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Online Technical Notes 

This is the online technical notes to the article: Syntetos, A and Wang, S. (2026). Categorical Forecasting 

for Garage Management. FORESIGHT: The International Journal of Applied Forecasting. 

TECHNICAL NOTE A: PREDICTOR VARIABLES 

We elaborate the definitions of the selected predictors from four categories, namely vehicle condition, 

manufacturing, geographical, and calendar. 

Vehicle Condition Variables 

• 𝐴𝑔𝑒𝑖+1:  age at 𝑡𝑖+1 

• 𝑀𝑖+1:  mileage at 𝑡𝑖+1 

• 𝐴𝑣𝑔𝑀𝑖+1 : average mileage per year at 𝑡𝑖+1 

• 𝑃𝑜𝑟𝐶𝑖+1 :  preventive or corrective maintenance at 𝑡𝑖+1 

• 𝑖𝑠𝐴𝑐𝑐𝑖+1 : whether it is due to an accident at 𝑡𝑖+1 

• 𝑁𝑖
𝑃:  total number of preventive maintenance jobs up to 𝑡𝑖 

• 𝑁𝑖
𝐶  :  total number of corrective maintenance jobs up to 𝑡𝑖 

• 𝐶𝑅𝑇𝑖
𝑃 :  cumulative repair time due to preventive maintenance up to 𝑡𝑖 

• 𝐶𝑅𝑇𝑖
𝐶  :   cumulative repair time due to corrective maintenance up to 𝑡𝑖 

• 𝑃𝑜𝑟𝐶𝑖 :   preventive or corrective maintenance at 𝑡𝑖 

• 𝑅𝑇𝑖 :   repair time at 𝑡𝑖 

• 𝑖𝑠𝑃𝑎𝑟𝑡𝑖 : whether any parts are replaced at 𝑡𝑖 

• 𝑇𝐵𝐹𝑖+1: time between failures between 𝑡𝑖 and 𝑡𝑖+1 

• 𝑀𝐵𝐹𝑖+1: mileage between failures between 𝑡𝑖 and 𝑡𝑖+1 

 

Manufacturing Variables 

• 𝑀𝑎𝑘𝑒:   vehicle make 

• 𝑀𝑜𝑑𝑒𝑙:  vehicle model 

• 𝑀𝑌:   vehicle model year 

• 𝑇𝑦𝑝𝑒:    vehicle type 

 

Geographical Variables 

• 𝐺𝑎𝑟𝑎𝑔𝑒𝑖+1 :  which garage the vehicle is assigned to between 𝑡𝑖 and 𝑡𝑖+1 
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• 𝑈𝑟𝑏𝑎𝑛𝑖+1:  whether the affiliated garage is situated in an urban area 

• 𝑆𝑒𝑎𝑠𝑖𝑑𝑒𝑖+1:  whether the affiliated garage is situated by the seaside 

• 𝑅𝑒𝑔𝑖𝑜𝑛𝑖+1:  which region the affiliated garage is located in 

 

Calendar Variables 

• 𝑌𝑒𝑎𝑟𝑖+1: number of years after 2010 at 𝑡𝑖+1 

• 𝑀𝑜𝑛𝑡ℎ𝑖+1:  month of the year at 𝑡𝑖+1 

• 𝑊𝑒𝑒𝑘𝑒𝑛𝑑𝑖+1:  whether it is a weekday or in a weekend at 𝑡𝑖+1 

 

TECHNICAL NOTE B: ORDINAL REPAIR TIMES FORECASTING METHOD 

Suppose that each observation 𝑦𝑖 , 𝑖 = 1, … , 𝑛, belongs to one of the ordinal categories 𝑘 = 1, … , 𝐾, and 

