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Executive Summary 

 

This final report documents the research completed by the recipients of the 2019-2020 IIF-SAS Grant 

to Support Research on Forecasting in the category of Business Applications, Omar Aponte, M.E. and 

Katie T. McConky, Ph.D. This research was motivated by observing how the constant evolution of the 

electric grid with the integration of generation from renewable sources and “smart” components makes 

peak electric load management an essential aspect to ensure the grid’s reliability and safety. In order 

to pass the financial burden of managing these loads on to the consumers, utilities around the world 

have established peak load charges that can amount to up to 70% of electricity costs in the case of the 

United States of America. These pricing schemes have created a need for efficient electric load 

management strategies that consumers can implement in order to reduce the financial and 

environmental impact of peak electric loads. 

 

The research titled “Actionable Peak Electric Load Day Forecasting Method for Facilities with 

Renewable Electricity Cogeneration” provides important insights and contributions to the forecasting 

practice in the field of electric load forecasting. Thanks to the support provided by the 2019-2020 IIF-

SAS Grant to Support Research on Forecasting, this research has contributed: (1) a peak electric load 

day (PELD) forecasting methodology applicable to consumers with behind the meter renewable 

electricity generation (BTMREG) that demonstrated the potential to achieve 93% of the potential 

savings in kW, equivalent to approximately US$ 142,129.01 in peak load charges; (2) the first side-by-

side performance comparisons of electric load and PELD forecasting models for scenarios with and 

without BTMREG; and (3) the first PELD forecasting model savings comparison for scenarios with 

and without BTMREG. One of the insights suggests that counterintuitively, BTMREG adoption can 

translate into higher peak load savings. 
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 1. Research Motivation 

 

Utilities in the United States have been increasingly taking advantage of smart grid technologies that 

enable them to set dynamic pricing schemes, such as Time of Use (TOU) and Real Time Pricing (RTP) 

rate structures [1,2]. Under these pricing schemes, a consumer’s electricity costs are determined based 

on the consumer’s unique time dependent electricity demand pattern, and can vary significantly from 

month to month. The majority of TOU and RTP rates also contain a consumer demand charge [2,3]. 

The demand charge is based on the highest rate of electricity consumption observed during a billing 

period, typically per month, and is charged in $/kW.  This demand charge can amount to up to 70% of 

an electric bill [2,3], however, the number of days in a month contributing to demand charges is 

typically very small. Figure 1 illustrates the month of April 2019 for a circuit at the Rochester Institute 

of Technology (RIT). In Figure 1 it can clearly be seen that April 9th, 19th and 26th have higher peak 

demands than most of the other days of the month, while April 8th, 12th and 18th have significantly 

higher peak demands. If these days are predicted ahead of time, demand response actions could take 

place to lower demand during these specific days. While significant emphasis has been placed on 

generating accurate electricity demand forecasts [5,6], little attention has been paid to transforming 

these forecasts into actionable intelligence to enable facilities to prevent avoidable demand charges 

such as the ones described. 

 

Fig. 1. Energy demand for one circuit at RIT for the month of April 2019. 
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Recently, research was conducted for RIT that provided evidence that if peak demand days are 

predicted, significant savings can be made [7]. Specifically, the authors were able to accurately predict 

70% of a year’s peak electric load days (PELDs) using machine-learning techniques, and estimated 

potential savings related to these predictions to be approximately USD$ 80,000 per year. However, 

none of the published research found so far evaluates the performance of these PELDs forecasting 

methodologies when renewable electricity generation (REG) is present. Shortly after the study [7] was 

completed, RIT reconfigured their electricity infrastructure into two circuits, each of which contain a 

2 MW solar field. The presence of REG increases the hour to hour demand variability substantially, 

and thus makes the forecasting of PELDs significantly more challenging than for a facility with no 

REG. Figure 2 illustrates the difference between the electric load to be forecasted when REG is present 

(Net Demand) and the electric load to be forecasted in its absence (Demand) for May 9th, 10th, and 

11th, 2019. Figure 3(a) provides a closer view of May 9th 2019 as a sample case and includes smoothed 

demand curves using a 12 data-points (One-Hour), each at 5 minutes intervals, Moving Average along 

with the corresponding Mean Absolute Percentage Deviation (MAPD) from the smoothed curves. The 

higher MAPD value along with the noticeable worse graphical fit shows how the Net Demand exhibits 

a higher variability than the Demand. Figure 3(b) further supports this claim by showing how the hourly 

variance tends to be higher for the Net Demand during the hours of active REC (6-19). 

 

Fig. 2. Electric Demand, Net Demand, and Solar Generation at RIT during May 9th-11th, 2019. 
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Fig. 3. Electric Demand, Net Demand, Moving Averages and Hourly Variance for May 9th, 2019. 

 

There are currently no published works describing a methodology for forecasting peak electric load 

days when REG is present. The adoption of REG is on the rise worldwide, but the output of this type 

of generation is dependent on weather conditions, which makes it as variable as weather itself [8-10]. 

Figure 3 illustrates the intermittency (variability) of solar-based REG at RIT for 3 non-consecutive 

days, each day with different predominant weather from 6:00 AM to 6:00 PM. The fluctuations in 

output from renewable sources such as the sun and the wind are known to range from minutes to hours 

to multiple days [10]. 

 

Fig. 4. Solar Generation at RIT during 3 days with different weather from 6:00 AM to 6:00 PM in 2017. 

 

The completed research sought to evaluate how the output fluctuations from renewable sources impact 

current forecasting techniques used to trigger demand response actions and to document a novel 
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methodology for forecasting PELDs that takes into account the presence of REG. The outcome of this 

research included the development and dissemination of a forecasting methodology that could be used 

by facilities management personnel in order to identify when to execute demand response actions, such 

that avoidable and significant demand charges could be prevented. 

 

2. Specific Aims 

 

The completed research specifically aimed to: 

1. Expand the published scientific research related to peak electric load days forecasting in order 

to provide actionable intelligence to facility operators on when to run demand response actions.  

 

2. Compare the performance of current methodologies for forecasting peak electric load days 

(which don't specifically target impacts from renewable energy generation) to new algorithms 

that do take into consideration renewable energy generation and related data.  

 

3. Demonstrate the performance of a novel methodology for forecasting peak electric load days 

with renewable electricity generation present that out-performs current forecasting 

methodologies which fail to account for the presence of renewable electricity generation. 

 

3. Summarized Methodology Outline 

 

 

Fig. 5. Summarized methodology outline. 
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a. Phase 1: Data collection and cleansing 

The completed research was conducted using real data collected at the Rochester Institute of 

Technology (RIT) in Rochester, NY, USA. The research group had access to more than 480,000 records 

of electricity demand data and solar generation data from two, 2 MW solar fields on campus dating 

back to June 2016. This data had been collected from the university’s electric meters at a 5-minute 

frequency and stored for research initiatives such as the one completed. Operational data such as the 

academic calendar and special events data was available to the research group through RIT’s official 

calendars. Weather data for RIT’s location was obtained from an outside historical weather data bank. 

Traditional data cleansing operations such as outlier detection and removal, and data imputation took 

place as the final data set was assembled before the model development and fitting phase.  

 

b. Phase 2: Model development, fitting and validation 

After completing Phase 1, several machine-learning techniques such as Auto-Regressive Integrated 

Moving Average (ARIMA), Classification and Regression Trees (CART), and Artificial Neural 

Networks (ANN), were developed using the cleansed data set. Variable selection techniques were used 

to create parsimonious models. The training data set was split such that 80% of the data was used for 

model fitting. The remaining 20% of the training data was used for validation according to the 

procedures found in Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998), Forecasting: 

methods and applications, 3rd edition, John Wiley and Sons. The Synthetic Minority Oversampling 

Technique (SMOTE) was used to overcome class imbalance in the data set for the classification-based 

models. Standard goodness of fit performance measures such as the MAPE, were assessed during this 

phase in order to determine the best performing model. 
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c. Phase 3: Final model testing 

The best models obtained from Phase 2 were re-trained using all of the training data and tested against 

unseen data according to the procedures found in Makridakis, S., Wheelwright, S. C. and Hyndman, 

R. J. (1998), Forecasting: methods and applications, 3rd edition, John Wiley and Sons. Forecast 

performance was measured by calculating the confusion matrix related to the accuracy of peak day 

predictions. 

