—1) + 6™ (2;_,)

specify the leverage functions in the GARCH and measurement equations,
respectively. Hansen et al. (2012a) find that a simple quadratic form appro-
priately models the dependence between returns and future volatility. Note
that this term allows for asymmetric leverage effects, i.e. that volatility can
react differently to positive and negative shocks to returns.
We assume that the vector of measurement errors U1 = (ug -1, ...,un—1,¢-1,

V1)~ Nv-1),2(0,€), ie. it follows a multivariate normal distribution
with zero-mean and covariance matrix €:
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Our choice relies on findings in Andersen et al. (2003b) inter alios who
show that the realized variance is approximately log-normally distributed.
Further, we assume that the error terms from the measurement equations,
U;, are independent from the studentized residuals z;, what simplifies the
estimation procedure. Due to the presence of the leverage functions 7(z2)
and d(z), this independence is realistic in practice.

The coefficients on the main diagonal of the matrix 3 reveal the persistent,
autoregressive behavior of the conditional variance and correlation, respec-
tively. The system is stationary if they are less than one. The off-diagonal
parameters may contain information on the direct variance spillover from one
exchange rate to another.

Besides, the realized measures are connected with their conditional coun-
terparts through the U, term of errors defined by the measurement equa-
tions. The realized measures can hence drive the future dynamics of the
conditional measures up and down. Furthermore, to make the specification
more parsimonious, in the empirical application we assume that the coeffi-
cients ¢ in the measurement equations are equal to 1 (see Hansen and Huang,
2012 for the univariate case). This is a reasonable assumption, since the
round-the clock realized measures of variance z; are expected to be roughly
proportional to the daily conditional volatilities h;.

2.2 Estimation

The multivariate Realized GARCH model is easily estimated by Quasi Maximum-
Likelihood. For this, we proceed in several steps.

Recall that our model consists of two sets of observable variables, the
returns r; and the realized measures x; and y;. Their joint density conditional
on the existing past information F;_; is given by

f(rtyl’t;yt|ft71)- (5>

which can be decomposed into the product of the conditional and marginal
densities as:

f(Tt|-E—1) X f(xta yt|rta-/—-;f—12~

7 .
-~

1 11

For the first term (1), we exploit the fact that the returns are assumed
normally distributed with mean p and covariance matrix H; with elements

hit, fori =4 o
Oijt = { bt J . The contribution of the first term to

Pijt\/ hz’,t\/ hj,ta fori#j



the quasi log-likelihood function is hence given by

lgr = ——Z( — 1) log(2m) + log | Hi| + (e — 1) H; '(ri = 1))

For the second term (/1), we can exploit the fact that the studentized
residuals z; are independent from the innovations in the measurement equa-
tions U;. Besides, the vector of innovations U; is normally distributed and
thus are the associated realized measures (z¢,y;). We can hence write

T, yelre, Fior) = f(@e, ye| Fir)-
The second part of the quasi-log-likelihood function is

T
1
lgir = —= E — 1) log(27) + log(det Q) + U/Q'U,],
t=1

[\D

where () is the covariance matrix of the innovations.

The number of free parameters in the likelihood maximization process
can be reduced by concentrating the likelihood function with respect to the
variance-covariance matrix 2. For this purpose, let us define the estimators
of the covariance parameters:

o
t=1 t=1
~ T ~ A ~
Where Q== Z UtUta Ul — (ﬁt,'[)t)
t=1
So finally,

1 N(N -1

lgrr = _§T[<N — 1) log(27) + log(det ©2) + %]

The Quasi Log-Likelihood function is the sum of the two components pre-
sented above

1(0) = 1g:1(0) + 1g1:(0),

with 6 = (vec(a), diag(3), vec(T), vec(T*),vec(y),vec(§) vec(p),vec(d), vec(d*),
vec((),vec(y)). Note that the initial values h ; and p ; are treated as un-
known parameters.