𝒙𝑖 = (𝑥1, … , 𝑥𝑝)
T

 represents a 𝑝-dimensional vector containing the predictor variables; we model the 

logit of the conditional cumulative probability 

 
𝑙𝑜𝑔𝑖𝑡(𝑃(𝑦𝑖 ≤ 𝑘)|𝑿𝑖 = 𝑥𝑖) = log (

𝑃(𝑦𝑖 ≤ 𝑘)

1 − 𝑃(𝑦𝑖 ≤ 𝑘) 
| 𝑿𝑖 = 𝒙𝑖 )

= 𝛽0,𝑘 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀𝑖, 
(1) 

where 𝜷 = (β0,𝑘, 𝛽1, … , 𝛽𝑝) is the set of unknown parameters to be estimated and 𝜀𝑖 is the error term. 

In our case, there are three categories (minor, medium, major), and we only need two cumulative 

probabilities to obtain the full probability of the three categories.  

The key idea of LASSO is to maximize the likelihood function subject to the sum of the absolute value of 

the coefficients being less than a constant. By imposing such constraint, the estimated parameters are 

shrinking and some of them tend to be exactly zero, which then serves the purpose of variable selection. 

The direct advantage of LASSO is the reduction of the variance of the estimated value and the increase 

of the accuracy of the regression prediction. Meanwhile, the resulting model is parsimonious and hence 

tends to be more interpretable.  

Technically, the LASSO estimator resolves the ℓ1-penalized problem of estimating parameters 𝜷 by 

maximizing the likelihood of the ordinal logit model, ℓ(𝜷|𝑦𝑖 , 𝒙𝑖), subject to the constraint ∑ |𝛽𝑗| ≤ 𝑠
𝑝
𝑗=1 , 

as shown in Equation (2). 

 𝜷̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜷 (ℓ(𝜷|𝑦𝑖, 𝒙𝑖) − 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

) , (2) 

where 𝜆 is a tuning parameter to control the strength of shrinkage. Intuitively, a larger value of 𝜆 leads 

to a stronger penalization on the sum of absolute values of estimated parameters, which shrinks the 

values closer to zero. If 𝜆 is beyond a threshold value, then some of the estimated parameters are 

forced to zero, which is equivalent to leaving the corresponding predictor variables out of the model. 

Keep increasing the value of 𝜆 beyond the threshold leaves out more predictor variables, but it may also 
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suffer from loss of predictive power. Thus, the value of 𝜆 should be carefully chosen. In this study, we 

use a 5-fold cross-validation technique to choose an optimal value of 𝜆. This is based on the fact that 

cross-validation is intuitively appealing and can provide a good estimate of the expected forecasting 

error (Hastie et al., 2009, Chapter 7). It should be highlighted that the predictor variables are at different 

scales. To fairly select variables by LASSO, it is necessary to rescale all predictor variables at the same 

level. In such way, we give the same importance to all variables, rather than giving high weights to ones 

at small scales (i.e., larger magnitude of parameter values). Thus, all predictor variables are standardized 

before applying LASSO.  

 

TECHNICAL NOTE C: FORECASTING PERFORMANCE EVALUATION 

The Brier score (BS) is one of the standard metrics to assess and compare probability forecasts for 

unordered categories. It is a quadratic rule defined as: 

 𝐵𝑆 =
1

𝐾
∑(𝑓𝑘 − 𝑜𝑘)

2
𝐾

𝑘=1

 (3) 

where 𝐾 is the number of possible categories, 𝑓𝑘 is the forecasted probability for category 𝑘, and 𝑜𝑘 
takes the value 1 or 0, according to whether the true category is category 𝑘 or not. The range of BS is 

between 0 and 1. A lower BS indicates a better forecast, and a perfect forecast has BS of 0. As the BS 

measures only one observation, it is common to report the average BS over a given number of 

forecasted observations, denoted as 𝐵𝑆̅̅̅̅ .  