 

d. Phase 4: Final model performance comparison with other models 

Three forecasting techniques (ARIMA, Random Forest, and ANN) obtained from published peer-

reviewed works that fail to account for the presence of renewable electricity generation were selected 

for this phase. The same procedures used in Phases 2 and 3 to generate forecasts in scenarios with REG 

present was repeated using each of the selected techniques in scenarios without REG present. These 

results allowed a side-by-side performance comparison that provided insights into how the output 

fluctuations from renewable sources impact current forecasting techniques used to trigger demand 

response actions. 

 

e. Phase 5: Manuscript submission to IJF and presentation at ISF 2020 

The project was completed with the presentation of the research findings at the International 

Symposium on Forecasting (ISF) 2020 and the submission of a manuscript reporting the research 

results to the International Journal of Forecasting (IJF) that is currently awaiting peer review. 
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4. Research Findings and Contributions 

 

The completed research has generated the following findings and contributions aligned with each of 

the three specific aims outlined in Section 2 of this report: 

 

Specific Aim 1: 

1.1 A manuscript titled “Actionable Peak Electric Load Day Forecasting Methodology Applicable 

to Facilities with Behind the Meter Renewable Electricity Generation” reporting the results 

obtained during this research was submitted on Nov. 8th, 2020 to the International Journal of 

Forecasting (IJF) and is currently awaiting peer review. This manuscript seeks to expand the 

published scientific research related to peak electric load days forecasting in order to provide 

actionable intelligence to facility operators on when to run demand response actions. 

 

Fig. 6. Screen capture of the status of the submitted manuscript to the IJF. 

 

1.2 A presentation titled “Actionable Peak Electric Load Day Forecasting Methodology for 

Facilities with Behind the Meter Renewable Electricity Generation” reporting the results 

obtained during this research was delivered on Oct. 28th, 2020 at the 40th International 

Symposium on Forecasting (ISF) 2020. This presentation provided insights into the potential 



Page 11 of 16 
 

of implementing peak electric load days forecasting as a tool to generate actionable intelligence 

to facility operators on when to run DRAs. More information about this presentation can be 

found at: https://whova.com/portal/webapp/iiofe_202006/Agenda/1323734 

 

Fig. 7. Screen capture of the details about the presentation delivered during the 40th ISF 2020. 

 

Specific Aim 2: 

The completed research produced the first of their kind side-by-side empirical comparisons between 

the performance of ARIMA, CART, random regression and classification forest, ANN, and ensemble 

(also known as hybrid) based models at forecasting electric load and PELDs for scenarios with and 

without behind the meter renewable energy generation (BTMREG). The results of these comparisons 

between current methodologies for forecasting PELDs (which don't specifically target impacts from 

REG) to new algorithms that do take into consideration REG and related data, provided six important 

insights in regards to past, present, and potential future research. 
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2.1 Counterintuitively, there can be more potential and model savings (both in kW and in peak 

load charges) to be achieved by facilities using PELD forecasting methodologies after adopting 

BTMREG. The results show how implementing these methodologies after BTMREG adoption 

becomes even more important than before the adoption in order to achieve financial savings. 

At first, many researchers and practitioners might not consider this outcome because by 

definition, a customer’s load profile is reduced when BTMREG is adopted (net demand 

scenario) which can translate into less opportunities for load reduction. 

 

2.2 The months with the highest outside temperatures and consequently the highest energy usage 

for cooling purposes were also the months with the greatest savings to be achieved at the 

university selected for this study. 

 

2.3 Both a random regression forest model and an ANN based regression model outperformed 

ARIMA and CART regression-based models at predicting future electric load levels for both 

the net demand (with BTMREG) and the demand (without BTMREG) scenarios. 

 

2.4 Empirical evidence suggesting that the presence of BTMREG affects the performance of the 

models was only observed for the regression-based models evaluated. The results obtained 

from the classification-based models as well as the ensemble models evaluated did not show 

evidence of an effect on the performance of these models due to the presence of BTMREG. 
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2.5 Class imbalance issues in the data set need to be addressed in order to achieve the best 

performances when implementing the classification-based PELD forecasting approach 

regardless of the presence or absence of BTMREG. 

 
2.6 A proposed single vote ensemble approach outperformed the current majority vote approach 

proposed by [7] but produced a significantly greater number of false positive predictions when 

compared to the other models evaluated. The use of ensemble forecasting for PELD forecasting 

can be further explored by evaluating additional ensemble forecasting methodologies.  

 

Specific Aim 3:  

3.1 A novel methodology for forecasting peak electric load days with BTMREG present based on 

CART and ANN models demonstrated the capacity to have achieved 93% of the potential 

savings in kW and US$ 142,129.01 savings in electricity costs during a yearlong testing period. 

These results were above those obtained by a previously published hybrid forecasting 

methodology that did not to account for the presence of REG. 

 

5. COVID-19 Impact on Original Research Proposal 

 

The original research proposal included budget lines to present the results of the research at the 40th 

International Symposium on Forecasting originally planned to be held in Rio de Janeiro, Brazil on July 

5-8, 2020. However, the event was rescheduled as a virtual event due to the COVID-19 worldwide 

pandemic which affected travel and in-person gatherings around the world. This was the only impact 

of the COVID-19 pandemic on the original proposal. The scope of work originally proposed was not 

affected by the COVID-19 pandemic. We plan to use the remaining travel funds to attend the 2021 or 

2022 International Symposium on Forecasting, whenever in-person conferences resume.  



Page 14 of 16 
 

 

6. Future Plans and Research Efforts 

 

The researchers’ first priority during the months following the submission of this report will be to 

follow up with the review process of the manuscript “Actionable Peak Electric Load Day Forecasting 

Methodology Applicable to Facilities with Behind the Meter Renewable Electricity Generation” 

submitted on Nov. 8th, 2020 to the International Journal of Forecasting (IJF). The researchers are 

committed to respond to all comments received from the editor and the reviewers, and to perform all 

necessary improvements to the manuscript until it is accepted and published. 

 

Additional research questions have been identified throughout this effort which could serve as basis 

for future research efforts related to PELDs forecasting methodologies and their potential business 

applications: 

• How do the models perform in different settings, such as manufacturing or residential premises?  

• What are the effects of training the models with just the hours when peak electric loads occur? 

• For threshold based models, what is the best method to predict the monthly threshold? 

• How effective is the methodology for other types of REG sources such as wind and hydro? 

     

 

 

  



Page 15 of 16 
 

7. Budget Update 

 

Our budget included only expenses related to travelling to Rio De Janeiro, Brazil for the 40th 

International Symposium on Forecasting in July, 2020. These travel expenses include support for both 

Dr. Katie McConky and Ph.D. Candidate Omar Aponte to travel to and attend the conference, arriving 

July 4th and departing July 9th. Estimated expenses are shown in the table below and include indirect 

costs of $3,148. The total budget request comes to $9,918. 