2.3 Partial Log-Likelihood for Returns

To facilitate the comparison of the fitted returns outputted by the bivariate
Realized GARCH model with those from a standard GARCH model or from
a univariate EGARCH model, we consider as a measure of fit the partial
log-likelihood associated with each series of returns

T
1
I(rs,0) = —52[109(27) +log(hig) + (rig — 1) /R,
t=1
where r;; and h;; denote the sequence of returns and conditional variance
associated with each exchange rate for i € {1,..., N — 1}.

2.4 Multi-period Ahead Forecasting

Our multivariate Realized GARCH model exploits the dynamics of the log-
variances and the Fisher-transformed correlations for a panel of exchange-
rates. The model is complete in the sense that it also relates the dynamics of
the realized measures of variance and correlation to that of the conditional
measures.

One advantage of this complete specification is that multi-period ahead

forecasts are feasible. Indeed, log-variance forecasts are easy to compute
based on the VARMAX(1,1) representation of this system. But we are most
often interested in forecasting the variance itself and not the log-variance. A
similar reasoning applies to the Fisher-transformed conditional correlation.
In particular, forecasts of the full covariance matrix are of special interest for
portfolio selection, risk management and asset pricing.
Vi
Vou
variances and V5 corresponds to the Fisher-transformed conditional corre-
lations submatrix. On the one hand, the non-linear (logarithmic) transfor-
mation applied to the conditional variance sequence leads to the inequality
between E(exp(Vi,)) and exp E(V1,), where the first term is the one we
are interested in. This feature is actually common to all realized models
based on logarithmic specifications, including Hansen et al. (2012a)’s Real-
ized GARCH and Hansen et al. (2012b)’s Realized Beta-GARCH. One way to
tackle this problem was proposed by Hansen et al. (2012a) and it is based on
bootstrapping or Monte-Carlo simulations. On the other hand, the presence
of the Fisher-transformed conditional correlation is specific to multivariate
realized models. Given the employment of the non-linear Fisher transform,
the same forecasting issue arises as in the case of the conditional variance.

Let us partition V;, = [ } where V] 4 is set to include the log-conditional



We hence propose joint bootstrap-based forecasts of the conditional vari-
ances and correlations. For this, we bootstrap from the residual set ¢, =
(2, U), with ¢ € {1, T}, where T is the size of the in-sample dataset. We
make use of the factor’ structure of the studentized residuals to account for
the time-varying dependence among exchange-rate returns.

k-step-ahead forecasts of the distribution of V1, conditional on the infor-
mation set F; can be obtained by iterating on equation (2) where z;, z; and Uy
are replaced by the bootstrapped residuals. The variance forecasts h; 74 are
then given by the average of the exponential of all the possible log-variance
forecasts obtained in S simulations h; 74) = %Zle exp(Viryx(4)). In the

. . . S — .
same vein, correlation forecasts are given by p;ryr = < 2oy FH(Varik(i)).

3  Empirical Analysis

We implement the multivariate Realized GARCH model in the case of the
EUR, USD, JYP currencies and discuss its implications in terms of covari-
ance forecasts.

3.1 The Dataset

Intra-daily 1-minute data have been obtained from Dukascopy for the period
August 7, 2003 to August 29, 2014 for all the exchange rates. We divide the
sample into an in-sample period, August 7, 2003 - January 6, 2010, and an
out-of-sample period spanning the period from January 7, 2010 to August
29, 2014.

Since trading is slowish over weekends, we follow the usual practice in this
literature and remove the weekend quotes from Friday 21:00 GMT to Sunday
21:00 GMT. Many public holidays (e.g. days around Christmas, New Year,
President’s Day, Good Friday, Easter Monday, Memorial Day, US National
Day, Labor Day, Thanksgiving, Japan’s Emperor Day) are removed for the
same reasons.

The daily 9PM to 9PM returns are given by r;; = Inp, s —Inp; 1, where
i € {1,2} designates the exchange rate (EUR/USD and USD/JPY respec-
tively), and p;; represents the last price observed on day ¢ before 9PM. We
also make use of realized measures of volatility and correlation computed us-
ing 1-minute data. We adopt the multivariate realized kernel by Barndorff-
Nielsen et al. (2011), which is robust to noise and insures a positive definite
realized covariance matrix.
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3.2 Preliminary Analysis

This analysis sheds light on a simplified specification of the multivariate Re-
alized GARCH model. We then show that the multivariate Realized GARCH
framework is superior to standard GARCH models in terms of partial log-
likelihood both in-sample and out-of-sample. A summary of the estimation
results and residual tests is further provided.

