
Spatio-Temporal Wind Speed Forecasting with Models based on

Convolutional Neural Networks

IIF-SAS Research Award Report

Bruno Q. Bastos1, Fernando L. Cyrino Oliveira1, Ruy L. Milidiú2

1Industrial Engineering Department, PUC-Rio, Brazil
2Informatics Department, PUC-Rio, Brazil

Abstract

The increasing penetration of intermittent renewable energy in power generation brings new challenges
to the operation and planning of power systems. One way of supporting operation planning under such
circumstance is by enhancing the predictability of renewable resources via accurate and informative
forecasting. Convolutional Neural Networks (Convnets) provide a successful Deep Learning technique to
process space structured multi-dimensional data. In our work, we investigate the use of Convnets to
predict hourly wind speed for a single location and for multiple locations. To develop forecasting models
with Convnets, we adapt techniques originally developed to predict frames in video (a spatio-temporal
task) to the problem of wind speed forecasting with multiple explanatory variables. We propose the
U-Convolutional model, which combines U-Net and Convnet, to solve single-site spatio-temporal wind
speed prediction. We also propose a family of architectures, which we name ComPonentNet family, to
solve multi-site spatio-temporal wind speed forecasting. The proposed architectures are tested on datasets
acquaride from the Climate Forecast System Reanalysis (CFSR) dataset. The U-Convolutional models are
compared against other deep learning architectures (Inception, Residual Inception, Residual Convnets,
and Convnets), against fully-connected neural networks, and against benchmark statistical methods such
as ARIMA and BATS. The results indicate that both solutions are promising for wind speed forecasting.

Chapter 1

Introduction

Worldwide, the awareness concerning climate change has increased since International Panel on Climate
Change (IPCC) indicated that human activity was the main cause of recent global warming and of increase
in greenhouse gas (GHG) emissions [1]. The use of energy was considered one of the main drivers of
the emission of greenhouse gases [1]. As a consequence, the transformation of current energy system
aiming long-term sustainability is of great importance to mitigate climate change. Renewable energy
sources are in the center of this debate – being a potential tool for mitigating the emission of greenhouse
gases [2]. This understanding has been reflected on the development of policies that give a basis for the
adoption of long-term sustainable energy resources, such as wind and solar. Policies range from financial
incentives (e.g., feed-in tariffs) to penetration targets, and include many other mechanisms (such as
renewables quota in energy portfolio, renewable energy auctions, and others). As a consequence of the
execution of such policies, penetration of intermittent renewable energy, such as wind and solar energy,
has been increasing continuously [3].

Power generation from intermittent renewable resources may vary greatly over the course of the
day. Moreover, generation from such sources may present sudden drops throughout the day. Thus, the
growing adoption of intermittent energy solutions poses operational and planning challenges to modern
power systems. The growth of intermittent energy resources increases the variability of power generation,
adding uncertainty into the power generation. With higher variability in power generation, advanced
controls for balancing very-short-term generation and demand may be required [4]. In order to backup
intermittent power, it may also be required an increase in energy reserves, primarily from hydrothermal
units [5]. All of these may lead to an increase in operational costs.

One way of addressing the uncertainty in renewable generation is by producing accurate and infor-
mative forecasts, which may serve as a tool for operation planning (short-term), maintenance scheduling
(mid-term) and capacity planning (long-term) [4]. Many studies and research addressed the renewable
energy forecasting. Methods for wind forecasting include physical models, statistical models and machine
learning models. Physical models use nummerical methods, which are built upon the laws that describe
atmospheric phenomena, to estimate the state of the atmosphere at a given time [6], [7]. According to [8],
this type of model is not adequate for short-term prediction. Traditional statistical models use historic
wind data to predict future wind data. This category include classic time series methods, such as the
ones proposed by Box and Jenkins [9], which are commonly used in wind speed forecasting [10]. These
methods usually present good results for short-, medium- and long-term wind speed forecasting [10]. Spa-
tial correlation models use information of neighboring sites to estimate wind speed at a given coordinate
where measurement is not available. Machine learning methods include neural networks [11], support
vector machines [12], fuzzy models [13], and many others. This methods are known to outperform other

1

methods due to capability of mapping non-linear functions. For a review of wind forecasting, refer to the
following articles [8], [14]–[16] and references therein.

Technological advances in metering and communication have led to an increasing availability of data,
which is being collected in higher frequencies and spanning broader areas. With availability of data at
different locations over time, spatio-temporal approaches have been gaining ever more attention [17]. The
use of spatially-distributed information in modeling has improved accuracy of temporal forecasts over-
all. For example, in [18], spatio-temporal approach of sparse vector auto-regression (sVAR) outperformed
single-site model benchmarks, such as auto-regressive (AR) and vector auto-regressive (VAR) models, on
the task of one-step ahead wind power forecast. In [19], spatio-temporal approach of gradient boosted
regression trees (GBRTs) provided competitive results of solar power forecasts compared to single-site
benchmark models of AR and GBRT, among others.

The notion that the use of spatio-temporal information may improve wind and solar power genera-
tion forecasts is quite reasonable, since wind and solar power generation are affected by meteorological
conditions which may span through large regions. In this sense, for example, the use of information from
nearby meteorological stations could be useful to predict information at a target wind farm. Addition-
ally, the use of spatio-temporal information of meteorological variables, such as humidity, temperature,
precipitation, etc., may also be useful in the process of wind and solar modeling. Statistical and ma-
chine learning methods have been adopted to forecast renewable power generation with spatio-temporal
approaches, some of which consider information of meteorological variables (e.g., [17], [19]). Examples
of statistical methods used in spatio-temporal forecasting include compressive spatio-temporal forecast-
ing (CSTF) model [17], spatio-temporal vector auto-regressive model [20], sparse vector auto-regressive
model (sVAR) [18], trigonometric direction diurnal (TDD) [21], and others [22]–[24]. Examples of machine
learning methods include ensembles of decision trees (DTs) and support vector regression (SVR) [25],
gradient boosted regression trees (GBRTs) [19], and fuzzy model [26].

Recently, deep learning framework and techniques have been gaining ever more attention across dif-
ferent areas due to breakthroughs in computer vision, machine translation, speech recognition, and other
complex tasks. Convolutional neural networks (Convnets) have been one of the techniques responsible
for breakthroughs in computer vision (see [27]). Convnets are neural networks specially designed to pro-
cess multi-dimensional data, within which the ordering of the elements matters - such as images (2D
arrays). Advances in Convnets (e.g., factorized convolutions [28], residual mappings [29]), allowed further
improvements to the technique.

Spatio-temporal prediction using models that are based on Convnets is an ongoing research topic in
many areas, such as meteorology [30] and computer vision [31]–[33]. Shi et al. [30] proposed a model,
known as ConvLSTM, which extends recurrent neural networks (RNNs) with Long Short-Term Memory
(LSTM) cells [34] to perform convolutional operation. The model was used to solve precipitation nowcast-
ing and video frame prediction. Mathieu et al. [31] proposed a multi-scale framework based on Convnets
and adversarial training [35] to predict future frames of video. More recent works on video frame prediction
suggest the decomposition of video into content and motion [32], [33]; moreover, these works combine
a multitude of techniques such as Convnets, RNNs and adversarial training. U-Net [36], a technique
originally developed for image segmentation, has been recently used for video frame prediction [37].

Convnets have already been adopted in the realm of renewable energy prediction. Zhu et al. [38]
propose a Convnet that provides univariate wind power predictions by rearranging the univariate data
into a 2-D vector. Liu et al. [39] decompose wind speed data into low and high frequencies series. The low
frequency series is predicted via Convnet with LSTM layer on top of it, whereas the high frequency series
are predicted with standard Convnets. Chen et al. [40] uses a combination of multi-factor correlation,
Convnets and LSTM to predict wind speed at a target site. In [40], the authors build a 3D matrix
containing meteorological factors for all sites at historical time and use Convnets to extract spatial
features of meteorological factors at various sites and time. LSTM is then used to extract temporal

2

features.

1.1 Renewable Energy in Brazil

Brazil is one of the largest and most populated countries in the world. To supply electricity to the
population, the Brazilian power system relies on a hydrothermal system. Hydro power generation is the
main source of electricity generation, and thermal generation complements hydro power [41]. In 2017,
hydro power accounted to approximately 63.8% of total installed capacity in Brazil and to 63.1% (371
TWh) of total electricity generation produced in Brazil. On the other hand, in 2017 thermal power plants
were the second main supplier of electricity in Brazil, and accounted for approximately 26.5% of installed
capacity.

Hydro generation in Brazil includes large-scale power plants, some of which have large reservoirs that
may be used to regulate the dispatch of power plants throughout the day. (Therefore, these hydro power
plants with large reservoirs serve as a “battery” to the power system, storing and dispatching energy
when necessary.) Hydro is considered a low-cost and highly efficient energy resource [42]. Being costlier
than hydro power, thermal generation complements hydro generation and is used as backup to the power
system during droughts.

Being highly dependent on hydrology, and covering a vast territory, operation of the Brazilian power
system is very challenging. It has to consider future hydrological conditions on different river basins
and expected opportunity costs to define whether to dispatch hydro power or thermal power at present
time. The decision problem is solved using a multi-stage stochastic optimization set-up [43]. The dispatch
of power plants in centralized by an independent system operator (ISO), which defines the dispatch based
on costs [44].

Wind energy has been the fastest growing energy resource in Brazil, being incentivized by energy
auctions throughout the last decade. Wind installed capacity increased from 1.43 GW in 2011 to 12.28
GW in 2017 – an annual growth rate of 36.00% a.a. Wind energy has also seen a great increase in terms
of energy generation – with a growth of 48.15% a.a. Nowadays, 483 wind farms are in operation in Brazil,
accouting for 7.82% of total installed capacity. Moreover, 135 wind farms are under construction and 126
wind farms are yet to be constructed.

With the increase of renewables in the electricity mix (translated into higher variability in power
generation), and with restrictions on reservoir storage capacity (meaning lower regulating capability),
Brazilian power system operation and planning will be even more challenging. As pointed out by Drank and
Ferreira [42], to find a solution to this new paradigm, the country needs to undergo deep discussions. Our
work targets a small part of the problem, which is related to wind predictability in multiple locations.
Specififcally, our case studies target two areas in Brazil - one related to Bahia state and the other to
Rio Grande do Norte state (both belonging to Northeast region, the most prominent in wind energy
generation in Brazil).

1.2 Contributions

In our work, we address both single-site and multi-site spatio-temporal wind speed forecasting. For single-
site forecasting, we propose an architecture which combines U-Net and Convnet, the U-Convolutional
model. In this architecture, the U-Net – recently used to predict video frames (see [37]) – is used to
synthesize and produce high-level features from spatio-temporal data; the high-level features acquired
with U-Net are fed to a Convnet, which produces the wind speed prediction. The proposed architecture
is trained jointly; this means that the high-level features obtained via U-Net are produced by optimizing

3

a single value (the wind speed error for a single coordinate). In the context of this work, we also in-
vestigate the addition of different elements, such as identity mappings and simplified inception modules
(or all of these techniques simultaneously), to the proposed architecture and to standard Convnet. In
all architectures, we make the input channels be an explanatory variable [45] that is a spatio-temporal
process.

Besides proposing an architecture which differs from the one in Chen et al. [40], our work also differs
from Chen et al. [40] in other aspect: we use the meteorological variables (temperature and u- and v-
components of wind) to directly map wind speed at a single site. That is, in our approach, the architecture
learns the relations between the exploratory variables and output data without being given any specific
information of correlation between variables. In this context of single-site, the contributions of this work
are the following:

• Proposition of deep learning architecture that combines U-Net architecture and Convnet for fore-
casting of wind speed at a single location with multiple spatio-temporal explanatory variables as
input;

• Investigation of Convnet architectures which include inception modules and identity mappings in
the task of spatio-temporal wind speed prediction;

• Comparison of proposed and Convnet architectures against fully-connected neural network modeled
in a spatio-temporal setting and against traditional univariate models such as BATS [46], ARIMA [9]
and Näıve models;

• We outline a way forward in modeling wind speed with multiple spatio-temporal explanatory data.

For multi-site spatio-temporal wind speed prediction, we design a collection of architectures (which
we name ComPonentNet family of architectures), inspired by the U-Net architecture [36], which adopt
historic u- and v-components of wind (as input channels) and predict u- and v-components one step
ahead of time. With this configuration, the architectures are able to perform multi-step prediction and
to provide not only wind speed as output, but also wind direction (both wind speed and wind direction
may be calculated from u- and v-components of wind).

The proposed multi-site architectures are composed of three parts, a bottom-section (i.e., the first
layers of the architectures, which are closer to the input), a middle-section (i.e., layers that follow the
bottom-section layers), and a top-section (i.e., the last layers of the architectures, which follow the
middle-section layers, and are closer to the output). As in the U-Net architecture, the bottom-section
layers act as a contracting path and top-section layers as a expansion path, and bottom-section layers
are connected to the top-section layers.

The proposed architectures process u- and v-wind separately. For example, one of the architectures
processes u- and v-components separately at the bottom-section of the architecture (i.e., each component
is processed by an specific path); then, it fuses the high-level features at the middle-section of the
architecture; finally, it splits the fused features into two paths, which output u- and v-components of wind
separately. Differently, other architecture process u- and v-components separately only at top-section. We
compare both architectures against the U-Net, which processes u- and v-components alltogether. In the
context, we investigate the impacts of processing u- and v-components separately, considering the task of
multi-site wind speed forecasting. Considering that both architectures play with components of a unique
phenomena, we name these collection of architectures as the ComPonentNet family of architectures,
which we abbreviate as CPNet.

Our contributions to multi-site spatio-temporal forecasting are the following:

• Proposition of spatio-temporal architectures which process u- and v-components of wind separately
and are able to perform multi-step prediction for multiple coordinates (sites);

• We outline a way of designing an architecture (by rethinking U-Net architecture) to model phe-
nomena that is composed of multiple factors (in our case, wind phenomena, which is composed of

4

u- and v-components) for regression tasks;
• We investigate the impact of adopting different processing schemes for u- and v-components of

wind on accuracy measures for multi-site wind speed prediction.

1.3 Objective of Research

The aim of this research is to develop spatio-temporal prediction methods for wind speed with deep
learning techniques. Specifically, we develop spatio-temporal methods for single-site and multi-site fore-
casting with architectures which have Convnet and U-Net as a basis. Our contributions include a range
of new methods, which include the U-Convolutional model (U-Conv) for single-site forecasting and the
ComPonentNet architectures (CPNet) for multi-site forecasting. Our work provide a basis for new spatio-
temporal wind speed forecasting methods based on Convnets. The ideas used for wind speed prediction
may also be used to solve other forecasting problems, which involve phenomena that might be decom-
posed into two or more components (such as wind being decomposed into u- and v-components). The
proposed methods may also inspire architectures for other spatio-temporal problems which may take
different explanatory variables as input.

5

Chapter 2

Fundamentals

2.1 Convolutional Neural Networks

Convolutional Neural Networks also known by the acronym Convnets are neural networks specially de-
signed to process data that come as multi-dimensional arrays, within which the ordering of the elements
in each array matters [47], [48]. As an illustrative example, consider a 2-D array representing an image,
which depicts an object. Convnets are composed of stacked non-linear layers, which are sequentially
applied to transform the data from raw input to higher-level concepts. Each layer is a mathematical
function with trainable weights that maps input values to output values. With each new layer output,
a more abstract representation of the data is obtained [48]. The approach of sequentially transforming
the data to higher-level concepts allows the learning of complex functions with little feature engineering,
since the high-level concepts can be viewed as new features, which are extracted from the raw input. In
Figure 2.1 we outline this neural network architecture.