 

Expense Initial Budget ($) 2020 Expenditures ($) 

 McConky Aponte McConky Aponte 
Flights 1,800 1,800   
Hotel 750 750   
Taxis/Transportation 200 200   
Food 250 250   
Registration 500 190 175 175 
Travel Visa NA 80   
Total 3,500 3,270 Total Used 350 
Total Expenses 6,770    
Indirect Costs (46.5%) 3,148   162 
Total Request 9,918  Total Remaining 9405 

 
A detailed budget of 2020’s expenditures is as follows: 
 
Katie McConky 

• $125 International Institute of Forecasters Membership 
• $50 ISF 2020 Workshop 3: Deep Learning for Forecasting 

 
Omar Aponte 

• $25 Student Online Membership to International Institute of Forecasters 
• $50 ISF 2020 Workshop 3: Deep Learning for Forecasting 
• $50 ISF 2020 Workshop 2: MIDAS Touch and Regime Switching Models 
• $50 ISF 2020 Workshop 5: Forecasting to Meet Demand 

 
We currently have approximately $9400 remaining for travel to ISF 2021 or 2022.  
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Editors of the International Journal of Forecasting 

 

Dear Editors, 

 

We thank you for dedicating your time to review our submission “Actionable Peak Electric Load Day 

Forecasting Methodology Applicable to Facilities with Behind the Meter Renewable Electricity 

Generation”. This paper seeks to address the research gap created by the limited amount of published 

research detailing peak electric load day (PELD) forecasting methodologies applicable to the increasing 

number of facilities adopting behind the meter renewable electricity generation (BTMREG) worldwide. 

In addition, the published research lacks studies comparing the performance of PELDs forecasting 

methodologies with and without BTMREG. Three main contributions provided by the article can be 

highlighted. First, the development and testing of a PELD forecasting methodology applicable to both 

consumers with and without BTMREG. The experimental results showed that 93% of potential savings in 

kW (approximately US$ 142,129.01) could be achieved at a university in the United States of America 

(USA) with BTMREG by implementing an artificial neural network (ANN) based model. 

 

The second contribution is the documentation of the first of their kind side-by-side comparisons between 

the performance of autoregressive integrated moving average (ARIMA), regression and classification 

trees (RCT), random regression and classification forest, ANN, and ensemble based models at forecasting 

electric load and PELDs for scenarios with and without BTMREG. These comparisons provided four 

important insights in regards to past, present, and potential future research. The third and final 

contribution is the first of its kind PELD forecasting model savings comparison for scenarios with and 

without BTMREG. This comparison provided insight suggesting that counterintuitively, BTMREG 

adoption can translate into higher peak load savings. The data set developed will be submitted as an 

appendix following the peer review process.  

 

This work is distinct from previous works in the electric load forecasting field because most of the work 

in this particular field focuses on the accuracy of electric load forecasts while our work focuses on the 

accurate classification of an upcoming day as either a PELD or a Non-PELD in order to take advantage of 

significant cost savings opportunities. This work is also distinct in the field of PELD forecasting because 

it provides first of their kind results and a methodology applicable to facilities regardless of the presence 

of BTMREG. Virtually any building and/or facility in the world can apply the proposed methodology in 

order to reduce the financial and environmental impact of peak demand. 

 

 

We look forward to receiving your and the reviewers’ comments. 

 

 

Thank you, 

Omar Aponte, M.E. 
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Actionable Peak Electric Load Day Forecasting Methodology Applicable to Facilities with Behind 

the Meter Renewable Electricity Generation 

 

Abstract 

Many electricity consumers in the USA are billed load based charges that can amount to up to 70% of 

electricity costs. Research has shown that the financial impact of peak load charges can be reduced by 

acting on the intelligence provided by peak electric load day (PELD) forecasts. Unfortunately, published 

methodologies have not been thoroughly tested for the increasing number of facilities adopting behind the 

meter renewable electricity generation (BTMREG). This paper contributes: (1) a PELD forecasting 

methodology applicable to consumers with BTMREG that achieved 93% of the potential savings in kW, 

approximately US$ 142,129.01 in peak load charges; (2) the first side-by-side performance comparisons 

of electric load and PELD forecasting models for scenarios with and without BTMREG; and (3) the first 

PELD forecasting model savings comparison for scenarios with and without BTMREG. One of the 

insights provided suggests that counterintuitively, BTMREG adoption can translate into higher peak load 

savings. 

 

1. Introduction 

 

Commercial and residential facilities require a significant amount of energy and contribute a considerable 

amount of greenhouse gas (GHG) emissions worldwide. International and domestic agencies that focus on 

energy related statistics include a distinct category to report the energy consumed by commercial and 

residential buildings. This practice is a testament to the significant impact of these consumers’ energy 
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usage. The International Energy Agency (IEA) reported that buildings were responsible for 28% of global 

energy-related CO2 emissions in 2018 (IEA, 2019a). The United States’ Energy Information 

Administration reported that the residential and commercial sectors represented 39% of the total energy 

consumption in the United States of America (USA) during 2019 including losses (USEIA, 2020). During 

2018, sustained ongoing efforts to decarbonize energy generation worldwide increased the share of 

renewable energy in global power capacity to 33% (REN21, 2019). However, the increase in building 

electricity consumption was five-times faster than the improvements in the carbon intensity of the power 

sector during the 2000-2018 period (IEA, 2019a). Given buildings’ significant energy requirements and 

contributions to GHG emissions, it is imperative that research efforts continue to focus on ways to 

increase buildings’ energy efficiency in order to reduce their energy related costs and environmental 

impact. 

 

Many commercial and residential buildings are billed under dynamic pricing schemes that can include 

peak load charges (also referred to as a consumer demand charges or peak demand charges) (Dutta and 

Mitra, 2017; McLaren et al., 2017; Hledik, 2014). Peak load charges are typically based on the highest 

electric load (in kW) observed during a billing period, typically a month, and are charged in $/kW 

(McLaren et al., 2017; Hledik, 2014). These peak load charges can amount to up to 70% of an electric bill 

in the USA (McLaren et al., 2017). However, the number of days in a month contributing to peak load 

charges is typically very small. Figure 1 illustrates real electric load data for a circuit at the university 

campus in the USA selected to perform the current study during the month of April 2019. Figure 1 clearly 

shows that April 8th, 12th and 18th have significantly higher load levels than the other days of the month. If 

these peak load days are forecasted ahead of time, demand response actions could be executed to mitigate 

the electric load during these specific days and reduce the peak load charges described earlier. The lead-

time provided by these peak electric load day (PELD) forecasts is very important because some demand 

response actions require several hours either to be executed, to show results, or both. 
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Fig. 1. Electric load for a circuit during April 2019. 

  

Most of the published research on electric load forecasting focuses on generating accurate electric load 

forecasts for both utilities and consumers, but there is limited research on the application of these 

forecasts to avoid the peak load charges described earlier. Saxena et al. (2019) noted that studies focusing 

on forecasting a billing period’s peak electric load days (PELDs) in order to trigger demand response 

actions to reduce peak load charges are scarce. These authors reviewed how autoregressive integrated 

moving average (ARIMA), support vector regression machine (SVRM), classification and regression 

trees (CART), artificial neural network (ANN), and multivariate adaptive regression splines (MARS) 

based models, among others, have been used to develop forecasting models for next-day building electric 

load and peak load. However, being able to predict the next day’s electric load does not provide 

actionable intelligence to determine if the next day will contribute to peak load charges for the billing 

period. Saxena et al. (2019) developed an ensemble (also referred to as hybrid) machine-learning model 

focused specifically on predicting if the next day will be a PELD for a billing period. Saxena et al. (2019) 

tested their model using data from a university in the USA; the ensemble model predicted 70% of actual 

PELDs and revealed potential savings in the neighborhood of US $80,000 after a yearlong testing period. 

This work provided evidence of how consumers could potentially reduce peak load charges by executing 

demand response actions based on the results of PELDs forecasting efforts. As the Saxena et al. (2019)’s 

methodology was being prepared for implementation at a university in the USA, the university’s 
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electricity infrastructure underwent a reconfiguration. The university’s electricity infrastructure was 

divided into two main circuits. Each of these main circuits now included a solar field designed to provide 

up to 2 Megawatts (MW) of behind the meter renewable electricity generation (BTMREG). While the 

Saxena et al. (2019) methodology had been validated for a university campus with no BTMREG, the 

methodology had not been tested for circuits with BTMREG able to make up for as much at 25% of the 

electric load. 

 

Fig. 2. Solar Generation during 3 days with different weather from 6:00 AM to 6:00 PM in 2019. 

 

Researchers have already noted that renewable electricity generation (REG) output is as variable 

(intermittent) as weather itself (Staffell and Pfenninger, 2018; Chaiamarit and Nuchprayoon, 2014). 