3.2.1 Simplifications in the Specification of the Bivariate Realized
GARCH Model

Table 1 presents full and partial likelihood results for three specifications
of our model: the unconstrained bivariate model introduced in section 2.1
and two restricted versions. The first constrained model assumes that [ is
a diagonal matrix, i.e. there are no direct spillovers between the elements
of the exchange-rate covariance matrix. The second restricted model gauges
the stylized fact that exchange rates do not exhibit an asymmetry effect.
This specification hence assumes that the covariance matrix does not react
differently to positive / negative innovations, i.e. 7 is set to 0. The out-
of-sample likelihood is obtained simply by plugging the in-sample estimates
into the out-of-sample log-likelihood function, whereas the partial likelihood
is computed as described in section 2.3. The inference we draw from this
table is that the diagonal-8 model is generally a good model.

Note that we report the likelihood values and not likelihood ratio statis-
tics for two reasons. First, in the QMLE framework, the limit distribution
of the likelihood-ratio statistic is generally a weighted sum of y2-distributed
random variables and the usual y? critical values are only indicative of signif-
icance. Second, the asymptotic distribution of the out-of-sample likelihood-
ratio statistic is non-standard (see Hansen et al., 2012a for a more thorough
discussion on this topic). For example, comparing the likelihood-ratio statis-
tic LR = =2(l,, no giag — ivke) = 11.06 with a X%(6) suggests that leaving
the off-diagonal § parameters unrestricted does not improve the in-sample
fit substantially and hence the restricted model is preferable.

In view of the out-of-sample full likelihood results, the model supports
a simplification to the diagonal-( specification. Besides, the out-of-sample
partial log-likelihoods suggest that asymmetry could play a certain role in
the case of the USD/JPY exchange rate. Although the partial likelihood
is not the object of maximization in the realized framework, this empirical
evidence may justify that the bivariate model does not support a further
simplification.
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3.2.2 A Partial Log-likelihood Model Comparison

Table 2 reports in-sample and out-of-sample partial log-likelihoods that al-
low us to compare the empirical fit of the diagonal-$ bivariate realized model
and that of univariate EGARCH and traditional GARCH models. We find
that the realized models dominate the GARCH one not only in-sample but
also out-of-sample. This result is very impressive because the realized mod-
els do not seek to maximize the partial likelihood, which is the aim of the
GARCH model. Another very impressive finding is that the bivariate model
exhibits the largest partial likelihood for the inferred (not directly modeled)
EUR/JPY exchange-rate, although the other models use the actual observed
series of returns and realized-variance in the estimation. 2These results em-
phasize the good fit of the bivariate Realized GARCH model relatively to its
competitors.

3.2.3 Estimation Results

The results for the diagonal-§ Realized GARCH model with EUR/USD and
USD/JPY returns are

Tot = ho,tZo,t

= hl,tzl,t

log(hao,) . log(ho,t—1) 2041 52 1 Uot—1
log(hi4) | :=a+ B | log(hit-1) | + 7 ( o ) + 7 ( g1 1) + 4 | U1

214 2z —
F(poit) F(poit-1) bt 141

with

0.989 0 0 —0.005

(0.027) (0.014)

o (0.012.—0.034 —0.019Y. 3.— | 0 0963 0o | ~._|-0.013

&= ?0.(313)’ 908?7)’ 90804%)’6 (0.062) T (0.014)

0 0 0.959 —0.032

0.028) (0.003)

2The no-arbitrage condition implies that the returns (variance) for the EUR/YEN series
are a linear combination of the returns (variances, respectively) of the two exchange rates
directly modeled: ro; =71+ + 70+ and hot = hi ¢ + hot + 2p014/hothat -
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—0.009

(0.008)

—0.071

(0.014)

—0.033
(0.002)



0.028  0.007 0.126 0.001 0.071

(0.011)  (0.008) (0.010)  (0.001) (0.016)