When processing multi-dimensional data, representing spatially structured objects, with standard fully-
connected neural networks, most of the spatial information is ignored [49], [50]. Convnets, on the other
hand, provide a way of extracting local features by means of the convolutional layer, its core component.
This Convnets aspect is very relevant for the task we aim to solve in this work. Namely, we want our
model to learn and identify spatial patterns of meteorological variables in a given region. These patterns
would aid in describing ahead of time the wind phenomena at either one or multiple locations.

2.1.1 Convolutional Layers

A convolutional layer is composed of many planes, known as feature maps, each of which contains a given
number of units, the so called neurons. Each neuron is bounded to a small location within the planes of
the previous layer by means of a set of weights (also called filter bank or kernel) and receives, as inputs,
values from units pertaining that small location [47], [48]1. Each unit of the convolutional layer may be
described as the output of an operation between the units in the small location of the input plane and
the weights in the filter bank. This operation is the convolution operation followed by the addition of a
bias term, whose result is then passed through a non-linear function [47], [49].

Within each feature map, all units share the same set of weights and perform the same opera-
tion [49]. By performing the same operation in different localities of the input plane, with the same set

1The “planes” in the previous layer (which could be “planes” in the raw input data) are also known as input feature
maps. The units in a single input feature map are convolved with the weights in the respective filter bank to produce an
output feature map (referred to only as “feature map” above).

6

Figure 2.1: Example of Convolutional Neural Networks Architecture

of weights, a single feature map extracts the same features in different localities. This property is very
relevant because it makes the Convnets invariant to translations in the input data [51]. Furthermore, by
using multiple feature maps, the convolutional layer is able to extract different features from the same
neighborhood location in the input plane: each feature map, with a particular set of weights, extracts a
different feature for a given neighborhood location.

Feature Extraction in Convolutional Layers

Let X be a 2-D input array with M elements in the i-axis and M elements in the j axis, i.e., X =
(xi,j) ∈ RM×M . The array X may be the values of an input plane preceding a given convolutional layer,
where i and j are axes which retain the spatial disposition of values in the 2-D input array (e.g., height
and width axes of an image). Furthermore, let W be a 2-D filter with N elements in the i-axis and N
elements in the j-axis, i.e., W = (wi,j) ∈ RN×N . Then, the convolution operation of filter W over the
2-D input array X may be described as in Equation 2.1 [48].2,3

Si,j = (X ∗W)i,j =

M−1∑
m=0

N−1∑
n=0

Xi+m,j+nWm,n (2.1)

The output Si,j in Equation (2.1) is related to one single unit in a convolutional layer’s feature
map. After performing the convolution operation for all units in the given feature map, we obtain S =
(Si,j) ∈ RQ×Q, where Q×Q is the number of units in the resulting feature map, and Q =M−N+1 [52]. 4

In deep learning, inputs to Convnets are usually 3-D arrays with height, width and depth axes [51]. In
images, the height and width axes are related to the spatial disposition of pixels. The depth axis, on the
other hand, is related to the number of color channels of an image. For this reason, the depth axis is
also known as the channels axis. To account for a 3-D input array, the kernel of the convolutional layer
is made volumetric (i.e., 3-D) with each channel of the kernel performing a convolution operation on a
specific channel of the input array [24]. To form a feature map, the output of each convolution operation

2As explained in [48], Equation 2.1 shows the cross-correlation function, which is commonly adopted, in practice, to
implement convolution operation in the context of Convnets. For further details, please refer to [48].

3Please note that, in Equation 2.1, X and W are square matrices. Nevertheless, the convolution operation does not
require neither matrices to be square (please refer to [48] for a broader definition of the convolution operation).

4Here we assume a convolution operation with no zero-padding (e.g., no padding of zeros around feature map border)
and with stride of size 1 (i.e., we move filters one pixel at time). For more details about calculations of output shapes for
convolution operations, please refer to [50] and http://cs231n.github.io/convolutional-networks/.

7

http://cs231n.github.io/convolutional-networks/

on the channels is summed, and then a bias term is added (element-wise) to each resulting unit in the
spatial grid. In Equation (2) we detail this operation, assuming the definition in (2.1) [52], that is,

Od = bd +
∑
r

Sd,r (2.2)

where Sd,r is the convolution operation performed for the r-th input channel of the d-th feature map,
bd is the bias term for the d-th feature map, and Od is the resulting feature map.

After adding the bias term, a non-linearity is applied element-wise to the resulting units in the
feature map. This way, we are allowing the convolutional layer to map features which are non-linear
transformations of the input. In deep learning, a usual non-linearity is the ReLU activation [53], defined
as g(z) = max(0, z). This activation function has lots of properties which are desirable for training deep
neural networks and extracting features, such as the production of sparse representations.

2.1.2 Pooling Layers

The pooling layer, also known as subsampling layer [49], reduces the dimension of the feature map by
compressing into one single value all the information of several units from a local neighborhood of a
feature map. A pooling layer may take, for instance, the maximum value or the average value of units in
the local neighborhood, what is respectively called max pooling and average pooling. Applying a pooling
layer of size P × P to the d-th output feature map of the convolution layer Od of size Q×Q, results in

Hd,i,j = gp{Zd,i+p,j+p} (2.3)

where p takes values in {1, . . . , P}, P is the window size and gp is the function which is applied to
compress the information in the local neighborhood of size P × P . As an example, for the max pooling,
gp is maxp. The output of the pooling operation, for a stride of size 1, is a map of size Q−P +1. The
procedure described above makes the pooling layer invariant to small translations and distortions in the
data [47]–[50], [52].

2.1.3 Fully-Connected Layers

Fully-connected (FC) layers are usually the final layers in a Convnet, being stacked on top of modules
of convolutional layers and pooling layers. Since the modules of convolutional layers and pooling layers
extract features from data, FC layers act directly upon the extracted features. This way, FC layers map
the extracted features of the data to the final target of the Convnet.

Each one of the neurons in a FC layer is connected to all neurons in the preceding layer, and each
connection is associated with a trainable parameter (weight). Therefore, the neuron in the FC layer may
be computed by the dot product of inputs and its respective weights, followed by the addition of a bias
term. Let a neuron in a FC layer have n inputs, let f be an activation function, b be the bias term, and
let xi and wi be the input and weight values respective to that neuron’s i-th input, then the neuron
output may be computed as f((

∑n
i=1 wixi) + b).

The configuration of the Convnet’s output layer will depend on the task being solved by the net-
work. For example, if we intend to solve multi-class classification with N output classes, the output
layer may be designed to have N neurons with softmax activation function [48] (the softmax function
computes a probability for each of the neurons; since each one of the N neurons is related to a class,
the probability output of the softmax function denotes the probability that the input is associated to the
given class). In the case of wind speed prediction for a single location site, the output layer will have only
one neuron.

8

2.2 Improvements on Convolutional Neural Networks

2.2.1 Residual mappings

One of the most prominent deep learning architectures is the ResNet [29]. Proposed originally in 2015,
the ResNet aimed to address the degradation problem of very deep neural networks. It addressed the
degradation problem by adopting an architectural increment to neural networks, which would allow layers
to perform residual mapping – a mapping constrained by original input features (see Eq. (2.4)). The
hypothesis was that the neural network would be easier to optimize with layers that performed residual
mappings: without residual mapping, the neural network would have to learn unconstrained mappings,
and learning the unconstrained mappings would be harder.

Formally, the residual mapping may be formulated as follows:

y = x+ F(x,Wi) (2.4)

Where y and x are the output and input vectors of the layer(s) performing residual mapping. Wi is
the parameter vector related to the mapping performed by the layer(s), and F(x,Wi) is the function
that will be learned by the residual mapping.

In Figure 2.2, we illustrate the addition of the residual connection (also known as skip connection) to
a single layer. We show that the layer H(x,W) has to learn its weights without any reference (uncon-
strained setting); by adding the residual connection, the layer F(x,W) needs to learn a residual function
(constrained setting).

Figure 2.2: Identity mappings with addition of residual connections: (a) unconstrained mapping; (b)
residual mapping.

2.2.2 Inception Modules

The Inception architecture [54] follows a great number of core neural network architectures used in com-
puter vision, such as the LeNet [49], VGG [55] and CaffeNet [56] architectures. The Inception architecture
is part of a family of models, which began with Inception v1 [54], also known as GoogLeNet, and was later
updated and refined in three other versions, Inception v2 [57], Inception v3 [58] and Inception v4 [59].

In classic Convnets, convolutional filters process spatial relations and cross-channel information [28]. In-
ception architectures redesign the way spatial and cross-channel information are processed, aiming at

9

higher efficiency: instead of having a single convolutional filter processing both spatial and cross-channel,
Inception layers would use a series of convolutional filters to process each type of information sepa-
rately. The layers that implement the Inception hypothesis are usually named Inception modules, which
compose the Inception architectures. The Inception hypothesis is that cross-channel information is suffi-
ciently different from spatial correlation, that they may be treated separately.

As pointed out in [28], there are several variations of inception modules. However, all share a same idea,
which is to decouple cross-channel correlation and spatial correlation mappings of traditional convolution
using 1x1 convolutions followed by 3x3 convolutions [28]. Figure 2.3 illustrates two versions of the
inception modules – the canonical inception module and the simplified inception module.

Figure 2.3: Inception modules: (a) canonical version; (b) simplified version. Reproduced from [28]

2.2.3 U-Net

Convnets [60] were developed to solve image classification task where output was a class label, (e.g.,
CIFAR, ImageNet). However, many other visual tasks require pixel-by-pixel classification with very limited
data (e.g., less than thousands of samples). Fully-convolutional neural networks [36], [61] are a type of
architecture which was originally designed to solve pixel-by-pixel classification.

One of the most prominent and popular fully-convolutional neural network architecture is the U-
Net [36], which performed high-accuracy image segmentation with training on very few examples. Intro-
duced in 2015, the U-Net is a special kind of Convnet, which takes its name from the shape of the neural
network architecture.

The U-Net presents a contracting path – which is based on convolutional and subsampling layers –
and a expansive path – which is based on transposed convolution and upsampling layers5. The contracting
path follows the same ideas as traditional convolutional neural networks, and aims to extract features from
raw data by means of convolution and pooling operations. The expansive path aims to reproduce high-
resolution map from those extracted features by applying tranposed convolutional. The U-Net architecture
is trained as any other neural network architecture – with stochastic gradient descent algorithm and
backpropagation.

5The transposed convolution – also known as deconvolution – performs the inverse operation of the traditional convo-
lution. It expands an input map to a higher-sized output map by applying a filter that associates each of its input units to
multiple output units. For more details, please refer to [50]

10

Chapter 3

Review

3.1 Time Series Forecasting

The prediction of temporal phenomena is a relevant subject for multiple areas. For example, the forecast of
growth domestic product (GDP) is important to measure future economic expectations of countries (what
may drive future investments in that country). Likewise, demand forecasts are essential for production
and operational planning of retail companies. In power systems, the forecast of load demand supports
the definition of which generation units should produce power to attend the demand. Many other areas
also rely on time series forecasting.

Formally, time series are a collection of observations made sequentially in time [62]. Time series are
stochastic processes – both influenced by randomness and by past values.

3.2 Spatio-Temporal Forecasting

Spatio-temporal processes are those that unfold in time and space [63]. Examples of spatio-temporal
include the following: meteorological processes (such as air pollution [64], precipitation, wind phenomena
and others), transportation processes (such as traffic flow, river flow and others), health-related issues
(such as outbreaks of ebola [65], or weight of babies in a region [66]) and video processes (which consists
of the variation of pixels on the frames of videos). Formally, spatial-temporal processes may be defined
as follows: let T ⊂ R be a time domain, D ⊂ Rd be a spatial domain, and let d = 2, a spatio-temporal
process X(s, t) is a random variable that can take a series of outcome values at any location s ∈ D and
instant in time t ∈ T , that is:

X(s, t) : s ∈ D, t ∈ T (3.1)

There are many contexts in which spatio-temporal forecasting may be needed. Often times, one needs
to use spatio-temporal information to infer a single value or multiple values. One example for the former
is the task of action recognition in videos, in which frames of video are input to a model, which outputs
a value that identifies the action being performed in the video. One example for the latter includes
frame-by-frame prediction – a task in which the model predicts the pixel values for a given temporal
horizon.

11

3.3 Methods for Spatio-Temporal Prediction

Many different approaches to predicting spatio-temporal phenomena have been proposed. These range
from statistical methods to recent deep learning methods. Below, we list the main techniques used to
solve spatio-temporal prediction.

3.3.1 Statistical Methods

In 1999, Cressie and Huang [67] adopted the classical geostatistical method of kriging [68] to model
spatio-temporal wind phenomena over a region in the Pacific Ocean. (Kriging is an interpolation method
originally developed in the context of geostatistics; it produces a model which gives more weight to points
nearest to the prediction point [69].) The article expanded the class of covariance functions which could
be adopted in the context of spatio-temporal kriging. The drawback of kriging methods is that many
assumptions need to hold true in order for the model to perform well. When assumptions do not hold,
the model's performance may deteriorate. In fact, as pointed out in [67], separable models (based on
kriging) were chosen due to convenience, and not due to good fit on data. In spite of this, kriging-based
methods are still used today. For example, Martinez et al. [70] expanded Median Polish Kriging (MPK)
to consider four dimensions (time, latitude, longitude and altitude) in spatio-temporal prediction.

Another statistical approach to spatio-temporal prediction is the one that combines geostatistics and
additive modeling – a class of models known as geoadditive models [66]. This class of models considers
the spatio-temporal process as a sum of space effect and temporal effect [71]. In such models, as pointed
out in [72], temporal trend may be modeled via random walk, autoregression, or P-splines. Spatial effect
may be modeled via Markov random fields or 2D P-splines. Fahrmeir et al. [72] adopt additive approach
to spatio-temporal modeling and infer parameters of the space-time models with bayesian inference. Paez
and Gamerman [73] also adopt bayesian inference to estimate additive models for predicting pollutant
concentration in Rio de Janeiro. In their work, they compare different specifications for modeling temporal
component and spatial component, which are assumed to be separable.

Many other statistical methods, which build upon the classical approaches of kriging, geoadditive
models and ANOVA interaction [71], [74], have been developed and are out of the scope of this the-
sis. For a comprehensive review on statistical methods for spatio-temporal prediction, refer to Diggle and
Ribeiro [75], Fahrmeir et al. [72] and González et al. [65].

3.3.2 Machine Learning Methods

When dealing with spatio-temporal prediction problem, we usually have observations of the same variables
for multiple location sites; this enables us to build different features and algorithmic designs for predictive
purposes. Consequently, in the realm of traditional machine learning (ML) models, works addressing
spatio-temporal prediction consider different types of designs. The designs often differ on how features
of each site are exposed to the learning algorithm.

For example, Heinermann and Kramer [25] consider past observations of neighboring sites as features
to their ML models – thus, adding dimensionality to the input space. Differently, Persson et al. [19]
develop a model that adds information for a given time of a given location site (e.g., past observations,
latitude, longitude, zenith angle, and other features) as examples on the input data – thus, adding rows
to the input data.