Aponte and McConky (2019) documented how REG output could represent a challenge for the accuracy 

of current PELDs forecasting methodologies. REG output can fluctuate for periods ranging from minutes 

to hours to multiple days (Staffell and Pfenninger, 2018). Figure 2 illustrates the intermittency 

(variability) of solar-based REG at the university campus in the USA selected to perform the current 

study for three non-consecutive days, each day with different predominant weather (clear/sunny, cloudy, 

and mostly cloudy) from 6:00 AM to 6:00 PM. This characteristic of REG challenges the accuracy of 

both electric load forecasts (Tushar et al., 2018) and PELDs forecasts (Aponte and McConky, 2019). 

Chaiamarit and Nuchprayoon (2014) demonstrated that REG affects electric load characteristics and net 

demand (also referred to as net load). Net demand is defined as the result of subtracting the electric load 
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generated behind the meter (on the consumer’s side) from the total load required by the consumer (also 

referred to as building demand or just demand). From this point on, whenever the term net demand is 

used, it will be referring to a scenario with BTMREG; and whenever the term demand is used, it will be 

referring to a scenario without BTMREG. Aponte and McConky (2019) performed a data-driven analysis 

of a yearlong electric load and solar generation data for a university in the USA that highlighted five main 

findings. First, as expected the load values for the net demand scenario (with BTMREG) were lower than 

the load values for the demand scenario (without BTMREG) when the BTMREG was active. Second, the 

peak loads observed when BTMREG was present, happened during the hours when the BTMREG was 

either low or inactive and normal operations were still ongoing at the facilities. Third, as a direct 

consequence of the previous finding, demand response strategies need to be reevaluated to ensure that 

demand response actions can be performed during the new times with high concentration of peak loads. 

Fourth, the number of PELDs during a month changed with the adoption of BTMREG. Consequently, the 

number of days during which demand response actions needed to be executed also changed with the 

adoption of BTMREG. Fifth, the adoption of BTMREG also changed the potential savings after 

executing demand response actions. The study concluded that new demand response strategies have to be 

developed as soon as facilities adopt BTMREG in order to ensure maximum reduction of peak demand 

charges. 

 

1.1 Novelty, contributions, and paper organization. 

 

As far as our review of the published literature (see Section 2) was able to assess, even though there is an 

abundance of published work related to future load forecasts, published research detailing PELDs 

forecasting methodologies applicable to the increasing number of facilities adopting BTMREG is very 

limited. Furthermore, published studies comparing the performance of PELDs forecasting methodologies 
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with and without BTMREG are not available. The research described in this paper seeks to address this 

research gap by providing three main contributions. First, a PELD forecasting methodology applicable to 

both consumers with and without BTMREG. This methodology was tested using ARIMA, CART, 

random regression and classification forest, ANN, and ensemble (also known as hybrid) based forecasting 

models. Second, the first of their kind side-by-side performance comparisons of electric load and PELD 

forecasting models for scenarios with and without BTMREG. Third, the first of its kind PELD forecasting 

model savings comparison for scenarios with and without BTMREG. 

 

The remainder of this paper is organized as follows. Section 2 summarizes the findings obtained through 

a preliminary data analysis and a review of the published literature. Section 3 provides an overview of the 

methodology developed for the current study. Section 4 describes the experimental setup and procedure 

followed during the current study. This section includes details about the data set construction, data pre-

processing, and the implementation of the forecasting models. Section 5 presents the results obtained after 

implementing and comparing each of the models along with a discussion about the best model selection 

process and the potential and model savings. The concluding remarks for this paper as well as potential 

future research questions are provided in Section 6. 

 

2. Preliminary data analysis and review of the published literature 

 

A preliminary analysis of the electric load and solar generation data of the university campus in the USA 

selected to perform the current study revealed that the presence of BTMREG increases the hour-to-hour 

net demand variability substantially. This net demand profile is the most important component of a 

consumer’s electricity cost. Figure 3 illustrates the difference between the electric load to be forecasted 
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when BTMREG is present (net demand) and the electric load to be forecasted in its absence (demand) for 

May 9th, 10th, and 11th, 2019. Figure 4(a) provides a closer view of May 9th 2019 as a sample case. This 

figure includes a smoothed load curve using a 2 data-points (One-Hour) moving average along with the 

corresponding Mean Absolute Percentage Deviation (MAPD) calculated according to Equation 1. 

𝑀𝐴𝑃𝐷 = (
1

𝑛
∑

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖|

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖|
𝑛
𝑖=1 ) × 100               (1) 

The higher MAPD value (2.2519 vs 1.3518) along with the noticeably worse fit illustrates how net 

demand exhibits a higher variability than demand. Figure 4(b) further supports this claim by illustrating 

how the hourly standard deviation tends to be higher for net demand during most of the hours with active 

BTMREG (6-19). In the absence of BTMREG, the load profile can be predicted using the consumer’s 

past electric load data, weather and operations data, along with some minor influence from other factors. 

With the introduction of BTMREG, the influence of highly variable and difficult to predict weather 

conditions (such as cloud coverage) in the load profile is anticipated to make the forecasting process 

significantly more challenging. These initial findings, along with those documented by Aponte and 

McConky (2019), motivated a search for published research detailing accurate PELDs forecasting 

methodologies for facilities with BTMREG. 

 

Fig. 3. Demand, net demand, and solar generation during May 9th-11th, 2019. 
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Fig. 4. (a) Demand, net demand, moving average and (b) hourly standard deviation during May 9th, 2019. 

  

The search for published research detailing accurate PELDs forecasting methodologies for facilities with 

BTMREG revealed that future load forecasts have been a core activity for utilities since the electricity 

industry began in the late 1800’s (Hong, 2014). Utilities rely on electric load forecasts to plan their supply 

and generating capacities (Dutta and Mitra, 2017; Hong and Fan, 2016; Alfares and Mohammad, 2002), 

to inform revenue projections, rate design, energy trading, and more (Hong and Fan, 2016). The capacity 

of electric utilities to ensure a reliable service to their clients depends heavily on these load forecasts (also 

referred to as demand forecasts). Electric load forecasting methods have been extensively researched over 

the past few decades. The literature provides an ample range of studies featuring various methodologies 

and models for this purpose (Yildiz et al. (2017); Hong and Fan (2016); Garulli et al. (2015); Alfares and 

Mohammad, 2002). Alfares and Mohammad (2002) conducted a review of more than 100 works 

published between the comprehensive review by Moghram and Rahman (1989) and February 2000. 

Alfares and Mohammad (2002) classified the published methodologies into the first nine categories 

shown in Table 1. The researchers also provided a brief description along with the advantages and 

disadvantages identified for each category. The authors observed what they described as a clear trend 

towards new, stochastic, and dynamic forecasting techniques. Fuzzy logic, expert systems and ANNs 

were specific techniques highlighted by the authors. They also highlighted a trend towards hybrid 
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methods that combine two or more techniques. Hong and Fan (2016) published a tutorial review based on 

more than 25 representative load forecasting papers (13 of which were literature review papers) published 

between the work by Abu-El-Magd and Sinha (1982) and November 2015. The techniques evaluated by 

the authors are included within the categories specified in Table 1. One of the authors’ conclusions was 

that a universally best load forecasting technique does not exist. Hong and Fan (2016) concluded that the 

data and jurisdictions are the factors that determine the appropriate technique and not the other way 

around. Yildiz et al. (2017) reviewed more than 50 commercial building load forecasting works published 

between 1984 and March 2016 and identified the techniques within the categories specified in Table 1. 

The authors concluded that the machine learning models reviewed (ANN, SVRM, and CART) had a 

superior forecasting performance than the regression models included in the review. Forecasting daily 

peak electric load proved to be a more difficult task than forecasting day ahead hourly electric load for 

Yildiz et al. (2017). The wide range of electric load forecasting methodologies and techniques currently 

found in the literature can be simplified into a general approach. This general approach entails the 

estimation of a load model from past data, and then using this model to predict future loads (Garulli et al., 

2015). 