.| 0.012 0.043 . | —0.014 0.197 0.109
T = (0o10) (0.006) and 7 1= (0.023) (0.012)  0.018
—0.002 0.005 0.046  0.027 0.326

(0.002)  (0.007) (0.012)  (0.018) (0.011)

and measurement equations

1 = —0.195 + log(h —0.016 0.092(z2, — 1
og(az‘o,t) (0.019) + og( 0’t> (0.022)(20’t) + (0.003)(Z0’t ) + Ut

log (1) 0.163 + log(hy ;) — 0.032(z1 ) + 9.103(,2315 —1) +uy

- _(0.022) (0.011) 0.004)

Fyois) = %‘(3212% + (16.(35361)F<p01,t) + Vo,
where the numbers in parentheses represent robust standard errors based on
the sandwich method.

The log-volatilities and Fisher-transformed correlation are highly persis-
tent given the very close to 1 estimates on the diagonal of the 3 matrix.
The diagonal ¥ estimates are generally significant and particularly large rel-
atively to the 0.05 traditional value of the ARCH parameter in a GARCH
model. This emphasizes the good quality of the information contained in
the realized measures of volatility about future volatility. The spillovers be-
tween the exchange rates are hence indirect and occur through the residuals
of the measurement equations. The significant off-diagonal estimates of the
4 matrix emphasize the role of the realized correlation dynamics for future
volatility and that of the realized measures of variance for future correlation.

Traditionally, exchange rates do not exhibit leverage effects. However, in
the case of the USD/JPY variance the leverage function seems to matter (7
is negative, whereas 7* is positive). This goes along the lines of the previous
result on out-of-sample partial likelihoods. The Fisher transformed condi-
tional correlation also reacts differently to positive and negative news about
returns. Furthermore, leverage plays an important role in the measurement
equations in the sense that it insures independence between studentized in-
novations and the innovations in the measurement equations.

3.2.4 Residuals Checks

To check the statistical adequacy of the model, we compute standard model
diagnostics. The normality assumption for the five standardized residuals 2,
Z1, Ug, Uy and 0 is assessed in the framework of QQ-plots. Figure 2 com-
pares the empirical distribution of these residuals to a normal distribution.
The rejection of the normality hypothesis for Z, and Z; supports the use of
bootstrap in the forecasting exercise.
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We further implement the Ljung-Box test of the null hypothesis of no
autocorrelation in the sequences of standardized residuals Z; and squared
standardized residuals 22 up to a specified lag. The results are presented in
table 3 for 1, 2, 5, 10, 15 and 20 lags for the three estimation periods con-
sidered. The tests indicate the absence of autocorrelation and heteroskedas-
ticity in the standardized residuals. In this sense, the model fits the daily
exchange-rate returns successfully.

Besides, figure 3 presents empirical evidence that the leverage function
succeeds in obtaining independence between z; and u;. The limited amount
of unmodeled residual dependence is in agreement with the underlying hy-
potheses of the model.

3.3 Forecasting Analysis

Forecasting the covariance matrix is essential in finance, but the main char-
acteristic of volatility and correlations is that they are unobserved. A model’s
predictive abilities are hence traditionally evaluated against an ex-post esti-
mator generally called 'proxy’. The multivariate realized kernel measure is
used, but we also check the robustness of the results to the choice of the proxy
by considering the Realized Covariance (Andersen et al., 2003b) based on 5-
minute data as well as the Markov Chain covariance measure (Hansen and
Horel, 2009) which makes use of ultra-high-frequency information contained
in tick-by-tick data. For the latter, we use data obtained from Oanda (Olsen)
that is cleaned according to the methods indicated in Barndorff-Nielsen et al.
(2009).

The out-of-sample analysis is performed for the period January 7, 2010
to August 29, 2014. Our forecasting strategy consists in a rolling window
with parameters re-estimated on a daily basis. The fitted model is then
used to construct k-periods ahead forecasts of the daily realized variance.
Four forecast horizons k € {1,5,10,20} are considered to emphasize the
forecasting abilities of the models at longer horizons of up to one month.