The works that adopt ML methods deal with the paradigm of building a algorithm that learns the
relation between input pattern and target data. Methods for developing such an algorithm are various,
and may include a single Support Vector Regression (SVR) (as in [76]), single neural network (as in [77]),
ensemble of predictors (such as the ones developed in [25] and [19]), and many others.

12

3.3.3 Deep Learning Methods

In this section, we review deep learning techniques used specifically for video frame prediction, which
is a spatio-temporal problem. Consequently, the techniques used for video processing may be used as
a basis for spatio-temporal wind speed prediction (in a setting similar to the one of frame-by-frame
prediction). Reviewing such techniques is thus useful to understand state-of-the-art of deep learning for
spatio-temporal prediction.

Video frame prediction is a challenging computer vision task, which requires one to develop a model
able to learn not only the structure of images but also the motion related to them [78]. To solve video
frame prediction, a wide range of deep learning techniques may be adopted. These may include, for
example: recurrent neural networks (RNNs) [34], fully convolutional neural networks (FCNs) [61], residual
connections [79], adversarial training [80], attention mechanisms, feature fusion, and many others.

In early years, solutions with recurrent neural networks (e.g., LSTM) were the ones proposed to solve
video frame prediction. The approaches were inspired by sequence-to-sequence modeling – originally
used for natural languange modeling. In 2014, Ranzato et al. [81] proposed the use of RNNs originally
developed for language modeling to solve video frame prediction. The work transformed the pixel space
into a quantized space encoded via k-means to be able to achieve good results with the proposed
models. In 2015, Srivastava et al. [82] used LSTM encoder-decoder framework to predict video frames
as a sequential problem. The work encoded input frames either as image patches or as features extracted
from last layers of state-of-the-art image recognition models. One of the proposed models in [82] was the
LSTM Future Predictor Model, an Encoder-Decoder model where the Encoder runs through a sequence
of frames to learn a representation of it and the Decoder produces a target sequence (future video frames)
from the representation.

Following LSTM-based models, new architectures began to leverage convolutional operations to pro-
cess the spatial information. Shi et al. [30] proposed a model, known as ConvLSTM, which extended recur-
rent neural networks (RNNs) with Long Short-Term Memory (LSTM) cells [34] to perform convolutional
operation. The ConvLSTM model was originally developed to solve precipitation nowcasting. However,
the method started a new line of approach to video frame prediction, and, until today, the ConvLSTM is
used as benchmark for video frame prediction (e.g., see [78]). ConvLSTM is also used as backbone layer
for new architectures used for video frame prediction (e.g., see [32]).

Finally, recent works on video frame prediction proposed to disentangle content and motion in videos
(e.g., see [32], [33], [83], [84]), and to model the problem using Encoder-Decoder architectures that
combine FCNs, ConvLSTM or LSTMs (separately or altogether). Additionally, the learning framework
proposed in most recent works is that of adversarial training [80] (e.g., see [32], [33], [84]). Some known
models, which have become a reference in present time [83], are MCNet [32] and DrNet [33].

Villegas et al. [32] is one of the works that adopts the disentanglement of content and motion in videos
to address video frame prediction. The work uses an Encoder-Decoder framework, and adopts one encoder
for motion in video and another encoder for video content. The motion encoder is implemented with a
FCN followed by a ConvLSTM, whereas the content encoder is implemented with a standard Convnet,
specialized on extracting features from a single frame [32]. Content and motion features obtained by the
encoders are then fused and fed to a decoder (a deconvolution network [85]), which finally predicts the
future frames.

13

Chapter 4

Single-Site Spatio-Temporal Wind
Speed Forecasting

4.1 Methodology

The use of spatial information has been shown to enhance the predictability of wind [17]–[19]. Thus,
adopting more advanced techniques, which process spatio-temporal information and predict wind speed,
may lead to better tools for power systems operations. Convnets is a powerful technique for processing
spatial data. Here, we develop architectures based on convolutional and fully-convolutional neural net-
works to leverage spatio-temporal information of multiple explanatory variables with the goal of predicting
wind speed in a single location.

Let there be m explanatory variables, which are spatio-temporal processes. Then, each explanatory
variable is a random variable which may take values in location s ∈ S and time t ∈ T , where S is the
spatial domain (in our case, S ⊂ R2) and T ⊂ R is the time domain. In the context of wind prediction,
potential explanatory variables are temperature, pressure, presence of rain, the components u and v of
wind, and others.

To process spatio-temporal variables with Convnets, we propose assigning each explanatory variable
to one of the input channels of the Convnet. Considering this set-up, for a given input channel, the
height and width axis of the Convnets are going to represent latitude and longitude, respectively, and
each value at a given position in the input channel will be the value of the associated explanatory
variable at the respective latitude-longitude pair. Moreover, all values in a given input channel will be
related to the same time step. For clarity, we write input variable X1 as X1,t. One could add information
of a given variable at different time steps by including lags of the spatio-temporal variables in the
input channels. Additionally, one could consider multiple explanatory variables in the input channels. Let
l ∈ {0, . . . , L} denote lagged steps and let m ∈ {1, . . . ,M} denote explanatory variables, the multivariate
input to the Convnets, Xt, may be written as Xt = {Xm,t−l}.

Considering this setting, the objective is to use information of the multivariate 3D input tensor, Xt,
to predict a single value yt+1, which denotes the wind speed one-step ahead of time for a single site
(i.e., for a single latitude-longitude coordinate). We propose the use of neural networks to perform such
a mapping. Specifically, we adopt deep learning techniques to design neural network architectures which
extract high-level features from the multi-dimensional tensors and map the extracted features into the
output variable in R. Below, we give details of the proposed architectures. The backbones of the proposed
architecture are the U-Net and Convnet architectures.

14

4.1.1 U-Convolutional Models

The U-Net maps an image to a segmentation mask, solving pixel-by-pixel classification. It is a powerful
technique for image segmentation. More recently, the U-Net was adopted to predict future frames of
videos. Specifically, in [37], an adversarial framework is adopted, and the generator, which produces the
prediction for the next frame, is an U-Net. As pointed out in [37], the U-Net is selected as the predictor
due to its good performance on image-to-image translation. The inputs to the U-Net, in [37], are frames
in present and past times; the output is the frame at one step ahead of present time.

In the proposed architecture, which will be referred to as U-Conv model, the U-Net is used differently,
since its final layer is not associated with a target tensor (e.g., segmentation mask, image or video
frame). Instead, the final layer of the U-Net is connected to a Convnet, which outputs a single value
(i.e., wind speed at one-step ahead of time). Consequently, the U-Net’s final layer is a feature map that
is obtained as result of the optimization process that minimizes weights considering only a single output
variable. With this setting, we design the U-Net to map the 3D input tensor, Xt, to a 3D output tensor
that has the same dimensions of the input tensor. This output tensor is connected to a Convnet-based
architecture, which produces the final single-value output for our problem (the wind speed prediction).

We hypothesize that U-Net would act as a more enhanced feature synthesizor than traditional convo-
lutional operation applied sequentially (deep Convnets), which would facilitate Convnet processing and
final prediction. This hypothesis considers the fact that, different from mapping with sequential convo-
lutional layers, U-Net combines features from layers at different locations in the architecture, providing
high-level features that would be more refined that those in traditional deep Convnets.

Input design

In our U-Conv model design for wind speed prediction, we consider u-component of wind, v-component of
wind and temperature at times t, t−1 and t−2 as input variables. Let these three variables be, respectively,
U , V and K. We may write the input tensor as Xt = {Ut−l, Vt−l,Kt−l}, l ∈ {0, 1, 2}. Hence, Xt totals
nine input variables. Each variable is assigned to one input channel. The output variable is the wind speed
at time t+1, i.e., ys1t+1. We have, thus, an input array of shape nlatitude×nlongitude×9, which accounts,
respectively, for the number of latitude points (height axis), number of longitude points (width axis) and
the three explanatory variables at times t, t− 1 and t− 2 (channels axis).

Figure 4.1 illustrates the solution we give to wind speed spatio-temporal prediction with the U-Conv
model. In (A), we illustrate the variables that compose the input tensor: variables U , V and K at times
t, t− 1 and t− 2. In (B) we detail how the input tensor to the Convnet is structured: each 2D tensor in
(A) is concatenated in the channel axis to form the input tensor of dimensions nlatitude × nlongitude ×
9. Illustration (C) shows the U-Conv model overall structure: a model that is composed of two parts – a
U-Net model and a Convnet-based model. The U-Conv model outputs a single value (one-step-ahead
wind speed). In (D), we illustrate the target variable, yt+1.

U-Net design

The design of the U-Net part of our U-Conv model follows the structure proposed in [36]. In our case,
the spatial resolution of input and output is smaller than the one in [36]: the datasets we use have
spatial dimension of 10× 10 and 9× 9 (accounting for specific regions in Brazil), whereas in [36], spatial
dimension is 512 × 512 (accounting for medical images with 512 × 512 pixel resolution). In [36], the
contracting path is composed of 3x3 convolutions and 2x2 maxpooling with stride of 2. Considering the
reduced spatial information in our input setting, we adopt 2x2 convolutions and 2x2 maxpooling with
stride of 1 in our contracting path. Moreover, despite following the same idea of doubling the number of
filters at each 2x2 subsampling, our design also differs in terms of the number of filters at convolutional

15

Figure 4.1: Illustration of Input-Output Mapping with U-Conv model

layers: considering that the problem is an hourly forecasting problem, we chose 24 filters at U-Net’s
first convolutional model, attempting to have filters for different hourly patterns in one day. (The layers
that follow the first layer are multiples of 24.) The expansive path follows the idea of the original work:
upsampling of feature maps followed by convolutional layers that halves the number of features, and
concatenation of convolutional layers followed by another convolutional layer. The expansion path is
symmetric to the contracting path, in terms of number of filters in the convolutional layers.

Convnet design

To build the Convnet part of the model, we took as a basis the idea of combining convolution and
subsampling layers, increasing the number of feature maps (representational power) as the size of the
feature maps (resolution) decreases [49]. Considering this setting, we created a module comprising two
convolutional layers followed by one pooling layer. We combined two modules of two convolutional layers
followed by one of pooling – a design which might be found, for example, in the first layers of the VGG-19
model [29], [55].

The Convnet design ended up with 9 layers. The first two layers were convolutional layers with kernels
of size 2 × 2; the third layer was as max pooling layer of size 2 × 2. The fourth and fifth layers were
convolutional layers with kernels of size 2× 2. The sixth layer was a max pooling layer of size 2× 2. The
first six layers are the ones that perform feature extraction. After the sixth layer, we reshape the data
to be a one-dimensional vector. The one-dimensional vector is then fed to a fully-connected layer. The
seventh layer is followed by a dropout layer, which we adopt to prevent overfitting our data. The last
layer is the output layer comprised of a single neuron with linear activation.1

We propose a second version of the U-Conv model, which we name residual U-Conv model, where
we add identity mappings to the Convnet part of the model. We adopt the identity mapping in every
convolutional module of the Convnet (see Figure 4.2).

1The number of filters in the convolutional layers and the number of neurons in the fully-connected layer may vary in the
experiments. Nevertheless, all U-Conv models follow the idea that the number of filters in the first convolutional module is
lower than that in the second convolutional module.

16

The full architectures of the U-Conv and residual U-Conv models are illustrated in Figures 4.2. In
the Figures 4.2(a) and 4.2(b) we refer the filters in the first and second convolutional modules as f1
and f2, respectively. Fully-connected layers are referred to as fc, and output layer is named as out. We
specify the number of filters and regularization in Section 4.3. We apply zero padding when needed in
both architectures.

Figure 4.2: (left) U-Convolutional model; (right) Residual U-Convolutional model

4.1.2 Convnet and Inception Models

Following the idea of using explanatory variables in the channel axis of the 3D input tensor, it was also
possible to develop other Convnet models to solve spatio-temporal wind speed forecasting. Specifically,

17

we develop standard Convnet, Convnet with identity mappings, Convnet with inception modules and
Convnet with inception modules and identity mappings. These architectures (which we refer to as Conv-
net, Residual Convnet, Inception, and Residual Inception, respectively) are illustrated in Figures 4.3(a),
4.3(b), 4.3(c), and 4.3(d), respectively. By investigating other Convnet architectures, we may be able to
identify which other types of architectures would be fit to solve spatio-temporal wind speed forecasting.

In [29], the residual mapping is adopted to every few layers; for example, the 34-layer residual network
has a residual mapping that encompasses two consecutive layers. In our work, the architectures have
identity mapping for every convolutional (or inception) module. This is illustrated in Figure 4.3(b) (and
Figure 4.3(d)).

Concerning the inception-based models, we create an architecture where we substitute convolutional
layers in Convnets and Residual Convnets for inception modules (see Figures 4.3(a) and (b) versus Figures
4.3(c) and (d)). The idea is to understand if switching standard convolution for convolutions that split
cross-correlation from spatial correlation improves spatio-temporal wind forecasting.

Figure 4.3: (a) Convnet, (b) Residual Convnet, (c) Inception, (d) Residual Inception

4.1.3 Training

To build the proposed models, we need to define a loss function, which provides a measure of how bad the
model is. The loss function we select for our training is the mean squared error, a popular loss function for
regression tasks (see Equation 4.1). To estimate the models, we also need to define the learning algorithm
that minimizes the loss function we selected. To search weights in the Convnets’ parametric space, such
that the loss function of our task is minimized, we select the Adam algorithm [86]. We select Adam
because it combines properties from Adagrad [87] (dealing with sparse gradients) and RMSprop (dealing
with non-stationary objectives), and because Adam is usually considered robust to hyperparameters’
choices [48].

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (4.1)

Where yi is the true value for the i-th example and ŷi is the predicted value for the i-th example and
N is the number of examples.

18

4.2 Empirical Evaluation

4.2.1 Datasets

In this work, we use two samples from the Climate Forecast System Reanalysis (CFSR) dataset [88]. The
dataset has been obtained at the Research Data Archive (RDA) website. Both samples from the CFSR
dataset contain data of u-component of wind, v-component of wind and temperature for latitude-
longitude pairs. The first sample of data considers latitude-longitude pairs where latitudes range from
-9.5° to -14.0° at 0.5° spatial resolution and longitudes range from -44.5° to -40.0° at 0.5° spatial reso-
lution. These coordinates are related to an area in Brazil comprising, approximately, the entire state of
Bahia. For this purpose, we refer to this first sample of the CFSR dataset as Bahia Wind.

For the other sample, the data is acquired for latitude-longitude pairs where latitudes range from
-4.191° to -5.826° at, approximately, 0.204° spatial resolution, and longitudes range from -36.000° to
-37.841° at, approximately, 0.204° spatial resolution. These coordinates are related to an area in Brazil
comprising a region of the State of Rio Grande do Norte, one of the regions with highest incidence of
constant wind in Brazil. We refer to this second sample of the CFSR dataset as Rio Grande do Norte
Wind.

The data we acquire for each variable at each coordinate consists of an hourly time series which
dates from 2011-04-01 00:00 until 2017-01-01 0:00 for Bahia Wind and from 2011-04-01 00:00 until
2018-03-01 00:00 for Rio Grande do Norte Wind.

At the end, we have 50448 hourly data for each one of the 10 x 10 locations (latitude-longitude pair)
of each of the 3 variables we consider for Bahia Wind, and we have 60648 hourly data for each one of
the 9 x 9 locations of each one of the 3 variables we consider for Rio Grande do Norte Wind.