Table 1 

Categorization of techniques found in electric load forecasting literature reviews. 

Category Alfares and 

Mohammad 

(2002) 

Hong  

and Fan 

(2016) 

Yildiz  

et al.  

(2017) 

1) Regression models 

(Including Semi-Parametric Additive Models) 

X X X 

2) Exponential smoothing X X   

3) Iterative reweighted least-squares X     

4) Adaptive load forecasting X     

5) Stochastic time series X     
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6) ARMAX models based on genetic 

algorithms 

(Including other autoregressive models) 

X X X 

7) Fuzzy logic X X   

8) Artificial neural network (ANN) X X X 

9) Knowledge-based expert systems X     

10) Support vector regression and machine 

(SVRM) 

  X X 

11) Gradient boosting machine   X   

12) Thermal models     X 

13) Classification and regression trees (CART)     X 

  

PELDs forecasting methodologies are scarce and can quickly become less effective if left unattended 

while the internal power distribution systems of facilities are constantly evolving and becoming 

considerably more complex. Worldwide initiatives to decarbonize the electric grid and reduce its 

associated greenhouse gas emissions have caused a significant increase in the number of facilities 

adopting REG systems (IEA, 2019a). Worldwide investment to increase building energy efficiency and 

minimize the financial and environmental impact of rising energy consumption totaled USD$ 139 billion 

in 2018 (IEA, 2019b). Saxena et al. (2019) demonstrated how facilities that pair PELDs forecasts with 

demand response actions could reduce their peak loads and achieve financial savings. The operating costs 

of the power stations that supply these peak electric loads tend to be very expensive and passed down to 

the consumers. In addition, these power stations typically have a low fuel efficiency and a high negative 

environmental impact when they burn fossil fuels (IER, 2020). Therefore, PELDs forecasts are not only 

useful to avoid peak demand charges, but also to reduce negative environmental impacts. However, as far 

as we were able to assess, published research detailing accurate PELDs forecasting methodologies 

applicable to the increasing number of facilities adopting BTMREG, as well as published studies 
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comparing the performance of PELDs forecasting methodologies with and without BTMREG are not 

available. 

 

3. Methodology overview 

 

This section will provide an overview of the methodology developed for the current study. The 

methodology developed to determine the performance of both load forecasting and PELD forecasting 

methodologies was predominantly based on the previous work by Saxena et al. (2019). These researchers 

established two general approaches for PELD prediction. We will refer to the first approach as the 

threshold-based approach. This approach can be separated into two phases. During the first phase, 

regression-based load forecasting models are used to generate day ahead load forecasts. During the 

second phase, these forecasts are compared to a pre-calculated monthly threshold (Dlim) in order to 

classify each day as either a PELD or a Non-PELD. The second approach will be referred to as the 

classification-based approach. For this approach, classification models are used to classify an upcoming 

day as either a PELD or a Non-PELD. Saxena et al. (2019) combined the results of some of the evaluated 

individual models into one ensemble (or hybrid) approach and tested the methodology using electric load 

data from a circuit in a university in the USA without BTMREG. As an addition to the previous work by 

Saxena et al. (2019), the methodology for the current study includes an additional ensemble approach, it 

also includes the results of all individual models in the ensembles, and considers the presence of 

BTMREG by including electricity generation data (when applicable) and additional weather related 

features expected to affect REG. The proposed improved methodology is outlined in Figure 5. 
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Fig. 5. PELD forecasting methodology overview. 

 

The methodology for the current study can be outlined in five phases. Data collection, data set 

development, individual machine learning models implementation within each of the two general 

approaches (threshold and classification based), ensemble models implementation using all of the 

individual models as its components, and best PELDs forecasting model selection. This methodology was 

applied for a scenario with BTMREG and then repeated for a scenario without BTMREG. Obtaining the 

results for these two scenarios allowed the development of the first of its kind side-by-side empirical 

comparisons between the performances of both electric load and PELD forecasting models for facilities 

with and without BTMREG. Details about the experiment implementation of this methodology are 

provided in the following section. 
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4. Experimental setup and procedure 

 

This section will provide details about the experimental setup and procedure to implement the 

methodology described in Section 3 using real data from a university in the USA. The data collection and 

data set development phases will be described first. A sub-section with details about the model training, 

validation, and testing process will follow. Two sub-sections will follow with details in regards to the 

development process of the models in each of the two general approaches for PELDs prediction 

(threshold and classification based) respectively. The section will conclude with details about the 

development of two ensemble PELD forecasting models. 

 

4.1 Data collection and data set development 

 

A data set containing 29,952 records of electric load, electricity generation, weather, operational, and 

calendar data at 30 minutes intervals was developed. This data set is provided as an appendix to this paper 

so that it may serve as an additional contribution for future research. The records in the data set cover the 

period between June 16th, 2018 at 00:00 hours and February 29th, 2020 at 23:30 hours. All times are 

represented at the official local time for the university campus in the USA selected for this study. Table 2 

provides a list of the 30 variables contained in the data set along with each of the variable’s description 

and type. Electric load and generation related data (in kW), such as that represented by variables 1, 4, and 

8 in Table 2, was collected at 30 minutes intervals from a smart metered circuit at a university campus in 

the USA that included a solar field designed to provide up to 2 MW of BTMREG. Weather data was 

collected using hourly values from the publicly available local climatological data summaries 

corresponding to the airport weather station in closest proximity to the campus (about 6.8 km or 4.2 
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miles) and provided by the National Oceanic and Atmospheric Administration (NOAA) of the USA 

(NOAA, 2020). This weather data was later imputed using linear interpolation for continuous variables 

and last value carried forward for categorical variables in order to generate a 30 minutes intervals data set. 

Operational and calendar data, such as that represented by variables 9, 10, and 19 to 30 in Table 2, were 

collected from the university’s heating, ventilation, and air conditioning (HVAC) management system 

and the university’s academic calendar. The following data pre-processing steps were completed for the 

complete data set as described by Saxena et al. (2019) in order to ensure the quality of the data set: 1) 

uniformly-spaced time indices generation; 2) outlier detection and removal; and 3) missing value 

interpolation using linear interpolation for continuous variables and last value carried forward for 

categorical variables. 

Table 2 

Data set variables. 

Variable name Description Type 

1) Demand Load without BTMREG present (Demand) at the 

time of observation registered in kW 

Continuous 

2) DemDlim Calculated monthly threshold (Dlim) for Demand as 

described by Saxena et al. (2019) in kW 

Continuous 

3) DemDmaxTm1 Maximum Demand registered during the previous 

day in kW 

Continuous 

4) NetDemand Load with BTMREG present (Net Demand) at the 

time of observation registered in kW 

Continuous 

5) NetDemDlim Calculated monthly threshold (Dlim) for Net 

Demand as described by Saxena et al. (2019) in kW 

Continuous 

6) NetDemDmaxTm1 Maximum Net Demand registered during the 

previous day in kW 

Continuous 

7) LastDemTM1 Last Demand registered during the previous day in 

kW (Demand and Net Demand are the same at this 

point because REG is not active during this time) 

Continuous 
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8) SolarREG Solar REG at the time of observation registered in 

kW 

Continuous 

9) OP_CoolReq If at the time of observation, HVAC system cooling 

set point < indoor air temperature; 

Then, OP_CoolReq = Positive difference between 

HVAC system cooling set point and indoor air 

temperature in degrees Fahrenheit (°F); 

Else, OP_CoolReq = 0 

Continuous  

10) OP_HeatReq If at the time of observation, HVAC system heating 

set point > indoor air temperature; 

Then, OP_HeatReq = Positive difference between 

HVAC system heating set point and indoor air 

temperature in degrees Fahrenheit (°F); 

Else, OP_HeatReq = 0 

Continuous  

11) NW_DBTemp Outdoor dry bulb temperature at the time of 

observation in degrees Fahrenheit (°F) recorded by 

NOAA 

Continuous 

12) NW_RelHum Outdoor relative humidity at the time of observation 

to the nearest whole percentage recorded by NOAA 

Continuous 

13) NW_WindSpe Outdoor wind speed at the time of observation in 

miles per hour (mph) recorded by NOAA 

Continuous 

14) NW_WeatherClassShort Outside weather classification at the time of 

observation recorded by NOAA and grouped into 5 

categories. 

