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This is the online technical notes to the article: Syntetos, A and Wang, S. (2026). Categorical Forecasting
for Garage Management. FORESIGHT: The International Journal of Applied Forecasting.

TECHNICAL NOTE A: PREDICTOR VARIABLES

We elaborate the definitions of the selected predictors from four categories, namely vehicle condition,
manufacturing, geographical, and calendar.

Vehicle Condition Variables

Ageiyq:
Miyq:
AvgMiyq
PorCiyq:
iSAcCiyq
NP
NE :
CRTF :
CRTf :
Porc(; :
RT; :
isPart; :
TBF;,q:
MBFi,1:

ageatt;,

mileage at t;,1

average mileage per year at t;

preventive or corrective maintenance at t;4

whether it is due to an accident at ¢,

total number of preventive maintenance jobs up to t;

total number of corrective maintenance jobs up to t;
cumulative repair time due to preventive maintenance up to t;
cumulative repair time due to corrective maintenance up to t;
preventive or corrective maintenance at ¢;

repair time at ¢;

whether any parts are replaced at t;

time between failures between t; and t;,

mileage between failures between t; and t; 4

Manufacturing Variables

Geographical Variables

Make:
Model:
MY:

Type:

Garage; 1 :

vehicle make
vehicle model
vehicle model year

vehicle type

which garage the vehicle is assigned to between t; and t; 4



 Urban;;q: whether the affiliated garage is situated in an urban area
* Seaside;,1: whether the affiliated garage is situated by the seaside

*  Region;,q: which region the affiliated garage is located in

Calendar Variables
« Yearjq: number of years after 2010 at t;,¢
* Month;,q: month of the year at ¢; 4

» Weekend;,1: whetheritis a weekday orin a weekend at t;,4

TECHNICAL NOTE B: ORDINAL REPAIR TIMES FORECASTING METHOD

Suppose that each observation y;, i = 1, ..., n, belongs to one of the ordinal categories k = 1, ..., K, and

xX; = (xl, ...,xp)T represents a p-dimensional vector containing the predictor variables; we model the
logit of the conditional cumulative probability
logit(P(y; < k)|X; = x;) = log <M X; = xi)
1-P(y;<k)
= Box + P1xy + -+ Bpx, + &
where § = (BO.k! B, s ﬁp) is the set of unknown parameters to be estimated and &; is the error term.

(1)

In our case, there are three categories (minor, medium, major), and we only need two cumulative
probabilities to obtain the full probability of the three categories.

The key idea of LASSO is to maximize the likelihood function subject to the sum of the absolute value of
the coefficients being less than a constant. By imposing such constraint, the estimated parameters are
shrinking and some of them tend to be exactly zero, which then serves the purpose of variable selection.
The direct advantage of LASSO is the reduction of the variance of the estimated value and the increase
of the accuracy of the regression prediction. Meanwhile, the resulting model is parsimonious and hence
tends to be more interpretable.

Technically, the LASSO estimator resolves the £;-penalized problem of estimating parameters f8 by
maximizing the likelihood of the ordinal logit model, #(B|y;, x;), subject to the constraint Zf=1|ﬁj| <s,

as shown in Equation (2).

p
B = argmaxg| ¢Blyux) -2 |8 ). @)
j=1

where A is a tuning parameter to control the strength of shrinkage. Intuitively, a larger value of 1 leads
to a stronger penalization on the sum of absolute values of estimated parameters, which shrinks the
values closer to zero. If A is beyond a threshold value, then some of the estimated parameters are
forced to zero, which is equivalent to leaving the corresponding predictor variables out of the model.
Keep increasing the value of 1 beyond the threshold leaves out more predictor variables, but it may also
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suffer from loss of predictive power. Thus, the value of A should be carefully chosen. In this study, we
use a 5-fold cross-validation technique to choose an optimal value of A. This is based on the fact that
cross-validation is intuitively appealing and can provide a good estimate of the expected forecasting
error (Hastie et al., 2009, Chapter 7). It should be highlighted that the predictor variables are at different
scales. To fairly select variables by LASSO, it is necessary to rescale all predictor variables at the same
level. In such way, we give the same importance to all variables, rather than giving high weights to ones
at small scales (i.e., larger magnitude of parameter values). Thus, all predictor variables are standardized
before applying LASSO.

TECHNICAL NOTE C: FORECASTING PERFORMANCE EVALUATION

The Brier score (BS) is one of the standard metrics to assess and compare probability forecasts for
unordered categories. It is a quadratic rule defined as:

K
1 A
BS = E;(fk — o)’ (3)

where K is the number of possible categories, fk is the forecasted probability for category k, and oy
takes the value 1 or 0, according to whether the true category is category k or not. The range of BS is
between 0 and 1. A lower BS indicates a better forecast, and a perfect forecast has BS of 0. As the BS
measures only one observation, it is common to report the average BS over a given number of
forecasted observations, denoted as BS.

The ranked probability score (RPS) is a strictly proper scoring rule that considers the ordering of events
by assigning higher scores for assessments if higher predicted probabilities are given for events close to
the actual event. The RPS is also a quadratic rule computed by:

2

1 K k k
RPS=m2 ka—ZOk . (4)
k=1 \s=1 1

S=

Similar to BS, RPS is also in the range of 0 and 1, and a better forecast is associated with a lower RPS. In
the special case of only two categories, the RPS is equivalent to the BS. Again, we report the average RPS
over a given number of forecast observations, denoted as RPS. Further, and when the task is to
evaluate probabilistic forecasts in comparison with those produced by another method, skill scores may
be particularly useful. A skills score is associated with a particular scoring rule, and amongst many of
them, the Brier skill score (BSS) and the ranked probability skill score (RPSS) are widely used to quantify
improvement over a reference method (Weigel et al., 2007). The BSS and the RPSS are defined as:

BS
BSS=1-—— (5)
Sref
RPSS =1 RPS (6)
a RPS,of



where B_Sref and R—PSref correspond to the average BS and the average RPS of a chosen reference
method. The range of BSS and RPSS is from minus infinity to 1. 0 indicates no skill comparing to the
reference method, while 1 indicates a method with perfect skill. Positive values of BSS and RPSS
indicate a more skilled method with respect to the reference one, while negative values suggesting a
less skilled method.

TECHNICAL NOTE D: DECISION-MAKING UNDER PROBABILITIC FORECSTING

Denote the manager’s decision as d and the actual category as k. Recall thatd, k €
{minor, medium, major} in our context and the total number of categories K = 3. A loss function £
(d, k) is introduced to quantify the cost of incorrect classification, which is defined as follows:

(0 ifd=k
ti={y, if d# k )

where €45, > 0. The probabilistic forecasting model, such as the ordinal logit model, provides the

predicted probabilities associated with each category, denoted as f;, where X f, = 1. The cost of a
decision on each category is a random variable denoted as ¢4 and its expectation is

K
EC) = ) ficbar ®)
k=1

In line with Taylor and Jeon (2018), the objective of rational decision making is to minimize the (long
run) expected cost. Thus, the optimal decision based on the loss function associated with the predicted
probabilities is shown below.

K
at* = arg mdinz f L (9)
k=1
The traditional way to make decisions by point forecasting is expressed as follows:

fox — F
d arg max fa (10)

By combining the loss function and the predicted probabilities, the optimal decision d®* is not always
the same as the decision d/"*.