In Figures 4.4 and 4.5, we show the explanatory variables heatmap of the time step of t = 0 hours
for Bahia Wind and Rio Grande do Norte Wind, respectively.

Figure 4.4: Heatmaps of Meteorological Variables for Time Step t = 0 hours of Bahia Wind

Figure 4.5: Heatmaps of Meteorological Variables for Time Step t = 0 hours of Rio Grande do Norte
Wind

19

4.2.2 Experimental Setup

We used the proposed models to predict wind speed one hour ahead of time for a single coordinate
within the regions of study. For Bahia Wind, target wind speed was measured at latitude of -12.0° and
longitude of -42.0°; for Rio Grande do Norte Wind, target wind speed was measured at latitude -5.0° and
longitude -37.0°. In our design – following the ideas of video frame prediction framework –, we consider
lagged variables in the input channels of the architectures. To account for the lagged variables (one and
two-steps back in time) as features in our model, we had to reduce both datasets: Bahia Wind from
50448 to 50445 and Rio Grande do Norte Wind from 60648 to 60645. This way, for Bahia Wind, input
data had a shape of 50445× 10× 10× 9 and for Rio Grande do Norte Wind, input data had a shape of
60645× 9× 9× 9.

We split both datasets into three sets of data: training, validation and test. The training set contained
samples we used to estimate the weights of our Convnets, and included 90% of the dataset’s samples
(accounting for 45401 samples in Bahia Wind and 54581 in Rio Grande do Norte Wind). The validation
set was used to check how well the models we trained predicted data that were not used for training. The
validation set contained 5% of the dataset’s samples (2522 samples in Bahia Wind and 3032 samples in
Rio Grande do Norte Wind). The training and validation sets were used for model selection: we tuned
the hyperparameters of our models and checked the accuracies in training and validation sets. The test
set totalized the remaining 5% samples (2522 samples for Bahia Wind and 3032 samples for Rio Grande
do Norte Wind). After selecting the best models based on training and validation set accuracies, we use
the test set to compute the accuracies which would be obtained with unseen data.

4.2.3 Accuracy Measures

The accuracy measure we adopted to evaluate our models was the mean absolute error (MAE), a scale-
dependent metric that is very common in the forecasting literature [89], in general, and in wind speed
prediction (e.g., [7], [90], [91]). Additionally, MAE has been used as the main accuracy measure in a
competition of wind speed forecasting 2, what motivated us to select it as our main metric. We did not
select percentage-related measures, such as the mean absolute percentage error (MAPE) to evaluate our
results, because the wind speed data presents values smaller than 1. In such cases, the percentage-related
measures, which divide the error by the observed data, may be distorted.

Let yi and ŷi be, respectively, the true and predicted values of the i-th example, and let N be the
total number of examples, then MAE is described as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi| (4.2)

4.3 Results and Discussion

We develop our work in Python and use Keras [92] to create and train neural network architectures. For
each architecture, we tested a different set of selected hyperparameter configurations (see Appendix). We
executed training five times for each hyperparameter configuration, and we selected the best one as the
configuration that produced lowest average MAE on validation set. Following this, we predicted the test
set with the (five) models from the best configuration. This evaluation allows us to measure the mean and
variance of test set error for each architecture, what may indicate which architectures are more stable in

2http://eem2017.com/program/forecast-competition

20

the context of the proposed spatio-temporal forecasting setting and which are more prone to be affected
by weight initialization.

After discussing about the Convnet architectures, we compare the best models of each architecture
against more traditional benchmark models: fully-connected neural networks (with spatio-temporal inputs)
(ANN), ARIMA model [9], BATS model [46] and Näıve model. The last three methods were developed
in a univariate forecasting setting, and were implemented with the forecast package in R [93]. In the
same section, we provide Diebold-Mariano test statistics for the null hypothesis that a given model is less
accurate than the other model.

4.3.1 Comparing Architectures

In Table 4.1, we evaluate the accuracy measures of the proposed architectures (U-Conv model and
Residual U-Conv model), improved Convnets (Residual Inception, Inception, and Residual Convnet), and
standard Convnet. We provide the mean and standard deviation of test set error for each architecture.

The models trained to predict Rio Grande do Norte (RN) Wind performed better than those trained
to predict Bahia Wind: errors for the former are lower than for the latter, and standard deviations are
also overall lower for RN Wind. This might have been expected, since it is known that the wind in Rio
Grande do Norte region is more regular than the wind process of Bahia Wind. (This observation may also
be noted from Figures 4.4 and 4.5 – it appears that v-component of wind and temperature are strongly
related in Dataset RN Wind, whereas such a relation appears to be lacking for Bahia Wind.)

The results indicate that the U-Convolutional models outperform Residual Convnet and Residual
Inception on predicting Bahia dataset. On the other hand, the U-Convolutional models are outperformed
by the Residual Convnet and the Residual Inception on predicting RN dataset. The hypothesis we make
is that the U-Net part of the U-Convolutional models is able to synthesize wind turbulence (reflected
mainly in u- and v-wind components) into features better than the other architectures. Since RN dataset
presents more steady wind, with less turbulence, this kind of property would not be much needed in
its modeling – and thus Residual Convnet and Residual Inception perform better than U-Convolutional
models for this dataset. Such hypothesis should be further investigated in other experimental settings,
however.

Furthermore, we note, for Bahia Wind dataset, that Inception models, which creates separated infor-
mation flows within Convnets, peform better than standard Convnet models. It appears that architectures
that are able to process channel information in a more specialized way present better results in this dataset
(U-Convolutional models synthesize input data into a 3D tensor of same size and perform better than
all architectures in Bahia Wind dataset). This might indicate that, in order to model turbulent wind,
one should prioritize using models with separable convolutions or other type of operation (such as U-Net
processing).

For RN Wind dataset, we note that architectures with identity mappings are the dominant ones: Resid-
ual Convnet is the one with lowest average MAE, followed by Residual Inception and Residual U-
Convolutional model. It appears that identity mappings and simple operations in architectural design
are the properties that stand out in modeling data from RN Wind with Convnet framework. In all cases,
standard Convnet is outperformed by the other architectures.

4.3.2 Comparing Best Models

In Table 4.2, we show the accuracy measures of the best models from the Convnet architectures, ANN,
ARIMA model, BATS model and Näıve model. We included the spatio-temporal explanatory variables as
input to the ANN models, i.e., each input channel data (as illustrated in Figure 4.1(B)) was transformed
into a one dimensional array (i.e., the matrices were flattened); all were concatenated into a long one

21

Table 4.1: Results on Test Set: Average MAE (MAE Standard Deviation)
Model Bahia Wind Model RN Wind

U-Conv 0.1906 (0.0023) ConvRes 0.1607 (0.0008)
U-ConvRes 0.1942 (0.0021) InceptionRes 0.1625 (0.0003)

InceptionRes 0.1956 (0.0036) U-ConvRes 0.1643 (0.0014)
Inception 0.1966 (0.0015) U-Conv 0.1668 (0.0021)
ConvRes 0.2018 (0.0037) Inception 0.1718 (0.0022)
Convnet 0.2086 (0.0026) Convnet 0.1802 (0.0018)

dimensional array, which served as input to the ANN models. We normalized the data for ANN modeling
the same way we did for Convnet architectures (by scaling input data to zero mean and one variance
considering data from training). Furthermore, we applied Principal Component Analysis (PCA) [94] to
decorrelate spatio-temporal input data, what would facilitate ANN weight optimization [95]3. The BATS
model was developed considering seasonality of 24 hours (daily seasonality). The ARIMA model was
implemented with auto.arima, resulting in models ARIMA(1, 1, 5) and ARIMA(2, 1, 2) for Bahia and
RN Wind datasets, respectively.

The results indicate that the proposed U-Convolutional model presented the best one-step-ahead
forecasts for the Bahia Wind dataset. However, the Diebold-Mariano test (in Figure 4.6) indicates that
one cannot say that the best Residual Inception and best Residual U-Convolutional models are less
accurate than the best U-Convolutional model at α = 5%. Nevertheless, the test indicates that all other
models are less accurate than the three aforementioned models (i.e., U-Convolutional, Residual Inception
and Residual U-Convolutional) at the same confidence level. One interesting observation is that the p-
value for Diebold-Mariano test indicates that statistically, it can not be said that BATS and ARIMA
models are less accurate than best ANN model for the Bahia Wind. It remains to be investigated the
reason why ANN outperforms BATS and ARIMA model for RN Wind and does not outperform both
models for Bahia dataset (one hypothesis could be that ANN learns noise in Bahia dataset – considering
that Bahia wind is more turbulent than RN wind).

The Residual Convnet was the model that provided best forecast for the RN Wind dataset. The
p-value of Diebold-Mariano test (in Figure 4.7) indicates that Residual Convnet provides better forecasts
than every other model for RN Wind at α = 5%. The results indicate that it is not possible to say that
Residual U-Convolutional and U-Convolutional models have lower accuracies than Residual Inception
model, which appears as second best model. However, all three of these models (i.e., Residual Inception,
U-Convolutional and Residual U-Convolutional) have higher accuracies than the other models we tested
(with exception of the Residual Convnet). Moreover, we note that, for both datasets, the proposed and
the improved Convnets outperformed standard Convnets, ANN, BATS, ARIMA and Näıve models in
predicting wind speed for a single-site.

4.3.3 Discussion

Our empirical results indicate that the proposed approach is promising, providing accuracy measures
that were considerably lower than that of standard Convnet model and fully-connected neural networks
adapted to single-site forecasting with multiple spatio-temporal explanatory variables as input, and of
traditional univariate models such as BATS, ARIMA and Näıve models. By outperforming univariate

3We chose to keep all principal components as input to the ANN, so that the ANN model would process the same
amount of information as the Convnet models

22

Table 4.2: MAE Results on Test Set
Model Bahia Wind Model RN Wind

U-Conv 0.1873 ConvRes 0.1595
InceptionRes 0.1908 InceptionRes 0.1620
U-ConvRes 0.1922 U-ConvRes 0.1627
Inception 0.1946 U-Conv 0.1633
ConvRes 0.1984 Inception 0.1687
Convnet 0.2055 ANN+PCA 0.1745

ANN+PCA 0.2300 Convnet 0.1787
BATS 0.2366 BATS 0.2001

ARIMA 0.2530 ARIMA 0.2774
Näıve 0.3146 Näıve 0.3308

models, we corroborate the idea that the inclusion of spatio-temporal information enhances wind speed
prediction (in our case, for single-site prediction; in [96], for multi-site prediction).

The proposed approach could be applied in a real-world setting where the information (of the me-
teorological variables) is updated hourly and the models are executed hourly to predict one-hour ahead
of time. Real power system operation may require, however, that the models provide hourly predictions
24 hours ahead of time. This is the case of the Brazilian Power System, where the centralized operation
considers hourly forecasts 24 hours ahead of time to plan daily operation. To apply the proposed approach
under such circumstance, one could create 24 models, where each model would use information available
at time t to predict wind speed for a given step-ahead (i.e., one model would be developed to predict
wind speed at time t + 1, a second model would be developed predict wind speed at time t + 2, and
so on). Despite the implementation drawback for 24 hours ahead of time, the proposition and study of
models for one-hour ahead of time prediction are frequent in the literature, what indicates the relevance
of the study of such models [18], [97], [98].

23

Figure 4.6: Diebold-Mariano Test for Bahia Wind (p-values) (The figure should be read the following
way: the model on a given row is more accurate than the model on the given column if a number (p-value
less than 5%) appears in the row-column cell; otherwise, one cannot say that the model on the given
row is more accurate than the model on the given column.)

24

Figure 4.7: Diebold-Mariano Test for RN Wind (p-values) (The figure should be read the following way:
the model on a given row is more accurate than the model on the given column if a number (p-value less
than 5%) appears in the row-column cell; otherwise, one cannot say that the model on the given row is
more accurate than the model on the given column.)

25

Chapter 5

Multi-Site Spatio-Temporal Wind
Forecasting

5.1 Methodology

Oftentimes, it is needed that the wind speed predictions be made for multiple locations within a region. In
this case, one could adopt multiple single-site forecasting models (where each model, specifically con-
structed for each site, would provide forecast for a single location), or one could adopt a single multi-site
forecasting model (where the model, designed to produced forecast for all sites, would provide the fore-
cast for all locations within the region). In the context of our convolutional-based models and grid-like
data, the development of multi-site spatio-temporal model would be analogous of that of video frame
prediction, where we want to predict the value of each pixel (of each coordinate, in our case) for a given
variable (or for multiple variables).

Let there be two explanatory, u- and v-components of wind, which are spatio-temporal processes. Both
variables are random variables which may take values in location s ∈ S and time t ∈ T , where S is the
spatial domain and T ⊂ R is the time domain. As described for the single-site case, to process the spatio-
temporal variables, we assign each explanatory variable to one of input channels of the architecture. Let
l ∈ {0, . . . , L} denote lagged steps for the variables and let m ∈ {1, 2} denote explanatory variables u-
and v-components, the multivariate input to the Convnets, Xt, may be written as Xt = {Xm,t−l}.

The objective is to use information of the multivariate 3D input tensor, Xt, to predict a matrix
Yt+1, which denotes the wind speed one-step ahead of time for multiple sites (i.e., for multiple latitude-
longitude coordinates – the same coordinates of variables in input channels). We propose the use of fully-
convolutional neural networks to perform such a mapping. Below, we detail the proposed architectures,
which redesign the U-Net architecture to process u- and v-components of wind in different ways.

5.1.1 ComPonentNet Architectures

We propose a collection of architectures, which we name ComPonentNet architectures, and abbrevi-
ate CPNet. The CPNet architectures were designed for multi-site spatio-temporal forecasting of a variable
which may be decomposed in multiple components (factors), such as wind (which may be decomposed
into u- and v-components of wind). The idea is that CPNet architectures process historic data of the
components, and predict the components for a given time horizon. The forecast of the original variable
may then be calculated from the component’s forecasts.

26

We apply this concept to the prediction of wind speed: all CPNet architectures developed in our
work use u- and v-components of wind as input and predict the one-step ahead u- and v-components
of wind, which are combined to produce the wind speed. By using u- and v-components as inputs and
predicting one-step ahead u- and v-components, we provide a way of performing multi-step prediction
without recurring to external methods to predict the explanatory variables. In such sense, we overcome
a limitation of the models proposed in the previous chapter.

The CPNet architectures are inspired by the U-Net architecture [36], and, as described in the in-
troduction, are composed of three parts: a bottom-section (which contains the layers that are located
closer to the input), a middle-section (which includes the layers that follow the bottom-section layers),
and a top-section (which includes the last layers of the architecture, which follow the middle-section
layers, and are closer to the output). As in the U-Net architecture, the bottom-section layers act as a
contracting path and top-section layers as a expansion path, and bottom-section layers are connected to
the top-section layers.

CPNet architecture

In Figure 5.1, we illustrate the core architecture of the CPNet family, which we thus name CPNet. In
the CPNet architecture, u- and v-components are designed to have separate branches in an architecture
which resembles a “double U-Net architecture”.