Categories: 1 = Clear/Sunny , 2 = Cloudy, 3 = 

Rain, 4 = Snow, 5 = Windy 

Categorical 

15) DemActPEL If at the time of observation, Demand > DemDlim; 

Then, DemActPEL = 1; 

Else, DemActPEL = 0 

Categorical 

16) DemActPELD Identification of the day as 1 for actual PELD or 0 

for actual Non-PELD for the Demand data as 

described by Saxena et al. (2019) 

Categorical 

17) NetDemActPEL If at the time of observation, NetDemand > 

NetDemDlim; 

Then, NetDemActPEL = 1; 

Else, NetDemActPEL = 0 

Categorical 

18) NetDemActPELD Identification of the day as 1 for actual PELD or 0 

for actual Non-PELD for the NetDemand data as 

described by Saxena et al. (2019) 

Categorical 
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19) Time Date (MM/DD/YYYY) and time (HH:MM) in 24 

hours format at the time of observation 

Categorical 

20) Month Month component of Time at the time of 

observation. 

Categories: 1, 2, 3, …, 12 

Categorical 

21) HoD Hour component of Time at the time of observation. 

Categories: 0, 1, 2, …, 23 

Categorical 

22) DoW Day of the week at the time of observation 

Categories: 1 = Mon, 2 = Tue, …, 7 = Sun 

Categorical 

23) OP_Semester Academic semester at the time of observation 

Categories: 1 = Fall, 2 = Spring, 3 = Summer 

Categorical 

24) OP_Classes If the day is an official class day; 

Then, OP_Classes = 1; 

Else, OP_Classes = 0 

Categorical 

25) OP_ResHallsOpen If the on-campus residence halls are officially open 

during the day; 

Then, OP_ResHallsOpen = 1; 

Else, OP_ResHallsOpen = 0 

Categorical 

26) OP_CampusOpen If the campus is officially open for administrative 

operations during the day; 

Then, OP_CampusOpen = 1; 

Else, OP_CampusOpen = 0 

Categorical 

27) OP_SpringBreak If the day is part of spring break; 

Then, OP_SpringBreak = 1; 

Else, OP_SpringBreak = 0 

Categorical 

28) OP_FirstDayAfterBreak If the day is the first after a break period; 

Then, OP_FirstDayAfterBreak = 1; 

Else, OP_FirstDayAfterBreak = 0 

Categorical 

29) OP_Increase If there is an event during the day that can 

potentially cause an increase in electric load 

(festival, fair, convention, concert, etc); 

Then, OP_Increase = 1; 

Else, OP_Increase = 0 

Categorical 

30) OP_Decrease If there is an event during the day that can 

potentially cause a decrease in electric load (holiday, 

half-day, exams week, etc); 

Then, OP_Decrease = 1; 

Else, OP_Decrease = 0 

Categorical 
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The calculated monthly threshold (Dlim) values for the demand scenario (DemDlim) and the net demand 

scenario (NetDemDlim) included in the data set, were determined using Equation 2 from the previous 

work by Saxena et al. (2019). 

Dlim,i = i + 2 x i         (2) 

Where 

i = the mean of every electric load observation for the given month i, and 

i = the standard deviation of every electric load observation of the given month i.  

 

4.2 Model training, validation, and testing process 

 

Thirteen PELD classification models were developed and tested for this study. The testing period selected 

for this study included 12 months (one year) from March 1st, 2019 at 00:00 hours to February 29th, 2020 

at 23:30 hours. For each month m in the test period, a training data used was created using a random 

selection of 80% of all the available data in the data set covering the period between June 16th, 2018 at 

00:00 hours and the final day of the previous month, month m-1, at 23:30 hours. The remaining 20% of 

the data leading up to month m was used as validation data set in order to optimize any model parameters. 

All final ANN models were selected based on their performance on the validation set. The parameters for 

each ANN model were optimized by testing the values specified in Table 3. After the parameter 

optimization process, the model for each month m was retrained using all of the training and validation 

data available prior to the start of month m before forecasting month m for testing purposes. This 

procedure was followed for all models, with the exception of the seasonal ARIMA model. Because of the 

continuity requirement of ARIMA based models, the Seasonal ARIMA model was retrained daily at the 
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end of each day in the testing period at 23:59 hours using all of the available data from June 16th, 2018 at 

00:00 hours up to the most recent record available before the retraining time. 

Table 3 

Values tested for ANN parameters. 

Parameter Values tested 

# Hidden Nodes 2 to 30 by increments of 1 

Decay Rate 0.0001, 0.001, 0.01, 0.05, and 0.1 

# of Iterations 200 to 5000 by increments of 200 

 

In order to test the models, all of the models were used at the end of each day at 23:59 hours to generate 

48 predictions (each at 30 minutes intervals) corresponding to the next day. Regression-based models 

generated load predictions while classification-based models generated a peak electric load (PEL) or Non-

PEL for the month classification labels. A PEL for the month is defined as any load that is above the 

monthly threshold (Dlim) for the month (See variables 15 and 17 in Table 2). For final testing purposes 

during each month of the testing period, the load predictions generated by the regression-based models 

were compared to a monthly threshold (Dlim), any load found above this threshold was considered a PEL, 

and any day during which a PEL occurred was forecasted as a PELD. Similarly, the classification PEL 

and Non-PEL labels generated by the classification-based models were used to classify any day during 

which a PEL was forecasted as a PELD. 

 

The process to generate the 48 predictions for October 5th, 2019 using any of the evaluated models except 

the seasonal ARIMA will be explained next as an example. On September 30th, 2019 at 23:59 hours, a 

new model to be used for the month of October 2019 is developed. The October 2019 model is initially 
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trained using 80% of all the available data in the data set covering the period between June 16th, 2018 at 

00:00 hours through September 30th, 2019 at 23:30 hours, and validated using the remaining 20% of the 

data. Once optimal parameters are identified, the October 2019 model is retrained using all of the training 

and validation data available prior to September 30th, 2019. This October 2019 model is used to generate 

48 predictions, one for each 30-minute interval starting with October 5th, 2019 at 00:00 hours and ending 

at 23:30 hours of the same day. In the case of the seasonal ARIMA model, the model available by 

October 4th, 2019 at 23:59 hours would have been trained using all of the available data between June 

16th, 2018 at 00:00 hours up to the most recent record available before generating the first prediction for 

October 5th, 2019. The 48 predictions are then converted to a single PELD binary classification. If a PEL 

is found, then the day is forecasted as a PELD and this prediction is compared to the actual classification 

of the day in order to determine the model’s performance. All of the models evaluated during this 

research were implemented using the R language and environment for statistical computing (R Core 

Team, 2013).           

 

4.3 Threshold-based PELD forecasting models 

 

 

Fig. 6. Threshold-based PELD forecasting process. 
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Five threshold-based PELD forecasting models were developed for this study. These models were used to 

generate a day ahead load forecast that would later be compared to a pre-calculated monthly threshold 

(Dlim) in order to classify each day in the testing period as either a PELD or a Non-PELD (see Figure 6). 

Table 4 shows the characteristics of each of these models. Table 5 shows the values used as the monthly 

threshold (Dlim) for each of the months in the testing period. These values were determined using 

Equation 2. The focus of the current study does not include evaluating the accuracy of the monthly 

threshold (Dlim) prediction method suggested by Saxena et al. (2019). For this reason, the current study 

used ground truth monthly thresholds (Dlim) for PELD determination. 

Table 4 

Threshold-based PELD forecasting models characteristics. 

Name Description Response Inputs used  

from Table 2 

M01_RegSARIMA Seasonal ARIMA generated using 

the “auto.arima” function from the 

R package “forecast” v8.12 with a 

value s=336. All other parameters 

remained at their default value. 