The forecasting abilities of the bivariate realized model are compared
to those of traditional volatility models, generally considered in forecast-
ing exercises: the corrected Dynamic Conditional Correlation, cDCC (Aielli,
2013), the Constant Conditional Correlation model of Bollerslev (1990) and
the diagonal-BEKK model of Engle and Kroner (1995), based on the uni-
variate GARCH(1,1) specification. Additionally, the univariate Realized
EGARCH(1,1) model is included in the set of alternatives. To this aim, a
multiple comparison-based test, the Model Confidence Set (MCS) approach
by Hansen et al. (2011) is implemented. This test allows to identify the sub-
set of models that are equivalent in terms of forecasting ability, and which
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outperform all the other models at a confidence level . We set the signif-
icance level for the MCS to a = 10% and use 10,000 bootstrap resamples
(with block length of 12 daily observations) to obtain the distribution under
the null of equal predictive accuracy.

One essential issue here is that the object of interest, i.e. the covariance
matrix, is unobserved even ex-post and that the use of a proxy may distort
the comparison of the losses. In this context, Patton and Sheppard (2009)
introduce loss functions robust in the sense that they asymptotically generate
the same ranking of the models regardless of the proxy considered. Following
Patton and Sheppard (2009), the quasi-likelihood loss function (QLike) is
employed and in the spirit of a robustness check, the squared Frobenius
distance is also considered.

QLike(Sy, H) = tr(H'S,) —log |H 'S, — K and
Lp(Se, H) = tr[(S— Ho)?l =) A,
N

where f]t, is a proxy of the true but latent conditional variance matrix, H;
is a candidate model for the conditional covariance matrix and \; are the
positive eigenvalues of the matrix (it — H;)?. QLike is generally privileged
as it presents the advantage to lead to iid loss series under the null hypothesis
that the forecasting model is correctly specified. This comes from the fact
that QLike depends on the multiplicative forecast error H; 'Y, and its bias
is independent of the volatility level (Brownlees et al., 2012), making easier
the comparison of losses across volatility regimes.

The analysis is performed in two steps: we first scrutinize the ability of
the competing models to reasonably forecast the covariance matrix and then
we investigate their behavior for each element of the covariance matrix and
for the variance of the inferred EUR/JPY exchange rate.

Table 4 reports the MCS results from the comparison of covariance matrix
forecasts by presenting the p-value of the MCS test as well as the average
loss for each model at 1, 5, 10 and 20 periods ahead. One and two asterisks
indicate the models selected by the MCS procedure as performing better,
i.e. included in Mgo% and M75%, respectively. The test results indicates
that the bivariate realized model has superior forecasting abilities than its
competitors up to 10 periods (two weeks) ahead. This result holds regardless
of the loss function considered.

Tables 5 and 6 summarize the results of the element by element analyses
for the conditional variances and conditional correlation respectively. The
univariate version of the () Like loss function is employed for the conditional
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variances. But since it is not appropriate for the evaluation of non-positive
quantities such as correlation forecasts, the robust MSE loss function is con-
sidered for the results in table 6.

Our main finding is that the bivariate Realized GARCH generally does
better than the GARCH and the Realized EGARCH models, in particular at
shorter horizons. Most importantly, the bivariate model is clearly performing
better than its competitors for the inferred EUR/JPY exchange-rate. This
is impressive, because the EUR/JPY conditional volatility is obtained by
making use of the no-arbitrage condition, whereas the two competing models
rely on the observed EUR/JPY returns and realized variance. Against all
odds, the bivariate model beats its competitors and appears as the only model
retained in the model confidence set whatever the forecast horizon. Table 6
shows that the bivariate model does good not only for variance forecasting but
also in the case of correlation forecasting. MCS p-values equal to 1 indicate
that the bivariate Realized-GARCH model dominates all its competitors at
all forecast horizons.

Along the lines of Patton (2011), the test of equality of predictive abilities
of Diebold-Mariano (DM) is used as a robustness check to assess the differ-
ences in forecasting abilities among the models considered. Tables 7 and 8
report the results of the Diebold-Mariano test of equal forecasting abilities.
If the test-statistic is significant and positive, the bivariate Realized GARCH
model outperforms the model considered in the left column of the table. The
DM test results support our previous findings by showing that the bivariate
Realized GARCH model outperforms its main competitors, especially up to
two weeks ahead. These results are a clear indication of the important role
of the realized measures of volatility in forecasting the covariance matrix and
its elements.