In the bottom-section of the architecture (i.e., in the initial layers of the architecture), the wind
components are processed by separate branches. Each branch applies three modules of two convolutional
layers followed by a pooling layer. The first convolutional layer applies 24 filters, and the subsequent
layers doubles the filters – following the same idea of U-Conv models in regard to number of filters in
first layer (attempt of learning one hourly pattern per filter) and of the U-Net architecture in regard to
strategy of number of filters for subsequent layers (doubling filters while reducing resolution in contracting
path and halving filters while expanding resolution in the expanding path). This way, in each branch, the
convolutional layers of the first module use 24 filters, the convolutional layers of the second module use
48 filters, and the convolutional layers of the third module use 96 filters. All pooling layers perform 2 x
2 pooling, and we define the pooling strategy (max or average pooling) in hyperparameter search.

The output feature maps of the branches are concatenated when the features reach low level resolution
(in our architecture, when filters reach 1 x 1 resolution). Each branch outputs feature maps of 96
channels of 1 x 1 resolution. After concatenation, the feature maps are composed of 192 channels of 1
x 1 resolution. Following this, in the middle-section of the architecture, the concatenated features are
processed alltogether by two convolutional layers in sequence (of 192 filters each).

The top-section of the CPNet architecture performs upconvolution in order to expand the low-
resolution maps to original size. Right after middle-section layers processing, we create two separate
branches to process u- and v-wind separately. Each branch applies (1) three modules of upconvolutional
layer followed by two convolutional layers, and (2) one convolutional layer, which outputs feature map
on original spatial size for the respective wind component. In the first module, the first upconvolutional
layer has 96 filters; its output is concatenated (channel axis) with the output of the layer (from the
bottom-section) that has 96 filters; the concatenated output has 192 channels, which is then processed
by two convolutional layers that have 96 filters (which outputs a feature map of 96 channels – half the
number of channels of the output from the previous module output, i.e., from the last convolutional layer
of the bridge module). The other modules follow the same idea, differing only in the number of filters
of the layers: in the second module, the upconvolutional and convolutional layers have 48 filters; in the
third module, the upconvolutional and convolutional layers have 24 filters.

Note that, despite having feature maps concatenated in the middle-section, the top-section specializes
in the respective component not only due to target exposition (each branch outputs a specific component)

27

but also due to feature concatenation from bottom-section layers of the same branch. Following the output
of each branch, let wi,j,T+h, ui,j,T+h and vi,j,T+h denote, respectively, wind speed, u-component of wind
and v-component of wind for latitude i and longitude j at time step t+h, where t is the present time step
at forecasting time and h is the horizon of forecasting, then we calculate wind speed for each coordinate
as follows:

wi,j,t+h =
√
u2i,j,t+h + v2i,j,t+h (5.1)

Then, the output wind speed of CPNet model is Wt+h = {wi,j,t−l} with (i, j) ∈ S, the spatial
domain of our problem (i.e., latitude-longitude coordinates).

Figure 5.1: CPNet architecture

Bottom-Fused CPNet architecture

In Figure 5.2, we illustrate the bottom-fused CPNet architecture. In this architecture, u- and v-components
are concatenated in the channels of the input data, and are processed alltogether in the bottom- and
middle-section of the architecture. The u- and v-components are designed to have separate branches
only in the top-section of the architecture. The macro architectural design of the bottom-fused CPNet
follows the ideas of the CPNet architecture: bottom-section (which now is composed of a single branch
that processes u- and v-wind alltogether) applies three modules of two convolutional layers followed
by pooling layer, where the convolutional layers of the first module have 24 filters, the convolutional
layers of the second module have 48 filters, and the layers of the last module have 96 filters (following
the idea of doubling filters in contracting path, while reducing filter resolution); in the middle-section
of the architecture, the low-resolution output maps of the bottom-section layers are processed by two
convolutional layers (both with 192 filters), which are applied sequentially; the top-section of the bottom-
fused CPNet has the same design of the core CPNet; the first convolutional. Equal to the core CPNet,
the output of the bottom-fused CPNet are u- and v-components of wind. We obtain wind speed with
Eq. 5.1.

In the bottom-fused CPNet, bottom-section layers do not pass specialized information to top-section
layers, once u- and v-components are processed together at bottom-section layers. This way, the output
branches of bottom-fused CPNet only specializes in each component by being exposed to the specific

28

component’s target (i.e., only via backpropagation of errors related to the specific component target). In
our experiments, we investigate whether this setting is better than the core CPNet in terms of forecasting
metrics.

Figure 5.2: Bottom-Fused CPNet architecture

Fully-Fused CPNet architecture

In Figure 5.3, we illustrate the fully-fused CPNet architecture. In this architecture, u- and v-components
are concatenated in the channels of the input data, and are processed alltogether in all layers of the
architecture, except the last layer, which splits u- and v-components and outputs them separately.

The macro architectural design of the fully-fused CPNet is the following: bottom-section (composed
of a single branch) applies three modules of two convolutional layers followed by one pooling layer; in
the middle-section of the architecture, the low-resolution output maps of the bottom-section layers are
processed by two convolutional layers, as in the bottom-fused CPNet; the top-section of the architecture
is composed of a single branch, which applies three modules of upconvolutional layer followed by two
convolutional layers. After the three modules, two branches are created, and each applies one convolutional
layer to the output of the last top-section module. Equal to the core CPNet, the output of the fully-fused
CPNet are u- and v-components of wind. We obtain wind speed with Eq. 5.1.

The fully-fused CPNet basically consists of a U-Net architecture with components (at present and past
times) concatenated in the channels of input data and with two output maps – one for each component
(at future time step). Following core CPNet and bottom-fused CPNet, the number of filters of modules
at bottom-section double at each module: 24 filters in the first module, 48 filters in the second module
and 96 in the third module; the filters of middle-section modules are 192; and the filters of modules at
top-section halve at each module: 96 filters in the first module, 48 in the second module, and 24 filters
in the third module.

In the fully-fused CPNet, u- and v-components are processed together at all layers. This way, the
output branches of bottom-fused CPNet only specializes in each component by being exposed to the
specific component’s target.

29

Figure 5.3: Fully-Fused CPNet architecture

5.2 Empirical Evaluation

5.2.1 Dataset and Experimental Setup

For the multi-site spatio-temporal forecasting experiments, we use data of u- and v-components of
wind from the Bahia Wind Dataset, which we described in Section 4.2. For each wind component, we
have 50448 hourly data for each one of the 10 x 10 locations (latitude-longitude pair). . Bahia Wind
latitude-longitude pairs contemplate latitudes that range from -9.5° to -14.0° at 0.5° spatial resolution
and longitudes that range from -44.5° to -40.0° at 0.5° spatial resolution.

In our design, we consider lagged variables in the input channels of the architectures. To account
for the lagged variables (one to five-steps back in time) as features in our model, we had to reduce the
number of samples of the dataset from 50448 to 50442 samples. Furthermore, instead of using data from
10 x 10 locations, we selected only 9 x 9 locations of the grid data (we do so aiming to dismiss the use
of zero padding for feature concatenation in top-section layers).

Considering that the forecast task we aim to solve is the prediction of the wind speed for all coor-
dinates of the Bahia Wind region, and considering that the proposed architectures now predict u- and
v-components separately, the target data now is composed of two tensors with spatial dimension of 9 x
9. This way, the dataset for our multi-site setting (in CPNet context) had a shape of 50442×9×9×6×2,
where 50442 is the number of samples, 9 is the number of latitude points, 9 is the number of longitude
points, 6 is the number of time steps (present and past) considered as historic in the input channels of
each component, and 2 is the number of components.

We split the dataset into three sets of data: training, validation and test, following the same idea
for single-site forecasting. The training set included 90% of the dataset’s samples (accounting for 45398
samples). The validation set (used to check how well the models we trained predicted data that were
not used for training) contained 5% of the dataset’s samples (2522 samples). The test set totalized the
remaining 5% samples (2522 samples). After selecting the best models based on training and validation
set accuracies, we use the test set to compute the accuracies which would be obtained with unseen data.

5.2.2 Accuracy Measures

The accuracy measure we adopt to evaluate the proposed architectures is the average value of the mean
absolute error (MAE) over all sites contained in the grid coordinates. We discussed the main reasons why

30

we adopted the MAE as the accuracy measure in the last chapter.
The MAE for a single site was described in Equation4.2. Following that definition, the accuracy

measure we use for the multi-site prediction is the following:

avgMAE =
1

C

C∑
i=1

MAEi (5.2)

Where C is the number of coordinates for which the predictions are made.

5.3 First Results and Discussion

We apply the core CPNet (which we will refer to as CPNet), bottom-fused CPNet (which we will refer to
as BF-CPNet) and the fully-fused CPNet (FF-CPNet) architectures in the prediction of one-step ahead
multi-site wind speed for the Bahia Wind dataset, as detailed in the previous section. We also apply a
U-Net architecture which takes u- and v-components of wind as input (which are concatenated, as in
BF- and FF-CPNet architectures) and outputs directly wind speed one-step ahead of time. The latter
architecture is used as benchmark for the problem.

We adopted the exponential linear unit (elu) as the activation function of the neurons in the U-
Net. This activation function was selected over rectified linear unit (relu) after we observed that it was
more suitable to the U-Net in the context of single-site prediction. In spite of this, more experiments must
be made to understand other designs for our architecture. Batch size for all architectures (and respective
configurations) was of 32 (a standard value in deep learning research). In all architectures, we tested max
pooling and average pooling in contracting path. We also tested learning rates of 0.001 and 0.0001 (both
with decay of 0.0001) for all architectures. We adopted early stopping (of 10 epochs) in all experiments.

For the BF-CPNet, we also tested weight regularization of 0.00005 against no weight regularization
in convolutional layers, and tested dropout rate of 0.1 against no dropout rate (between convolutional
layers – in all sections of the architecture). For the CPNet, we tested the same weight regularization
hyperparameters; the dropout between convolutional layers was set to be zero. For the FF-CPNet and
the U-Net, we test dropout rate of 0.1 and no dropout rate between convolutional layers, and do not
adopt weight regularization.

Best CPNet model had average pooling, no weight regularization, no dropout rate, and learning rate
of 0.001. Best FF-CPNet model also had no weight regularization, no dropout rate, and average pooling;
however, learning rate was of 0.0001. Best BF-CPNet had same hyperparameter configuration as best
CPNet model. Best U-Net configuration had same hyperparameter configuration as best FF-CPNet. Table
5.1 illustrates the avgMAE results on training, validation and test sets. The best architecture, in our
experiments, was the BF-CPNet, considering avgMAE on test set.

Table 5.1: Results of average MAE (avgMAE) on training, validation and test sets
Model Training Validation Test

BF-CPNet 0.1614 0.1555 0.1988
CPNet 0.1640 0.1558 0.2004

FF-CPNet 0.1650 0.1594 0.2025
U-Net 0.1644 0.1608 0.2036

Figure 5.4 illustrates a heatmaps of the errors of all architectures for the test set (note that each
heatmap has a different scale bar, and thus colors in one heatmap do not relate to colors in other

31

heatmaps). We note that the error heatmap indicates that all models have a hard time predicting coordi-
nates of the top right corner of the map. On the other hand, models provide lower MAEs for coordinates
in bottom left corner of the map. The two models with lowest avgMAE – FF-CPNet and U-Net –
present highest disparities between top right corner errors and bottom left corner errors. It remains to be
investigated why this is the case.

Figure 5.4: Error maps for the test set: BF-CPNet (upper left), CPNet (upper right), FF-CPNet (lower
left) and U-Net (lower right)

Evaluating the diebold-mariano statistics for the avgMAE on test set examples, we can say that the
BF-CPNet presents more accurate predictions than FF-CPNet (p = 0.0331) and than U-Net (p = 0.0011)
at α = 5%. However, we can not say that BF-CPNet presents more accurate predictions than CPNet
(p = 0.2461). One may also say that CPNet’s predictions are more accurate than U-Net predictions
(p = 0.0107) at α = 5%; however, the same is not true if we consider CPNet’s predictions against
FF-CPNet predictions (p = 0.1121). We can not say that the predictions of the FF-Net model are more

32

accurate than the predictions of the U-Net model.

33

Chapter 6

Conclusions

The increasing penetration of intermittent renewable energy in modern power systems is a challenge to
power systems operation. A way of providing support to the system’s operation is by developing advanced
models, which provide accurate forecasts for the intermittent resources. In this work, we propose spatio-
temporal methods based on deep learning for forecasting wind speed. We propose the U-Convolutional
model, which combines U-Net architecture and Convnet, to predict wind speed for a single location
using multiple spatio-temporal explanatory variables as input to the model. Additionally, we propose the
ComPonentNet family of architectures to predict wind speed at multiple sites. For single-site prediction,
we also investigate other Convnet architectures, which include Convnets with inception modules and/or
identity mappings, and standard Convnets.

The results of our work indicate that the proposed U-Convolutional approach is a promising approach
for single-site spatio-temporal forecasting. The results indicate that the proposed U-Convolutional models
are competitive in the task of wind speed forecasting with higher accuracies than traditional univariate
forecasting models and than fully-connected neural network modeled in a spatio-temporal. Our findings
also indicate that the proposed U-Convolutional models, together with Residual Inception architecture,
appear to do a better job in modeling the turbulent wind of Bahia than the other architectures. Conversely,
Residual Convnet are considerably better than all other architectures when it comes to modeling the steady
wind of Rio Grande do Norte.

In this work, to account for the temporality in our task, we considered a modeling setup where features
at present and past times are included in the channel axis. This type of setup is present in video frame
prediction task. For future work, we propose to account the temporality in our task by hybridizing ConvNet
with Recurrent Neural Networks (RNNs). RNNs are a type of neural network that present feedback loops
in their architecture, allowing them to keep, in the network, information about past inputs. Due to this
property, RNNs are well suited to model data that are sequentially generated, such as time series, speech
signal, and many others.

One topic of interest in future works is related with weight initialization in the different Convnet
architectures. We noted, in our results, that the Residual Inception model had a high variance when
modeling Bahia Wind dataset. As a consequence, the best model of Residual Inception appeared as
second best when predicting Bahia dataset, despite being the third best algorithm in terms of average
MAE. This means that there are certain initial weight values that lead to better models for a given
dataset. In this context, it would be highly valuable to study the initialization strategies that lead to
the best models for a given dataset – for the different architectures we tested in this work. With these
observations, we outline a way forward in modeling wind speed with multiple explanatory data and
Convnet modeling in single-site prediction set-up.

34

For multi-site prediction, we note that new experiments must be made to understand the performance
of the proposed ComPonentNet architectures. In the first experiments, the Bottom-Fused ComPonentNet
model produced best results. Next steps include the execution of experiments with addition of other
features to the model (e.g., attention mechanism). Furthermore, one should evaluate statistical methods
in the same task in order to compare performance of other classes of methods.

35

Appendices

36

Appendix A

Single-Site Hyperparameter
Configurations

In this appendix, we provide the configuration designs we tested in our experiments. The configuration
includes (1) architectural information, such as the number of filters in first and second convolutional
modules in Convnet designs (f1 and f2, respectively, as depicted in Figure 4.2 and 4.3), (2) learning
protocal information, which includes two cases – one with fixed learning rate and learning rate decay,
and other with scheduled learning rate (in this case, we use a learning rate for 50 epochs and the other
learning rate for the rest of the epochs; when we write 0.0005-0.0001, it means that for the first 50
epochs, we adopted learning rate of 0.0005, and for the remaining epochs, we adopted learning rate
of 0.0001), (3) regularization information (dropout and weight regularization), and (4) average MAE
(validation set) of five models adjusted with the given hyperparameter configuration.