Electric load at the 

time of 

observation. 

 

(Variable 4 for 

electric load with 

BTMREG present 

(net demand) or 

Variable 1 for 

electric load 

without BTMREG 

present (demand) 

from Table 2) 

 

Variable 4, for 

electric load with 

BTMREG present 

(net demand); 

Variable 1, for 

electric load 

without BTMREG 

present (demand). 

M02_RegST Regression single decision tree 

generated using the function “tree” 

from the R package “tree” v1.0-40 

with default parameters. 

Variables 2, 3, 5, 6, 

7, 9:14, and 20:30 

M03_RegRF Regression random decision forest 

generated using the function 

“randomForest” from the R package 

“randomForest” v4.6-14 with values 

ntree=1000 and importance=TRUE. 

All other parameters remained at 

their default value.  

M04_RegANN Regression feed-forward artificial 

neural network with a single hidden 

layer generated using the function 
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“nnet” from the R package “nnet” 

v7.3-14 with manually selected 

values for size, decay, maxit, and 

MaxNWts, and linout = TRUE. All 

other parameters remained at their 

default value. 

M05_RegANNST M04 but only using the variables 

selected by the regression single 

decision tree in M02 as inputs.  

Variables selected 

by the regression 

single decision tree 

in M02. 

 

Table 5 

Monthly threshold (Dlim) values for the months in the testing period for the net demand (with BTMREG) 

and the demand (without BTMREG) scenarios. 

Month and year Monthly threshold 

for net demand 

(NetDemDlim) 

Monthly threshold 

for demand 

(DemDlim) 

Mar. 2019 5,277.62 5,584.79 

Apr. 2019 5,442.61 5,759.57 

May 2019 4,732.92 5,242.71 

Jun. 2019 5,192.39 5,962.64 

Jul. 2019 6,730.34 7,359.20 

Aug. 2019 6,125.85 6,809.69 

Sep. 2019 6,490.20 7,063.56 

Oct. 2019 5,657.77 5,957.91 

Nov. 2019 5,660.77 5,764.58 

Dec. 2019 5,373.77 5,410.37 

Jan. 2020 5,492.00 5,583.62 

Feb. 2020 5,638.32 5,792.96 
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4.4 Classification-based PELD forecasting models 

 

 

Fig. 7. Classification-based PELD forecasting process. 

 

Six classification-based PELD forecasting models were developed to classify the electric load at time t 

(time of observation) as either a PEL for the month or not. Any day with a PEL present was automatically 

tagged as a PELD; otherwise, the day was classified as a Non-PELD (see Figure 7). Saxena et al. (2019) 

found a class imbalance while developing similar classification-based PELD forecasting models for a 

circuit without BTMREG. The current study found similar class imbalances while evaluating circuits with 

and without BTMREG. Table 6 shows comparisons between the amount of PELs and Non-PELs, and 

PELDs and Non-PELDs to illustrate the class imbalance present in the complete data set. After observing 

the class imbalance while developing the first two classification-based PELD forecasting models 

(M06_ClassST and M07_ClassRF), the full training set (before splitting into the training and validation 

data sets) was balanced using the synthetic minority oversampling technique (SMOTE) developed by 

Chawla et al. (2002) and previously applied by Saxena et al. (2019). The SMOTE technique was applied 
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using the function “SMOTE” from the R package “DMwR” v0.4.1 with default parameters. The 

remaining four classification-based PELD forecasting models were developed using the balanced full 

training data set. Table 7 shows the characteristics of each of the six classification-based PELD 

forecasting models developed. 

Table 6 

Amount of PELs and Non-PELs, and PELDs and Non-PELDs for the net demand (with BTMREG) and 

the demand (without BTMREG) scenarios. 

 Net demand 

(with BTMREG) 
Demand 

(without BTMREG) 

PELs 608 559 

Non-PELs 29,344 29,393 

Total observations 29,952 

PELs to non-PELs ratio 19:917  (0.021) 43:2,261  (0.019) 

PELDs 85 65 

Non-PELDs 539 559 

Total observations 624 

PELDs to non-PELDs ratio 170:1,078  (0.158) 5:43  (0.116) 

 

Table 7 

Classification-based PELD forecasting models characteristics. 

Name Description Response Inputs used  

from Table 2 

M06_ClassST Classification single decision 

tree generated using the 

function “tree” from the R 

Is the electric 

load at time t a 

Peak Electric 

Variables 2, 3, 5, 6, 

7, 9:14, and 20:30 
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package “tree” v1.0-40 with 

default parameters. 

Load (PEL) for 

the month? 

1 (Yes) | 0 (No) 
M07_ClassRF Classification random 

decision forest generated 

using the function 

“randomForest” from the R 

package “randomForest” 

v4.6-14 with values 

ntree=1000 and 

importance=TRUE. All other 

parameters remained at their 

default value. 

M08_ClassSTwSMOTE M06 trained and validated 

using the data set balanced 

with the SMOTE technique. 

M09_ClassRFwSMOTE M07 trained and validated 

using the data set balanced 

with the SMOTE technique. 

M10_ClassANNwSMOTE Classification feed-forward 

artificial neural network with 

a single hidden layer 

generated using the function 

“nnet” from the R package 

“nnet” v7.3-14 with 

manually selected values for 

size, decay, maxit, and 

MaxNWts, linout = FALSE, 

and softmax = TRUE. All 

other parameters remained at 

their default value. Trained 

and validated using the data 

set balanced with the 

SMOTE technique. 

M11_ClassANNSTwSMOTE M10 but only using the 

variables selected by the 

classification single decision 

tree in M08 as inputs. 

Variables selected 

by the classification 

single decision tree 

in M08. 
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4.5 Ensemble PELD forecasting models 

 

Two ensemble PELD forecasting models were developed by combining the results of all of the eleven 

independent (non-ensemble) models evaluated in Sections 4.3 and 4.4 to classify each day in the testing 

period as either a PELD or a Non-PELD. These models were developed based on the ensemble model 

proposed by Saxena et al. (2019) to classify an upcoming day as either a PELD or a Non-PELD using 

demand data. Many researchers agree that ensemble models often outperform the individual models that 

make them up (Ahmad et al., 2017; Fan et al. 2014) and the current research has continued to explore this 

possibility.  

 

The first ensemble model, E01_Majority, was a majority class classifier. This model follows the same 

ensemble approach proposed by Saxena et al. (2019). The majority class identifier used by Saxena et al. 

(2019) can be represented mathematically using Equation 3. 

 

𝐶𝑗 = {
1 𝑖𝑓 ∑ 𝑋𝑖,𝑗𝑖∈M >

|𝑀|

2
    ∀ j ∈  D  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (3) 

 

Where 

M: Set of base models used for day classification,  

D: Set of days in the billing period, 

|M|: Represents the cardinality of set M,  
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Xi, j: Binary variable, takes a value of 1 when model i classifies day j in set D as a PELD, otherwise it 

takes a value of 0, and 

Cj: Returns the proposed ensemble model’s forecasted classification for day j as a binary result of 1 for 

PELD or 0 for Non-PELD.  

 

The second ensemble model, E02_SingleVote, was a single vote classifier. This model differs from the 

first ensemble model in that it only needs one the component models to classify a day as a PELD in order 

to classify the observed day as a PELD. This methodology was included in this study to account for the 

possibility of having PELDs that were only detected by a minority of the models because of certain 

special characteristics not noticeable by the majority of the base models in the ensemble. 