A robustness check with respect to the use of alternative proxies, i.e. the
realized covariance and the realized Markov chain estimators, has also been
considered and our main findings hold (results are available upon request).

3.3.1 Mitigate the Impact of Outliers

In this section we study the sensitivity of the forecasting results to the pres-
ence of outliers in the data. Since the realized models are known to adapt
quickly to sudden large changes in volatility, this analysis is expected to shed
light on the forecasting abilities of the multivariate realized model in a setting
where it is a priori on a more equal footing with its competitors. Figure 4
displays the log-realized kernel estimator for the EUR/USD and USD/JPY
exchange rates over the period 2003 - 2014. Positive (negative) outliers are
identified (in red and black, respectively) and the causes of extremely high
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(low) unexpected volatility are labeled: news in the financial markets, some
public holidays, etc.. The experiment consists in using for forecasting pur-
poses this 'smoother’ sample obtained by ignoring all the extreme periods,
i.e. about 4.4% of the initial dataset. Additionally, four forecast evaluation
scenarios are investigated. Each evaluation scenario is defined by ignoring the
days with the 10 largest covariance forecast losses registered in a competing
model.

Table 9 reports the average loss and p-value of the MCS test based on
the QLike loss function for each of the scenarios. The results indicate that
the bivariate model dominates its competitors in all cases. This is quite
impressive, since in 3 out of 4 scenarios, the 10 days removed from the out-
of-sample are identified with respect to the largest losses registered by the
competitor models and not by the bivariate model. The result holds up
to two-weeks ahead, supporting the use of the bivariate Realized GARCH
specification at shorter horizons.

4 Conclusion

This paper proposes a complete multivariate model for exchange rate re-
turns and realized measures of volatility and correlation. The model directly
links the realized measures with their conditional counterparts and entails a
flexible modeling of their dynamic properties. It exploits the identities aris-
ing from the no-arbitrage conditions characterizing the forex market. The
model is simple to estimate and offers substantial improvement in covariance
forecasting.

The model is illustrated in an empirical analysis for the EUR, USD and
JPY currencies. We find that multivariate Realized GARCH model out-
performs the traditional CCC, ¢cDCC and diagonal BEKK models up to 10
periods-ahead. It is particularly the case of the inferred EUR/JPY exchange
rate volatility and that of the conditional correlation, where it is the only
model that belongs to the set of superior forecasting models regardless of the
forecast horizon.
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5  Tables and Figures

Figure 2: QQ plot for the studentized residuals
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Table 1: Log-Likelihood comparison

INS Partial Log-Like OOS
EUR/USD USD/YEN EUR/YEN
Unrestricted model -1360.73  -1454.48 -956.44 -974.52 -1222.59
Diagonal-$3 -1366.26 -1444.22 -956.23 -975.02 -1220.37
D-g3, no leverage  -1429.14 -1462.05 -956.65 -980.76 -1200.81

Table 2: Partial Log-Likelihood

EUR/USD USD/YEN EUR/YEN

. GARCH -1458.52 -1578.32 -1613.89
7 R-EGARCH -1456.11 -1529.70 -1588.16
Biv-REG -1457.62 -1576.75 -1497.47

GARCH -966.60 -1026.70 -1301.60
R-EGARCH -960.80 -1056.56 -1284.15
Biv-REG -956.23 -975.02 -1220.37

00S
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Figure 3: Residuals independence
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Figure 4: Outliers identification
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Table 4: Conditional covariance forecast evaluation: MCS test (Realized Kernel

proxy)
Qlike loss
k=1 k=5 k=10 k=20

Loss Pycs Loss  Pycs Loss  Pycs  Loss Puycs
Biv REG 0.468 1.000** 0.575 1.000** 0.612 1.000** 0.745 1.000**
cDCC 0.575 0.000 0.647 0.001 0.682 0.006 0.760 0.444**
BEKK 0.579 0.000 0.654 0.001 0.692 0.003 0.777 0.110*
CcCC 0.646 0.000 0.707 0.001 0.731 0.003 0.779 0.177*
Squared Frobenius distance