A.1 Bahia Wind Dataset

37

Table A.1: Convnet - Bahia Wind Dataset
Hyperparameters (I)

architecture filters - 1st module 32
filters - 2nd module 168

neurons - dense layer 280
activation - output layer Linear
activation - other layers ReLU

pooling function max
learning learning scheduler No

learning rate 0.001
learning rate decay 0.0001

early stopping No
epochs 100

batch size 32
regularization dropout - last layer 0.25

weight - conv layers 0.00005
weight - dense layers 0.00005

Result MAE on validation set 0.1755

Table A.2: Inception Model - Bahia Wind Dataset

Hyperparameters (I) (II) (III)

architecture filters - 1st module (per path) 8 8 24
filters - 2nd module (per path) 56 56 168

neurons - dense layer 168 168 504
activation - output layer Linear Linear Linear
activation - other layers ReLU ReLU ReLU

pooling function max max max
learning learning scheduler No No No

learning rate 0.001 0.001 0.001
learning rate decay 0.0001 0.0001 0.0001

early stopping No Yes Yes
epochs 100 100 100

batch size 32 32 32
regularization dropout - last layer 0.25 0.25 0.25

weight - conv layers 0.00005 0.00005 0.00005
weight - dense layers 0.00005 0.00005 0.00005

Result MAE on validation set 0.1866 0.1860 0.1779

38

Table A.3: Residual Inception Model - Bahia Wind Dataset

Hyperparameters (I)

architecture filters - 1st module (per path) 24
filters - 2nd module (per path) 168

neurons - dense layer 504
activation - output layer Linear
activation - other layers ReLU

pooling function max
learning learning scheduler No

learning rate 0.001
learning rate decay 0.0001

early stopping Yes
epochs 100

batch size 32
regularization dropout - last layer 0.25

weight - conv layers 0.00005
weight - dense layers 0.00005

Result MAE on validation set 0.1773

Table A.4: U-Convolutional Model - Bahia Wind Dataset
Hyperparameters (I) (II)

architecture filters - 1st module 32 32
filters - 2nd module 168 168

neurons - dense layer 280 168
activation - U-Net ELU ELU

activation - output layer Linear Linear
activation - other layers ReLU ReLU

pooling function max max
learning learning scheduler Yes Yes

learning rate 0.0005-0.0001 0.0005-0.0001
learning rate decay 0.0001 0.0001

early stopping No No
epochs 100 100

batch size 32 32
regularization dropout - U-Net 0.1 0.1

dropout - last layer 0.1 0.1
weight - conv layers 0.00005 0.00005
weight - dense layers 0 0

Result MAE on validation set 0.1697 0.1688

39

Table A.5: Residual Convnet - Bahia Wind Dataset
Hyperparameters (I) (II) (III) (IV) (V)

architecture filters - 1st module 32 32 32 32 32
filters - 2nd module 168 168 168 168 168

neurons - dense layer 280 168 168 168 168
activation - output layer Linear Linear Linear Linear Linear
activation - other layers ReLU ReLU ReLU ReLU ReLU

pooling function max max max max avg
learning learning scheduler No No Yes Yes No

learning rate 0.001 0.001 0.0005-0.0001 0.0005-0.0001 0.001
learning rate decay 0.0001 0.0001 0.0001 0.0001 0.0001

early stopping No No No No No
epochs 100 100 100 100 100

batch size 32 32 32 32 32
regularization dropout - last layer 0.25 0.25 0.25 0.25 0.25

weight - conv layers 0.00005 0.00005 0 0.00005 0.00005
weight - dense layers 0.00005 0.00005 0.0001 0 0.00005

Result MAE on validation set 0.1761 0.1794 0.1838 0.1842 0.1817

Table A.6: Residual U-Convolutional Model - Bahia Wind Dataset
Hyperparameters (I) (II) (III) (IV) (V)

architecture filters - 1st module 32 32 32 32 32
filters - 2nd module 168 168 168 168 168

neurons - dense layer 280 168 168 168 168
activation - U-Net ELU ELU ELU ELU ELU

activation - output layer Linear Linear Linear Linear Linear
activation - other layers ReLU ReLU ReLU ReLU ReLU

pooling function max max max max max
learning learning scheduler Yes Yes Yes Yes Yes

learning rate 0.0005-0.0001 0.0005-0.0001 0.0005-0.0001 0.0005-0.0001 0.0005-0.0001
learning rate decay 0.0001 0.0001 0.0001 0.0001 0.0001

early stopping No No No No No
epochs 100 100 100 100 100

batch size 32 32 32 32 32
regularization dropout - U-Net 0.1 0.1 0.1 0.1 0.1

dropout - last layer 0.1 0.1 0.1 0.1 0.25
weight - conv layers 0.00005 0.00005 0.00005 0 0.00005
weight - dense layers 0.00005 0 0.00005 0 0

Result average MAE on validation set 0.1813 0.1652 0.1683 0.1715 0.1678

40

A.2 Rio Grande do Norte Wind Dataset

Table A.7: Convnet - RN Wind Dataset
Hyperparameters (I)

architecture filters - 1st module 24
filters - 2nd module 168

neurons - dense layer 168
activation - output layer Linear
activation - other layers ReLU

pooling function max
learning learning scheduler Yes

learning rate 0.0005-0.0001
learning rate decay 0.0001

early stopping No
epochs 100

batch size 32
regularization dropout - last layer 0.25

weight - conv layers 0.00005
weight - dense layers 0.00005

Result MAE on validation set 0.2036

Table A.8: Residual Convnet - RN Wind Dataset
Hyperparameters (I) (II)

architecture filters - 1st module 24 32
filters - 2nd module 168 168

neurons - dense layer 168 168
activation - output layer Linear Linear
activation - other layers ReLU ReLU

pooling function max max
learning learning scheduler Yes Yes

learning rate 0.0005-0.0001 0.0005-0.0001
learning rate decay 0.0001 0.0001

early stopping No No
epochs 100 100

batch size 32 32
regularization dropout - last layer 0.25 0.25

weight - conv layers 0 0
weight - dense layers 0.0001 0.0001

Result MAE on validation set 0.1891 0.1845

41

Table A.9: Inception Model - RN Wind Dataset

Hyperparameters (I) (II)

architecture filters - 1st module (per path) 8 24
filters - 2nd module (per path) 56 168

neurons - dense layer 168 504
activation - output layer Linear Linear
activation - other layers ReLU ReLU

pooling function max max
learning learning scheduler No No

learning rate 0.001 0.001
learning rate decay 0.0001 0.0001

early stopping No Yes
epochs 100 100

batch size 32 32
regularization dropout - last layer 0.25 0.25

weight - conv layers 0 0
weight - dense layers 0.0001 0.0001

Result MAE on validation set 0.2005 0.1950

Table A.10: Residual Inception Model - RN Wind Dataset

Hyperparameters (I) (II)

architecture filters - 1st module (per path) 8 24
filters - 2nd module (per path) 56 168

neurons - dense layer 168 504
activation - output layer Linear Linear
activation - other layers ReLU ReLU

pooling function max max
learning learning scheduler Yes Yes

learning rate 0.0005-0.0001 0.0005-0.0001
learning rate decay 0.0001 0.0001

early stopping No No
epochs 100 100

batch size 32 32
regularization dropout - last layer 0.25 0.25

weight - conv layers 0 0
weight - dense layers 0.00005 0.0001

Result MAE on validation set 0.1891 0.1800

42

Table A.11: U-Convolutional Model - RN Wind Dataset
Hyperparameters (I) (II)

architecture filters - 1st module 32 32
filters - 2nd module 168 168

neurons - dense layer 280 168
activation - U-Net ELU ELU

activation - output layer Linear Linear
activation - other layers ReLU ReLU

pooling function max max
learning learning scheduler Yes Yes

learning rate 0.0005-0.0001 0.0005-0.0001
learning rate decay 0.0001 0.0001

early stopping No No
epochs 200 100

batch size 32 32
regularization dropout - U-Net 0.1 0

dropout - last layer 0.25 0.25
weight - conv layers 0.00005 0
weight - dense layers 0.00005 0.00005

Result MAE on validation set 0.1902 0.1857

43

Table A.12: Residual U-Convolutional Model - RN Wind Dataset
Hyperparameters (I) (II) (III) (IV) (V) (VI) (VII) (VIII)

architecture filters - 1st module 32 32 32 32 32 32 32 32
filters - 2nd module 168 168 240 168 168 168 168 168

neurons - dense layer 280 280 280 168 168 168 168 168
activation - U-Net ELU ELU ELU ELU ELU ELU ELU ELU

activation - output layer Linear Linear Linear Linear Linear Linear Linear Linear
activation - other layers ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU

pooling function max max max max max max max max
learning learning scheduler No No No No No Yes Yes Yes

learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005-0.0001 0.0005-0.0001 0.0005-0.0001
learning rate decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

early stopping No No No No No No No No
epochs 200 200 200 200 200 200 200 200

batch size 32 32 32 32 32 32 32 32
regularization dropout - U-Net 0 0 0 0 0 0 0 0

dropout - last layer 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0
weight - conv layers None None None None None None None None
weight - dense layers 0.00005 0.0001 0.0001 0.00005 None 0.00005 0.0001 0.0001

Result average MAE on validation set 0.1934 0.1963 0.1919 0.1941 0.1927 0.1826 0.1911 0.1842

44

Bibliography

[1] R. Quadrelli and S. Peterson, “The energy–climate challenge: Recent trends in co2 emissions from
fuel combustion”, Energy Policy, vol. 35, no. 11, pp. 5938–5952, 2007, issn: 0301-4215. doi:
https://doi.org/10.1016/j.enpol.2007.07.001. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0301421507003126.

[2] IPCC, “Renewable Energy Sources and Climate Change Mitigation”, Tech. Rep., Nov. 2012. [On-
line]. Available: https://www.ipcc.ch/report/renewable-energy-sources-and-climate-
change-mitigation/.

[3] IEA, World Energy Outlook 2017. IEA, 2017, pp. 1–15, isbn: 9789264243668. doi: 10.1016/
0301-4215(73)90024-4. [Online]. Available: https://www.iea.org/weo2017/.

[4] Le Xie, P. M. S. Carvalho, L. A. F. M. Ferreira, Juhua Liu, B. H. Krogh, N. Popli, and M. D. Ilic,
“Wind Integration in Power Systems: Operational Challenges and Possible Solutions”, Proceedings
of the IEEE, vol. 99, no. 1, pp. 214–232, Jan. 2011, issn: 0018-9219. doi: 10.1109/JPROC.2010.
2070051.

[5] B. François and F. Galiana, “Stochastic security for operations planning with significant wind power
generation”, IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 306–316, May 2008, issn:
08858950. doi: 10.1109/TPWRS.2008.919318. [Online]. Available: https://ieeexplore.

ieee.org/document/4470561.

[6] O. Ait Maatallah, A. Achuthan, K. Janoyan, and P. Marzocca, “Recursive wind speed forecasting
based on Hammerstein Auto-Regressive model”, Applied Energy, vol. 145, pp. 191–197, May 2015,
issn: 0306-2619. doi: 10.1016/J.APENERGY.2015.02.032. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0306261915002093.

[7] Q. Hu, S. Zhang, M. Yu, and Z. Xie, “Short-Term Wind Speed or Power Forecasting With Het-
eroscedastic Support Vector Regression”, IEEE Transactions on Sustainable Energy, vol. 7, no. 1,
pp. 241–249, Jan. 2016, issn: 1949-3029. doi: 10.1109/TSTE.2015.2480245. [Online]. Available:
http://ieeexplore.ieee.org/document/7335638/.

[8] X. Zhu and M. G. Genton, “Short-Term Wind Speed Forecasting for Power System Operations”,
International Statistical Review, vol. 80, no. 1, pp. 2–23, Apr. 2012, issn: 03067734. doi: 10.1111/
j.1751-5823.2011.00168.x. [Online]. Available: http://doi.wiley.com/10.1111/j.1751-
5823.2011.00168.x.

[9] G. Box and G. Jenkins, Time series Analysis: Forecasting and Control. San Francisco, California:
Holden-Day, 1976.

45

https://doi.org/https://doi.org/10.1016/j.enpol.2007.07.001
http://www.sciencedirect.com/science/article/pii/S0301421507003126
http://www.sciencedirect.com/science/article/pii/S0301421507003126
https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/
https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/
https://doi.org/10.1016/0301-4215(73)90024-4
https://doi.org/10.1016/0301-4215(73)90024-4
https://www.iea.org/weo2017/
https://doi.org/10.1109/JPROC.2010.2070051
https://doi.org/10.1109/JPROC.2010.2070051
https://doi.org/10.1109/TPWRS.2008.919318
https://ieeexplore.ieee.org/document/4470561
https://ieeexplore.ieee.org/document/4470561
https://doi.org/10.1016/J.APENERGY.2015.02.032
https://www.sciencedirect.com/science/article/pii/S0306261915002093
https://www.sciencedirect.com/science/article/pii/S0306261915002093
https://doi.org/10.1109/TSTE.2015.2480245
http://ieeexplore.ieee.org/document/7335638/
https://doi.org/10.1111/j.1751-5823.2011.00168.x
https://doi.org/10.1111/j.1751-5823.2011.00168.x
http://doi.wiley.com/10.1111/j.1751-5823.2011.00168.x
http://doi.wiley.com/10.1111/j.1751-5823.2011.00168.x

[10] J. Z. Wang, Y. Wang, and P. Jiang, “The study and application of a novel hybrid forecasting
model - A case study of wind speed forecasting in China”, Applied Energy, vol. 143, pp. 472–
488, Apr. 2015, issn: 03062619. doi: 10.1016/j.apenergy.2015.01.038. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261915000446.

[11] S. Haykin, Neural Networks and Learning Machines, 3rd. New Jersey: Pearson, 2009.

[12] V. N. Vapnik, An overview of statistical learning theory, 1999. doi: 10.1109/72.788640. [Online].
Available: http://ieeexplore.ieee.org/document/788640/.

[13] L.-X. Wang and J. Mendel, “Generating fuzzy rules by learning from examples”, IEEE Transactions
on Systems, Man and Cybernetics, vol. 22, no. 6, pp. 1414–1427, 1992. doi: 10.1109/21.199466.

[14] J. Jung and R. P. Broadwater, “Current status and future advances for wind speed and power fore-
casting”, Renewable and Sustainable Energy Reviews, vol. 31, pp. 762–777, Mar. 2014, issn: 1364-
0321. doi: 10.1016/J.RSER.2013.12.054. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1364032114000094.

[15] M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, “A review on the forecasting of wind
speed and generated power”, Renewable and Sustainable Energy Reviews, vol. 13, no. 4, pp. 915–
920, May 2009, issn: 1364-0321. doi: 10.1016/J.RSER.2008.02.002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032108000282.

[16] S. A. Vargas, G. R. T. Esteves, P. M. Maçaira, B. Q. Bastos, F. L. C. Oliveira, and R. C. Souza,
“Wind power generation: A review and a research agenda”, Journal of Cleaner Production, vol. 218,
pp. 850–870, 2019, issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2019.
02.015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0959652619303944.

[17] A. Tascikaraoglu, B. M. Sanandaji, G. Chicco, V. Cocina, F. Spertino, O. Erdinc, N. G. Paterakis,
and J. P. Catalao, “Compressive Spatio-Temporal Forecasting of Meteorological Quantities and
Photovoltaic Power”, IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 1295–1305, Jul.
2016, issn: 19493029. doi: 10.1109/TSTE.2016.2544929.