The ranked probability score (RPS) is a strictly proper scoring rule that considers the ordering of events 

by assigning higher scores for assessments if higher predicted probabilities are given for events close to 

the actual event. The RPS is also a quadratic rule computed by: 

 𝑅𝑃𝑆 =
1

𝐾 − 1
∑ (∑ 𝑓𝑘

𝑘

𝑠=1

− ∑ 𝑜𝑘

𝑘

𝑠=1

)

𝐾

𝑘=1

2

. (4) 

 

Similar to BS, RPS is also in the range of 0 and 1, and a better forecast is associated with a lower RPS. In 

the special case of only two categories, the RPS is equivalent to the BS. Again, we report the average RPS 

over a given number of forecast observations, denoted as 𝑅𝑃𝑆̅̅ ̅̅ ̅̅ . Further, and when the task is to 

evaluate probabilistic forecasts in comparison with those produced by another method, skill scores may 

be particularly useful. A skills score is associated with a particular scoring rule, and amongst many of 

them, the Brier skill score (BSS) and the ranked probability skill score (RPSS) are widely used to quantify 

improvement over a reference method (Weigel et al., 2007). The BSS and the RPSS are defined as:  

 𝐵𝑆𝑆 = 1 −
𝐵𝑆̅̅̅̅

𝐵𝑆̅̅̅̅
𝑟𝑒𝑓

 (5) 

 𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆̅̅ ̅̅ ̅̅

𝑅𝑃𝑆̅̅ ̅̅ ̅̅
𝑟𝑒𝑓

 (6) 
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where 𝐵𝑆̅̅̅̅
𝑟𝑒𝑓 and 𝑅𝑃𝑆̅̅ ̅̅ ̅̅

𝑟𝑒𝑓 correspond to the average BS and the average RPS of a chosen reference 

method. The range of 𝐵𝑆𝑆 and 𝑅𝑃𝑆𝑆 is from minus infinity to 1. 0 indicates no skill comparing to the 

reference method, while 1 indicates a method with perfect skill. Positive values of 𝐵𝑆𝑆 and 𝑅𝑃𝑆𝑆 

indicate a more skilled method with respect to the reference one, while negative values suggesting a 

less skilled method.   

 

TECHNICAL NOTE D: DECISION-MAKING UNDER PROBABILITIC FORECSTING 

Denote the manager’s decision as 𝑑 and the actual category as 𝑘. Recall that 𝑑, 𝑘 ∈

{𝑚𝑖𝑛𝑜𝑟, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑚𝑎𝑗𝑜𝑟} in our context and the total number of categories 𝐾 = 3. A loss function ℒ

(𝑑, 𝑘) is introduced to quantify the cost of incorrect classification, which is defined as follows: 

 ℒ(𝑑, 𝑘) = {
0                         𝑖𝑓 𝑑 = 𝑘
ℓ𝑑𝑘                     𝑖𝑓 𝑑 ≠ 𝑘

 (7) 

where ℓ𝑑𝑘 > 0. The probabilistic forecasting model, such as the ordinal logit model, provides the 

predicted probabilities associated with each category, denoted as 𝑓𝑘, where ∑ 𝑓𝑘
𝐾
1 = 1. The cost of a 

decision on each category is a random variable denoted as ℓ𝑑 and its expectation is 

 𝐸(ℓ𝑑) =  ∑ 𝑓𝑘ℓ𝑑𝑘

𝐾

𝑘=1

 (8) 

In line with Taylor and Jeon (2018), the objective of rational decision making is to minimize the (long 

run) expected cost. Thus, the optimal decision based on the loss function associated with the predicted 

probabilities is shown below. 

 𝑑ℓ,∗ = arg min
𝑑

∑ 𝑓̂
𝑘
ℓ𝑑𝑘

𝐾

𝑘=1

 (9) 

The traditional way to make decisions by point forecasting is expressed as follows: 

  𝑑𝑓,∗ = arg max
𝑑

𝑓𝑑 (10) 

By combining the loss function and the predicted probabilities, the optimal decision 𝑑ℓ,∗ is not always 

the same as the decision 𝑑𝑓,∗. 

 