k=1 k=5 k=10 k=20

Loss PMCS Loss PMCS Loss PMCS Loss PMCS
Biv REG 0.442 1.000* 0.495 1.000** 0.495 1.000** 0.519 0.593**
cDCC 0.479 0.019 0.501 0.333** 0.507 0.125* 0.517 0.593**
BEKK 0.481 0.019 0.508 0.001 0.516 0.001 0.530 0.000
CcCC 0.479 0.019 0.501 0.333** 0.507 0.125* 0.517 1.000**

Note: This Table displays the average loss over the evaluation sample as well
as the Model Confidence Set p-values. The conditional covariance forecasts
in the Mggy, and Mr59 are identified by one and two asterisks, respectively.
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Table 5: Forecast evaluation: MCS evaluation test

Conditional variance forecast

EUR/USD k=1
Loss
Biv-REG 0.125
GARCH 0.135
R-EGARCH 0.127
USD/JPY k=1
Loss
Biv-REG 0.274
GARCH 0.347
R-EGARCH 0.280
EUR/JPY k=1
Loss
Biv-REG 0.150
GARCH 0.207

R-EGARCH 0.155

Pryes
1.000**
0.015
0.081

Pyes
1.000**
0.001
0.040

Pres
1.000**
0.001
0.075

k=
Loss
0.144
0.151
0.144

k=
Loss
0.334
0.382
0.334

k=5
Loss

0.228
0.273
0.234

Pyies
0.700**
0.199*
1.000**

Pyres
0.832**
0.003
1.000**

Pyres
1.000**
0.001
0.202*

k=10

Loss PMCS
0.160 1.000**
0.163 0.772**
0.160 0.966**

k=10

Loss PMCS
0.347 1.000**
0.389 0.030
0.349 0.530**

k=10

Loss  Puycs
0.247 1.000*
0.296 0.001
0.265 0.006

k=20

Loss PMCS

0.193 0.157*

0.183 1.000**
0.191 0.157*

k=20

Loss PMCS
0.411 0.628**
0.411 0.858**
0.408 1.000**

k=20

Loss  Puycs
0.323 1.000*
0.356 0.007
0.352 0.016

Note: This Table displays the average Qlike loss over the evaluation sam-
ple as well as the Model Confidence Set p-values. The conditional variance
forecasts in the Mggy and M5y are identified by one and two asterisks,

respectively.
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Table 6: Forecast evaluation: MCS evaluation test

Conditional correlation forecast

k=1 k=5 k=10 k=20

Loss PMCS Loss PMCS Loss PMCS Loss PMCS
Biv-REG  0.150 1.000** 0.228 1.000** 0.247 1.000" 0.323 1.000**
cDCC 0.207 0.001 0.273 0.001 0.296 0.001 0.356 0.007
d-BEKK 0.155 0.075 0.234 0.202* 0.265 0.006  0.352 0.016
CCC 55.17 0.000 77.04 0.000  111.1 0.000  174.0 0.000

Note: This Table displays the average MSE loss over the evaluation sample as
well as the Model Confidence Set p-values. The conditional variance forecasts
in the Mggy, and M5 are identified by one and two asterisks, respectively.
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Table 7: Forecast evaluation: DMW test

Conditional variance forecasts

EUR/USD =1 k=5 k=10 k=20

GARCH t-statistic  2.651™* 1.654™  0.659 -1.879*
p-value 0.008 0.098 0.510 0.060

R-EGARCH t-statistic 1.733**  -0.406 0.050 -0.925
p-value 0.083 0.684 0.960 0.355

USD/JPY k=1 k=5 k=10 k=20

GARCH t-statistic  4.334™* 34417 2.281"* -0.043
pvalue  0.000  0.001  0.023  0.966

R-EGARCH f-statistic 2.047** -0.220  0.631  -1.112
pvalue  0.041 0826 0528  0.266

EUR/JPY k=1 k=5 k=10 k=20

GARCH t-statistic  4.146™*  3.670™*  4.206™* 3.377
p-value 0.000 0.000 0.000 0.001