[18] J. Dowell and P. Pinson, “Very-Short-Term Probabilistic Wind Power Forecasts by Sparse Vec-
tor Autoregression”, IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 763–770, 2016, issn:
19493053. doi: 10.1109/TSG.2015.2424078.

[19] C. Persson, P. Bacher, T. Shiga, and H. Madsen, “Multi-site solar power forecasting using gradient
boosted regression trees”, Solar Energy, vol. 150, pp. 423–436, Jul. 2017, issn: 0038092X. doi:
10.1016/j.solener.2017.04.066. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0038092X17303717.

[20] M. André, S. Dabo-Niang, T. Soubdhan, and H. Ould-Baba, Predictive spatio-temporal model
for spatially sparse global solar radiation data, Sep. 2016. doi: 10.1016/j.energy.2016.

06.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0360544216307769.

[21] L. Xie, Y. Gu, X. Zhu, and M. G. Genton, “Short-term spatio-temporal wind power forecast in
robust look-ahead power system dispatch”, IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 511–
520, Jan. 2014, issn: 19493053. doi: 10.1109/TSG.2013.2282300.

[22] M. Koivisto, J. Seppänen, I. Mellin, J. Ekström, J. Millar, I. Mammarella, M. Komppula, and
M. Lehtonen, “Wind speed modeling using a vector autoregressive process with a time-dependent
intercept term”, International Journal of Electrical Power and Energy Systems, vol. 77, pp. 91–
99, May 2016, issn: 01420615. doi: 10.1016/j.ijepes.2015.11.027. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0142061515004470.

46

https://doi.org/10.1016/j.apenergy.2015.01.038
https://www.sciencedirect.com/science/article/pii/S0306261915000446
https://doi.org/10.1109/72.788640
http://ieeexplore.ieee.org/document/788640/
https://doi.org/10.1109/21.199466
https://doi.org/10.1016/J.RSER.2013.12.054
https://www.sciencedirect.com/science/article/pii/S1364032114000094
https://www.sciencedirect.com/science/article/pii/S1364032114000094
https://doi.org/10.1016/J.RSER.2008.02.002
https://www.sciencedirect.com/science/article/pii/S1364032108000282
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.02.015
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.02.015
http://www.sciencedirect.com/science/article/pii/S0959652619303944
http://www.sciencedirect.com/science/article/pii/S0959652619303944
https://doi.org/10.1109/TSTE.2016.2544929
https://doi.org/10.1109/TSG.2015.2424078
https://doi.org/10.1016/j.solener.2017.04.066
http://www.sciencedirect.com/science/article/pii/S0038092X17303717
http://www.sciencedirect.com/science/article/pii/S0038092X17303717
https://doi.org/10.1016/j.energy.2016.06.004
https://doi.org/10.1016/j.energy.2016.06.004
http://www.sciencedirect.com/science/article/pii/S0360544216307769
http://www.sciencedirect.com/science/article/pii/S0360544216307769
https://doi.org/10.1109/TSG.2013.2282300
https://doi.org/10.1016/j.ijepes.2015.11.027
https://www.sciencedirect.com/science/article/pii/S0142061515004470

[23] A. W. Aryaputera, D. Yang, L. Zhao, and W. M. Walsh, “Very short-term irradiance forecasting
at unobserved locations using spatio-temporal kriging”, Solar Energy, vol. 122, pp. 1266–1278,
Dec. 2015, issn: 0038092X. doi: 10.1016/j.solener.2015.10.023. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038092X15005745.

[24] M. He, L. Yang, J. Zhang, and V. Vittal, “A spatio-temporal analysis approach for short-term
forecast of wind farm generation”, IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1611–
1622, Jul. 2014, issn: 08858950. doi: 10.1109/TPWRS.2014.2299767. [Online]. Available:
http://ieeexplore.ieee.org/document/6727513/.

[25] J. Heinermann and O. Kramer, “Machine learning ensembles for wind power prediction”, Renewable
Energy, vol. 89, pp. 671–679, Apr. 2016, issn: 18790682. doi: 10.1016/j.renene.2015.

11.073. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0960148115304894.

[26] I. G. Damousis, M. C. Alexiadis, J. B. Theocharis, and P. S. Dokopoulos, “A fuzzy model for wind
speed prediction and power generation in wind parks using spatial correlation”, IEEE Transactions
on Energy Conversion, vol. 19, no. 2, pp. 352–361, Jun. 2004, issn: 08858969. doi: 10.1109/
TEC.2003.821865. [Online]. Available: http://ieeexplore.ieee.org/document/1300701/.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neu-
ral networks”, Advances In Neural Information Processing Systems, pp. 1–9, 2012, issn: 10495258.
doi: http://dx.doi.org/10.1016/j.protcy.2014.09.007.

[28] F. Chollet, “Xception: Deep learning with separable convolutions”, arXiv preprint arXiv:1610.02357,
pp. 1–14, 2016. doi: 10.1109/CVPR.2017.195. [Online]. Available: https://arxiv.org/abs/
1610.02357.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, Dec. 2015.
[Online]. Available: http://arxiv.org/abs/1512.03385.

[30] X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. WOO, “Convolutional lstm
network: A machine learning approach for precipitation nowcasting”, in Advances in Neural In-
formation Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett, Eds., Curran Associates, Inc., 2015, pp. 802–810. [Online]. Available: http://papers.
nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-

for-precipitation-nowcasting.pdf.

[31] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond mean square
error”, CoRR, vol. abs/1511.05440, 2015. arXiv: 1511.05440. [Online]. Available: http://arxiv.
org/abs/1511.05440.

[32] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, “Decomposing motion and content for natu-
ral video sequence prediction”, CoRR, vol. abs/1706.08033, 2017. arXiv: 1706.08033. [Online].
Available: http://arxiv.org/abs/1706.08033.

[33] E. Denton and V. Birodkar, “Unsupervised learning of disentangled representations from video”,
CoRR, vol. abs/1705.10915, 2017. arXiv: 1705.10915. [Online]. Available: http://arxiv.org/
abs/1705.10915.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural Comput., vol. 9, no. 8,
pp. 1735–1780, Nov. 1997, issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

47

https://doi.org/10.1016/j.solener.2015.10.023
http://www.sciencedirect.com/science/article/pii/S0038092X15005745
https://doi.org/10.1109/TPWRS.2014.2299767
http://ieeexplore.ieee.org/document/6727513/
https://doi.org/10.1016/j.renene.2015.11.073
https://doi.org/10.1016/j.renene.2015.11.073
http://www.sciencedirect.com/science/article/pii/S0960148115304894
http://www.sciencedirect.com/science/article/pii/S0960148115304894
https://doi.org/10.1109/TEC.2003.821865
https://doi.org/10.1109/TEC.2003.821865
http://ieeexplore.ieee.org/document/1300701/
https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1109/CVPR.2017.195
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1512.03385
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
https://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1511.05440
https://arxiv.org/abs/1706.08033
http://arxiv.org/abs/1706.08033
https://arxiv.org/abs/1705.10915
http://arxiv.org/abs/1705.10915
http://arxiv.org/abs/1705.10915
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative Adversarial Nets”, in Advances in Neural Information Processing Systems
27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., Curran
Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf.

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image
segmentation”, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pp. 234–241, 2015, issn: 1611-3349. doi: 10.1007/978-3-319-24574-4_28. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-24574-4_28.

[37] W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction for anomaly detection – a new
baseline”, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2018.

[38] A. Zhu, X. Li, Z. Mo, and R. Wu, “Wind power prediction based on a convolutional neural network”,
in 2017 International Conference on Circuits, Devices and Systems (ICCDS), IEEE, Sep. 2017,
pp. 131–135, isbn: 978-1-5386-1870-7. doi: 10.1109/ICCDS.2017.8120465. [Online]. Available:
http://ieeexplore.ieee.org/document/8120465/.

[39] H. Liu, X. Mi, and Y. Li, “Smart deep learning based wind speed prediction model using wavelet
packet decomposition, convolutional neural network and convolutional long short term memory
network”, Energy Conversion and Management, vol. 166, pp. 120–131, 2018, issn: 0196-8904.
doi: https://doi.org/10.1016/j.enconman.2018.04.021. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S019689041830356X.

[40] Y. Chen, S. Zhang, W. Zhang, J. Peng, and Y. Cai, “Multifactor spatio-temporal correlation
model based on a combination of convolutional neural network and long short-term memory neural
network for wind speed forecasting”, Energy Conversion and Management, vol. 185, pp. 783–799,
2019, issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.2019.02.018. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0196890419302006.

[41] A. R. Silva, F. M. Pimenta, A. T. Assireu, and M. H. C. Spyrides, “Complementarity of brazil’s
hydro and offshore wind power”, Renewable and Sustainable Energy Reviews, vol. 56, pp. 413–
427, 2016, issn: 1364-0321. doi: https://doi.org/10.1016/j.rser.2015.11.045. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1364032115013106.

[42] G. G. Dranka and P. Ferreira, “Planning for a renewable future in the brazilian power system”,
Energy, vol. 164, pp. 496–511, 2018, issn: 0360-5442. doi: https://doi.org/10.1016/

j.energy.2018.08.164. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0360544218317006.

[43] B. Bezerra, Á. Veiga, L. A. Barroso, and M. Veiga, “Stochastic long-term hydrothermal scheduling
with parameter uncertainty in autoregressive streamflow models”, IEEE Transactions on Power
Systems, vol. 32, pp. 999–1006, 2 2017, issn: 0885-8950. doi: 10.1109/TPWRS.2016.2572722.
[Online]. Available: https://ieeexplore.ieee.org/document/7480404/.

[44] A. Street, D. A. Lima, A. Veiga, B. Fanzeres, L. Freire, and B. S. Amaral, “Fostering wind power
penetration into the brazilian forward-contract market”, 2012 IEEE Power and Energy Society
General Meeting, pp. 1–8, 2012.

48

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ICCDS.2017.8120465
http://ieeexplore.ieee.org/document/8120465/
https://doi.org/https://doi.org/10.1016/j.enconman.2018.04.021
http://www.sciencedirect.com/science/article/pii/S019689041830356X
http://www.sciencedirect.com/science/article/pii/S019689041830356X
https://doi.org/https://doi.org/10.1016/j.enconman.2019.02.018
http://www.sciencedirect.com/science/article/pii/S0196890419302006
https://doi.org/https://doi.org/10.1016/j.rser.2015.11.045
http://www.sciencedirect.com/science/article/pii/S1364032115013106
https://doi.org/https://doi.org/10.1016/j.energy.2018.08.164
https://doi.org/https://doi.org/10.1016/j.energy.2018.08.164
http://www.sciencedirect.com/science/article/pii/S0360544218317006
http://www.sciencedirect.com/science/article/pii/S0360544218317006
https://doi.org/10.1109/TPWRS.2016.2572722
https://ieeexplore.ieee.org/document/7480404/

[45] P. M. Maçaira, A. M. T. Thomé, F. L. C. Oliveira, and A. L. C. Ferrer, “Time series analysis
with explanatory variables: A systematic literature review”, Environmental Modelling & Software,
vol. 107, pp. 199–209, 2018, issn: 1364-8152. doi: https://doi.org/10.1016/j.envsoft.
2018.06.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S136481521730542X.

[46] A. M. D. Livera, R. J. Hyndman, and R. D. Snyder, “Forecasting time series with complex seasonal
patterns using exponential smoothing”, Journal of the American Statistical Association, vol. 106,
no. 496, pp. 1513–1527, 2011. doi: 10.1198/jasa.2011.tm09771. eprint: https://doi.org/
10.1198/jasa.2011.tm09771. [Online]. Available: https://doi.org/10.1198/jasa.2011.
tm09771.

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553, pp. 436–444,
2015. doi: 10.1038/nature14539. [Online]. Available: http://www.nature.com/doifinder/
10.1038/nature14539.

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st. Cambridge, MA: MIT Press, 2017,
isbn: 9780262035613.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998, issn: 00189219. doi:
10.1109/5.726791.

[50] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning”, Tech. Rep., Mar.
2016. [Online]. Available: https://arxiv.org/abs/1603.07285.

[51] F. Chollet, Deep learning with Python. Manning Publications Co., 2018, p. 361, isbn: 9781617294433.
[Online]. Available: https://www.manning.com/books/deep-learning-with-python.

[52] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and
H. Larochelle, “Brain tumor segmentation with Deep Neural Networks”, Medical Image Analysis,
vol. 35, pp. 18–31, Jan. 2017, issn: 1361-8415. doi: 10.1016/J.MEDIA.2016.05.004. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1361841516300330.

[53] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks”, Proceedings of the
14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323, 2011,
issn: 15324435. doi: 10.1.1.208.6449.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich, “Going deeper with convolutions”, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2015.

[55] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition”, Sep. 2014. [Online]. Available: https://arxiv.org/abs/1409.1556.

[56] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T.
Darrell, “Caffe: Convolutional architecture for fast feature embedding”, in Proceedings of the 22Nd
ACM International Conference on Multimedia, ser. MM ’14, Orlando, Florida, USA: ACM, 2014,
pp. 675–678, isbn: 978-1-4503-3063-3. doi: 10.1145/2647868.2654889. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889.

[57] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift”, in Proceedings of the 32nd International Conference on Machine Learning,
F. Bach and D. Blei, Eds., ser. Proceedings of Machine Learning Research, vol. 37, Lille, France:
PMLR, Jul. 2015, pp. 448–456. [Online]. Available: http://proceedings.mlr.press/v37/
ioffe15.html.

49

https://doi.org/https://doi.org/10.1016/j.envsoft.2018.06.004
https://doi.org/https://doi.org/10.1016/j.envsoft.2018.06.004
http://www.sciencedirect.com/science/article/pii/S136481521730542X
http://www.sciencedirect.com/science/article/pii/S136481521730542X
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.1038/nature14539
http://www.nature.com/doifinder/10.1038/nature14539
http://www.nature.com/doifinder/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1603.07285
https://www.manning.com/books/deep-learning-with-python
https://doi.org/10.1016/J.MEDIA.2016.05.004
https://www.sciencedirect.com/science/article/pii/S1361841516300330
https://doi.org/10.1.1.208.6449
https://arxiv.org/abs/1409.1556
https://doi.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

[58] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architec-
ture for computer vision”, in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016.

[59] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the impact of residual
connections on learning”, in AAAI, 2016.

[60] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, “Hand-
written Digit Recognition with a Back-Propagation Network”, in Advances in Neural Information
Processing Systems 2, Morgan-Kaufmann, 1990, pp. 396–404.

[61] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation”,
CoRR, vol. abs/1411.4038, 2014. arXiv: 1411.4038. [Online]. Available: http://arxiv.org/
abs/1411.4038.

[62] C. Chatfield, The Analysis of Time Series: An Introduction, 4th. London, UK: Chapman and
Hall/CRC, 1989, isbn: 9781584883173.

[63] J. L. Harvill, “Spatio-temporal processes”, Wiley Interdisciplinary Reviews: Computational Statis-
tics, vol. 2, no. 3, pp. 375–382, 2010. doi: 10.1002/wics.88. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/wics.88. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/wics.88.

[64] M. S. Paez, D. Gamerman, and V. D. Oliveira, “Interpolation performance of a spatio-temporal
model with spatially varying coefficients: Application to pm10 concentrations in rio de janeiro”,
Environmental and Ecological Statistics, vol. 12, no. 2, pp. 169–193, Jun. 2005, issn: 1573-3009.
doi: 10.1007/s10651-005-1040-7. [Online]. Available: https://doi.org/10.1007/s10651-
005-1040-7.

[65] J. A. González, F. J. Rodŕıguez-Cortés, O. Cronie, and J. Mateu, “Spatio-temporal point process
statistics: A review”, Spatial Statistics, vol. 18, pp. 505–544, 2016, issn: 2211-6753. doi: https://
doi.org/10.1016/j.spasta.2016.10.002. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2211675316301130.

[66] E. E. Kammann and M. P. Wand, “Geoadditive models”, Journal of the Royal Statistical Society:
Series C (Applied Statistics), vol. 52, no. 1, pp. 1–18, 2003. doi: 10.1111/1467-9876.00385.
eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9876.00385.
[Online]. Available: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-

9876.00385.

[67] N. Cressie and H.-C. Huang, “Classes of nonseparable, spatio-temporal stationary covariance func-
tions”, Journal of the American Statistical Association, vol. 94, no. 448, pp. 1330–1340, 1999,
issn: 01621459. [Online]. Available: http://www.jstor.org/stable/2669946.

[68] D. G. Krige, “A statistical approach to some mine valuation and allied problems on the witwater-
srand”, Master’s thesis, University of the Witwatersrand, 1951.

[69] W. C. M. van Beers and J. P. C. Kleijnen, “Kriging for interpolation in random simulation”, The
Journal of the Operational Research Society, vol. 54, no. 3, pp. 255–262, 2003, issn: 01605682,
14769360. [Online]. Available: http://www.jstor.org/stable/4101619.

[70] W. A. Mart́ınez, C. E. Melo, and O. O. Melo, “Median polish kriging for space–time analysis of
precipitation”, Spatial Statistics, vol. 19, pp. 1–20, 2017, issn: 2211-6753. doi: https://doi.
org/10.1016/j.spasta.2016.10.003. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2211675316301336.

50

https://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://doi.org/10.1002/wics.88
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.88
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.88
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.88
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.88
https://doi.org/10.1007/s10651-005-1040-7
https://doi.org/10.1007/s10651-005-1040-7
https://doi.org/10.1007/s10651-005-1040-7
https://doi.org/https://doi.org/10.1016/j.spasta.2016.10.002
https://doi.org/https://doi.org/10.1016/j.spasta.2016.10.002
http://www.sciencedirect.com/science/article/pii/S2211675316301130
http://www.sciencedirect.com/science/article/pii/S2211675316301130
https://doi.org/10.1111/1467-9876.00385
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9876.00385
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9876.00385
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9876.00385
http://www.jstor.org/stable/2669946
http://www.jstor.org/stable/4101619
https://doi.org/https://doi.org/10.1016/j.spasta.2016.10.003
https://doi.org/https://doi.org/10.1016/j.spasta.2016.10.003
http://www.sciencedirect.com/science/article/pii/S2211675316301336
http://www.sciencedirect.com/science/article/pii/S2211675316301336

[71] D.-J. Lee and M. Durbán, “P-spline anova-type interaction models for spatio-temporal smoothing”,
Statistical Modelling, vol. 11, no. 1, pp. 49–69, 2011. doi: 10.1177/1471082X1001100104. eprint:
https://doi.org/10.1177/1471082X1001100104. [Online]. Available: https://doi.org/10.
1177/1471082X1001100104.

[72] L. Fahrmeir, T. Kneib, and S. Lang, “Penalized structured additive regression for space-time data:
A bayesian perspective”, Statistica Sinica, vol. 14, no. 3, pp. 731–761, 2004, issn: 10170405,
19968507. [Online]. Available: http://www.jstor.org/stable/24307414.

[73] M. S. Paez and D. Gamerman, “Study of the space–time effects in the concentration of airborne
pollutants in the metropolitan region of rio de janeiro”, Environmetrics, vol. 14, no. 4, pp. 387–408,
2003. doi: 10.1002/env.594. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/env.594.

[74] Z. Luo, G. Wahba, and D. R. Johnson, “Spatial–temporal analysis of temperature using smooth-
ing spline anova”, Journal of Climate, vol. 11, no. 1, pp. 18–28, 1998. doi: 10.1175/1520-

0442(1998)011<0018:STAOTU> 2.0.CO;2. eprint: https://doi.org/10.1175/1520-

0442(1998)011<0018:STAOTU>2.0.CO;2. [Online]. Available: https://doi.org/10.1175/
1520-0442(1998)011%3C0018:STAOTU%3E2.0.CO;2.

[75] P. Diggle and P. J. Ribeiro, Model-based Geostatistics, 1st. Springer-Verlag New York, 2007, isbn:
9780387485362.

[76] O. Kramer, F. Gieseke, and B. Satzger, “Wind energy prediction and monitoring with neural
computation”, Neurocomputing, vol. 109, pp. 84–93, 2013, New trends on Soft Computing Models
in Industrial and Environmental Applications, issn: 0925-2312. doi: https://doi.org/10.1016/
j.neucom.2012.07.029. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231212006674.

[77] M. Bilgili, B. Sahin, and A. Yasar, “Application of artificial neural networks for the wind speed
prediction of target station using reference stations data”, Renewable Energy, vol. 32, no. 14,
pp. 2350–2360, 2007, issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.2006.
12.001. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0960148106003429.

[78] J. Xu, B. Ni, Z. Li, S. Cheng, and X. Yang, “Structure preserving video prediction”, in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[79] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[80] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale”, CoRR,
vol. abs/1611.01236, 2016. arXiv: 1611.01236. [Online]. Available: http://arxiv.org/abs/
1611.01236.

[81] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra, “Video (language)
modeling: A baseline for generative models of natural videos”, CoRR, vol. abs/1412.6604, 2014.
arXiv: 1412.6604. [Online]. Available: http://arxiv.org/abs/1412.6604.

[82] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learning of video representations
using lstms”, in Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15, Lille, France: JMLR.org, 2015, pp. 843–852. [Online].
Available: http://dl.acm.org/citation.cfm?id=3045118.3045209.

51

https://doi.org/10.1177/1471082X1001100104
https://doi.org/10.1177/1471082X1001100104
https://doi.org/10.1177/1471082X1001100104
https://doi.org/10.1177/1471082X1001100104
http://www.jstor.org/stable/24307414
https://doi.org/10.1002/env.594
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.594
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.594
https://doi.org/10.1175/1520-0442(1998)011<0018:STAOTU>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<0018:STAOTU>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<0018:STAOTU>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<0018:STAOTU>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011%3C0018:STAOTU%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011%3C0018:STAOTU%3E2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.neucom.2012.07.029
https://doi.org/https://doi.org/10.1016/j.neucom.2012.07.029
http://www.sciencedirect.com/science/article/pii/S0925231212006674
http://www.sciencedirect.com/science/article/pii/S0925231212006674
https://doi.org/https://doi.org/10.1016/j.renene.2006.12.001
https://doi.org/https://doi.org/10.1016/j.renene.2006.12.001
http://www.sciencedirect.com/science/article/pii/S0960148106003429
http://www.sciencedirect.com/science/article/pii/S0960148106003429
https://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
https://arxiv.org/abs/1412.6604
http://arxiv.org/abs/1412.6604
http://dl.acm.org/citation.cfm?id=3045118.3045209

[83] J.-T. Hsieh, B. Liu, D.-A. Huang, L. F. Fei-Fei, and J. C. Niebles, “Learning to decompose and
disentangle representations for video prediction”, in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., Curran Associates, Inc., 2018, pp. 515–524. [Online]. Available: http://papers.nips.cc/
paper/7333-learning-to-decompose-and-disentangle-representations-for-video-

prediction.pdf.

[84] S. Tulyakov, M. Liu, X. Yang, and J. Kautz, “Mocogan: Decomposing motion and content for
video generation”, CoRR, vol. abs/1707.04993, 2017. arXiv: 1707.04993. [Online]. Available:
http://arxiv.org/abs/1707.04993.

[85] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks for mid and high
level feature learning”, in Proceedings of the 2011 International Conference on Computer Vision,
ser. ICCV ’11, Washington, DC, USA: IEEE Computer Society, 2011, pp. 2018–2025, isbn: 978-
1-4577-1101-5. doi: 10.1109/ICCV.2011.6126474. [Online]. Available: http://dx.doi.org/
10.1109/ICCV.2011.6126474.

[86] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, pp. 1–15, 2014, issn:
09252312. doi: http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503.
[Online]. Available: http://arxiv.org/abs/1412.6980.

[87] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic
optimization”, The Journal of Machine Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011,
issn: 1532-4435. doi: 10.1109/CDC.2012.6426698. [Online]. Available: http://jmlr.org/
papers/v12/duchi11a.html%20http://dl.acm.org/citation.cfm?id=2021068%5Cnhttp:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1303&rep=rep1&type=

pdf#page=265.

[88] S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y. T. Hou, H. Y. Chuang,
M. Iredell, M. Ek, J. Meng, R. Yang, M. P. Mendez, H. Van Den Dool, Q. Zhang, W. Wang, M.
Chen, and E. Becker, “The NCEP climate forecast system version 2”, Journal of Climate, vol. 27,
no. 6, pp. 2185–2208, Mar. 2014, issn: 08948755. doi: 10.1175/JCLI-D-12-00823.1. [Online].
Available: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00823.1.

[89] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy”, International
Journal of Forecasting, vol. 22, no. 4, pp. 679–688, Oct. 2006, issn: 01692070. doi: 10.1016/j.
ijforecast.2006.03.001. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0169207006000239?via%3Dihub.

[90] G. Li, J. Shi, and J. Zhou, “Bayesian adaptive combination of short-term wind speed forecasts from
neural network models”, Renewable Energy, vol. 36, no. 1, pp. 352–359, Jan. 2011, issn: 09601481.
doi: 10.1016/j.renene.2010.06.049. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0960148110003228.

[91] A. Tascikaraoglu, B. M. Sanandaji, K. Poolla, and P. Varaiya, “Exploiting sparsity of intercon-
nections in spatio-temporal wind speed forecasting using Wavelet Transform”, Applied Energy,
vol. 165, pp. 735–747, Mar. 2016, issn: 03062619. doi: 10.1016/j.apenergy.2015.12.082.

[92] F. Chollet et al., Keras, \url{https://keras.io}, 2015.

[93] R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting: The forecast package for
R”, Journal of Statistical Software, vol. 26, no. 3, pp. 1–22, 2008. [Online]. Available: http:

//www.jstatsoft.org/article/view/v027i03.

52

http://papers.nips.cc/paper/7333-learning-to-decompose-and-disentangle-representations-for-video-prediction.pdf
http://papers.nips.cc/paper/7333-learning-to-decompose-and-disentangle-representations-for-video-prediction.pdf
http://papers.nips.cc/paper/7333-learning-to-decompose-and-disentangle-representations-for-video-prediction.pdf
https://arxiv.org/abs/1707.04993
http://arxiv.org/abs/1707.04993
https://doi.org/10.1109/ICCV.2011.6126474
http://dx.doi.org/10.1109/ICCV.2011.6126474
http://dx.doi.org/10.1109/ICCV.2011.6126474
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CDC.2012.6426698
http://jmlr.org/papers/v12/duchi11a.html%20http://dl.acm.org/citation.cfm?id=2021068%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1303&rep=rep1&type=pdf#page=265
http://jmlr.org/papers/v12/duchi11a.html%20http://dl.acm.org/citation.cfm?id=2021068%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1303&rep=rep1&type=pdf#page=265
http://jmlr.org/papers/v12/duchi11a.html%20http://dl.acm.org/citation.cfm?id=2021068%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1303&rep=rep1&type=pdf#page=265
http://jmlr.org/papers/v12/duchi11a.html%20http://dl.acm.org/citation.cfm?id=2021068%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1303&rep=rep1&type=pdf#page=265
https://doi.org/10.1175/JCLI-D-12-00823.1
http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://www.sciencedirect.com/science/article/pii/S0169207006000239?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0169207006000239?via%3Dihub
https://doi.org/10.1016/j.renene.2010.06.049
https://www.sciencedirect.com/science/article/pii/S0960148110003228
https://www.sciencedirect.com/science/article/pii/S0960148110003228
https://doi.org/10.1016/j.apenergy.2015.12.082
http://www.jstatsoft.org/article/view/v027i03
http://www.jstatsoft.org/article/view/v027i03

[94] H. Abdi and L. J. Williams, “Principal component analysis”, Wiley Interdisciplinary Reviews: Com-
putational Statistics, vol. 2, no. 4, pp. 433–459, 2010. doi: 10.1002/wics.101. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/wics.101.

[95] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop”, in Neural Networks:
Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48, isbn: 978-3-642-35289-8. doi: 10.1007/
978-3-642-35289-8_3. [Online]. Available: https://doi.org/10.1007/978-3-642-35289-
8_3.

[96] J. Dowell, S. Weiss, D. Hill, and D. Infield, “Short-term spatio-temporal prediction of wind speed
and direction”, Wind Energy, vol. 17, no. 12, pp. 1945–1955, Dec. 2014, issn: 10991824. doi:
10.1002/we.1682. [Online]. Available: http://doi.wiley.com/10.1002/we.1682.

[97] C. Feng, M. Cui, B.-M. Hodge, and J. Zhang, “A data-driven multi-model methodology with deep
feature selection for short-term wind forecasting”, Applied Energy, vol. 190, pp. 1245–1257, 2017,
issn: 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2017.01.043. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0306261917300508.

[98] J. Hu and J. Wang, “Short-term wind speed prediction using empirical wavelet transform and gaus-
sian process regression”, Energy, vol. 93, pp. 1456–1466, 2015, issn: 0360-5442. doi: https://
doi.org/10.1016/j.energy.2015.10.041. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0360544215014097.

53

https://doi.org/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1002/we.1682
http://doi.wiley.com/10.1002/we.1682
https://doi.org/https://doi.org/10.1016/j.apenergy.2017.01.043
http://www.sciencedirect.com/science/article/pii/S0306261917300508
https://doi.org/https://doi.org/10.1016/j.energy.2015.10.041
https://doi.org/https://doi.org/10.1016/j.energy.2015.10.041
http://www.sciencedirect.com/science/article/pii/S0360544215014097
http://www.sciencedirect.com/science/article/pii/S0360544215014097

	Introduction
	Renewable Energy in Brazil
	Contributions
	Objective of Research

	Fundamentals
	Convolutional Neural Networks
	Convolutional Layers
	Pooling Layers
	Fully-Connected Layers

	Improvements on Convolutional Neural Networks
	Residual mappings
	Inception Modules
	U-Net

	Review
	Time Series Forecasting
	Spatio-Temporal Forecasting
	Methods for Spatio-Temporal Prediction
	Statistical Methods
	Machine Learning Methods
	Deep Learning Methods

	Single-Site Spatio-Temporal Wind Speed Forecasting
	Methodology
	U-Convolutional Models
	Convnet and Inception Models
	Training

	Empirical Evaluation
	Datasets
	Experimental Setup
	Accuracy Measures

	Results and Discussion
	Comparing Architectures
	Comparing Best Models
	Discussion

	Multi-Site Spatio-Temporal Wind Forecasting
	Methodology
	ComPonentNet Architectures

	Empirical Evaluation
	Dataset and Experimental Setup
	Accuracy Measures

	First Results and Discussion

	Conclusions
	Appendices
	Single-Site Hyperparameter Configurations
	Bahia Wind Dataset
	Rio Grande do Norte Wind Dataset