R-EGARCH t-statistic 1.839**  1.243 3.193*  2.874**
p-value 0.066 0.214 0.001 0.004

Note: This Table displays the t-statistics and p-value for the Diebold-Mariano
test of equal predictive accuracy based on the () Like loss function. *,** and
*** Indicate a significant difference between the forecasting abilities of the
bivariate Realized GARCH model and those of the competitor (GARCH or
R-EGARCH) at the 1%, 5% and 10% level. If the ¢-statistic is positive, the
bivariate Realized GARCH performs better (it has a smaller average forecast
loss).
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Table &: Forecast evaluation: DMW test

Conditional correlation forecasts

EUR/USD - USD/JPY k=1 k=5 k=10 k=20
¢DCC  t-statistic  -7.209"* -4.892** -6.672"* -8.345"*

p-value 0.000 0.000 0.000 0.000
d-BEKK t-statistic -6.895""  -3.956"* -4.905"* -5.783***

p-value 0.000 0.000 0.000 0.000
CCC t-statistic -14.97  -12.24**  -12.33"*  -11.98"**

p-value 0.000 0.000 0.000 0.000

Note: This Table displays the t-statistics of the Diebold-Mariano test of
equal predictive accuracy based on the MSE loss function. The asterisks in-
dicate a significant difference between the forecasting abilities of the bivariate
Realized GARCH model and those of the competitor (cDCC) at the 1% sig-
nificance level. If the t-statistic is positive, the bivariate Realized GARCH
performs better (it has a smaller average forecast loss).
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Table 9: Conditional covariance forecast evaluation: MCS test (Realized Kernel

proxy)

Biv REG forecast error reference

k=1 k=25

Loss PMCS Loss PMCS
Biv REG 0.321 1.000** 0.398 1.000**
cDCC 0.423 0.000 0.462 0.000
BEKK 0.420 0.000 0.459 0.000
CcCC 0.491 0.000 0.514 0.000
cDCC forecast error reference

k=1 k=

Loss Pyes  Loss  Pyces
Biv REG 0.325 1.000** 0.401 1.000*
cDCC 0.417 0.000 0.457 0.000
BEKK 0.415 0.000 0.454 0.000
cCC 0.485 0.000 0.509 0.000
BEKK forecast error reference

k=1 k=

Loss PMCS Loss PMCS
Biv REG 0.325 1.000** 0.403 1.000**
cDCC 0.417 0.000 0.458 0.000
BEKK 0.415 0.000 0.454 0.000
CcCC 0.485 0.000 0.510 0.000
CCC forecast error reference

k=1 k=5

Loss Puycs  Loss  Pycs
Biv REG 0.330 1.000** 0.406 1.000**
cDCC 0.420 0.000 0.459 0.000
BEKK 0.418 0.000 0.455 0.001
cCC 0.481 0.000 0.506 0.000

k=10
Loss
0.448
0.503
0.500
0.541

Pues
1.000**
0.000
0.000
0.000

k=10
Loss
0.452
0.500
0.498
0.536

Pyres
1.000**

0.001
0.001
0.000

k=10
Loss
0.453
0.502
0.497
0.539

Pucs
1.000**
0.001
0.002
0.000

k=10

Loss  Puycs
0.454 1.000**
0.501 0.000
0.499 0.001
0.534 0.000

k=20
Loss
0.555
0.572
0.571
0.582

Pures

1.000**
0.341**
0.341**
0.238*

k=20
Loss
0.557
0.571
0.570
0.582

Pyres
1.000**

0.468™
0.468™
0.310*

k=20
Loss
0.557
0.573
0.570
0.584

Pyes

1.000**
0.414**
0.414**
0.237**

k=20
Loss
0.557
0.572
0.571
0.580

Pyres
1.000**

0.437*
0.437*
0.343*

Note: This Table displays the average loss over the evaluation sample as well
as the Model Confidence Set p-values for the scenarios where outliers and
important forecast losses are removed. The conditional covariance forecasts
in the Mgo% and M75% are identified by one and two asterisks, respectively.
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