 

5. Results and discussion 

 

5.1 Threshold-based PELD forecasting results 

 

Figure 8 shows the monthly mean absolute percentage error (MAPE) achieved by the five threshold-based 

PELD forecasting models previously described in Section 4.3 during their regression-based load 

forecasting stage. The values for MAPE were calculated according to Equation 4. 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖|
𝑛
𝑖=1 ) × 100               (4) 
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The MAPE values are presented for both the net demand (with BTMREG) (see Figure 8.a) and the 

demand (without BTMREG) (see Figure 8.b) scenarios. The values in Figure 8 show how most of the 

evaluated models achieved better electric load forecasting performance (lower MAPE values) when 

applied to a scenario without BTMREG instead of a scenario with BTMREG. The results of this 

comparison demonstrate that it is more challenging for the regression-based electric load forecasting 

models evaluated to achieve high performance levels when BTMREG is present. Table 8 illustrates how 

the M03_RegRF and M05_RegANNST models outperformed the remaining two models at achieving the 

lowest average monthly MAPE values for both the net demand (with BTMREG) and the demand (without 

BTMREG) scenarios. These values provide further evidence of how the presence of BTMREG seems to 

reduce the performance of the regression-based electric load forecasting models. 

 

Fig. 8. MAPE achieved by the M01 to M05 models for the (a) net demand (with BTMREG) and the (b) 

demand (without BTMREG) scenarios. 

 

Table 8 

Average monthly MAPE values achieved by the M01 to M05 models for the net demand (with 

BTMREG) and the demand (without BTMREG) scenarios. 

Model Average monthly MAPE 
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Net demand 

(with BTMREG) 
Demand 

(without BTMREG) 

M01_RegSARIMA 10.4121 7.6004 

M02_RegST 11.2159 8.9645 

M03_RegRF 8.2921 5.6494 

M04_RegANN 9.9221 7.3715 

M05_RegANNST 8.8404 5.1544 

 

Figure 9 shows the monthly values for sensitivity achieved by the five threshold-based PELD forecasting 

models during their threshold-based PELD classification stage. The values for sensitivity were calculated 

according to Equation 5. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (5) 

Where 

TP = the true positives i.e. amount of correctly predicted instances of PELDs, 

FP = the false positives i.e. amount of non-PELDs incorrectly predicted as PELDs, and 

FN = the false negatives i.e. amount of PELDs incorrectly predicted as non-PELDs. 

The sensitivity values are presented for both the net demand (with BTMREG) (see Figure 9.a) and the 

demand (without BTMREG) (see Figure 9.b) scenarios. The November 2019, January 2020, and February 

2020 periods are not shown in Figure 9 because there were no PELD occurrences during these periods. 

After comparing the sensitivity values between the net demand (with BTMREG) (see Figure 9.a) and the 

demand (without BTMREG) (see Figure 9.b) scenarios, it was concluded that these results do not provide 

clear evidence to claim that the presence of BTMREG affects the performance of the models evaluated at 

the threshold-based PELD classification stage. 
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Fig. 9. Sensitivity achieved by the M01 to M05 models for the (a) net demand (with BTMREG) and the 

(b) demand (without BTMREG) scenarios. 

 

Table 9 shows the average monthly sensitivity and balanced accuracy values achieved by the threshold-

based PELD forecasting models during their threshold-based PELD classification stage. The balanced 

accuracy values were calculated according to Equation 6. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁+𝐹𝑃
)

2
                     (6) 

Where 

TN = the True Negatives i.e. amount of correctly predicted instances of Non-PELDs; and TP, FP, and FN 

are the same as in Equation 5. This table illustrates how the ANN-based models M04_RegANN and 

M05_RegANNST outperformed the remaining models at achieving the highest values for average 

monthly sensitivity and balanced accuracy for both the net demand (with BTMREG) and the demand 

(without BTMREG) scenarios. The values in this table do not provide any clear evidence of a reduction in 

the performance level of the models evaluated at the threshold-based PELD classification stage caused by 

the presence of BTMREG. 
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Table 9 

Average monthly sensitivity and balanced accuracy values achieved by the M01 to M05 models for the 

net demand (with BTMREG) and the demand (without BTMREG) scenarios. 

Model Average monthly 

sensitivity 

Average monthly 

balanced accuracy 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

M01_RegSARIMA 0.4167 0.3481 0.6294 0.6102 

M02_RegST 0.2963 0.3852 0.6258 0.6508 

M03_RegRF 0.0741 0.1000 0.5370 0.5500 

M04_RegANN 0.5417 0.5185 0.6953 0.6963 

M05_RegANNST 0.3981 0.6852 0.6652 0.8236 

 

5.2 Classification-based PELD forecasting results 

 

Figure 10 shows the monthly values for sensitivity achieved by the six classification-based PELD 

forecasting models previously described in Section 4.4. The sensitivity values are presented for both the 

net demand (with BTMREG) (see Figure 10.a) and the demand (without BTMREG) (see Figure 10.b) 

scenarios. The November 2019, January 2020, and February 2020 periods are not shown in Figure 10 

because there were no PELDs occurrences during these periods. These results demonstrate how the class 

imbalance issue described in Section 4.4 needs to be addressed in order to achieve the best sensitivity 

values when implementing the classification-based PELD forecasting approach regardless of the presence 
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or absence of BTMREG. Figure 10 shows how the models using a balanced training and validation data 

set overwhelmingly outperformed those obtained when using the original data sets during eight or more 

of the months in the testing period for the net demand (with BTMREG) (see Figure 10.a) and the demand 

(without BTMREG) (see Figure 10.b) scenarios. After comparing the sensitivity values between the net 

demand (with BTMREG) (see Figure 10.a) and the demand (without BTMREG) (see Figure 10.b) 

scenarios, it was concluded that these results do not provide clear evidence to claim that the presence of 

BTMREG affects the performance of the two ensemble PELD forecasting models evaluated. 

 

Fig. 10. Sensitivity achieved by the M06 to M11 models for the (a) net demand (with BTMREG) and the 

(b) demand (without BTMREG) scenarios. 

 

Table 10 shows the average monthly sensitivity and balanced accuracy values achieved by the 

classification-based PELD forecasting models. This table illustrates how the ANN-based models 

M10_ClassANNwSMOTE and M11_ClassANNSTwSMOTE outperformed the remaining models at 

achieving the highest values for average monthly sensitivity and balanced accuracy for both the net 

demand (with BTMREG) and the demand (without BTMREG) scenarios. The values in this table do not 

provide any clear evidence of a reduction in the performance level of the classification-based models 

caused by the presence of BTMREG. 
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Table 10 

Average monthly sensitivity and balanced accuracy values achieved by the M06 to M11 models for the 

net demand (with BTMREG) and the demand (without BTMREG) scenarios. 

Model Average monthly 

sensitivity 

Average monthly 

balanced accuracy 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

M06_ClassST 0.0000 0.1111 0.5000 0.5517 

M07_ClassRF 0.0000 0.0778 0.5000 0.5389 

M08_ClassSTwSMOTE 0.5185 0.5852 0.6315 0.6770 

M09_ClassRFwSMOTE 0.6574 0.5593 0.7211 0.7055 

M10_ClassANNwSMOTE 0.8981 0.8778 0.8329 0.8430 

M11_ClassANNSTwSMOTE 0.9444 0.9778 0.8913 0.8906 

 

5.3 Ensemble PELD forecasting results and best model selection 

 

Figure 11 shows the monthly values for sensitivity achieved by the two ensemble PELD forecasting 

models previously described in Section 4.5. This figure also includes the monthly values for sensitivity 

achieved by the M11_ClassANNSTwSMOTE model. This model achieved the best average monthly 

sensitivity and balanced accuracy values out of the eleven independent (non-ensemble) models evaluated 

for both the net demand (with BTMREG) and the demand (without BTMREG) scenarios (see Tables 9 

and 10). Figure 11 shows the results for both the net demand (with BTMREG) (see Figure 11.a) and the 
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demand (without BTMREG) (see Figure 11.b) scenarios. The November 2019, January 2020, and 

February 2020 periods are not shown in Figure 11 because there were no PELDs occurrences during these 

periods. These results show how both the proposed E02_SingleVote model and the 

M11_ClassANNSTwSMOTE model outperformed the E01_Majority model previously proposed by 

Saxena et al. (2019) for both the net demand (with BTMREG) and the demand (without BTMREG) 

scenario. The E02_SingleVote model outperformed the M11_ClassANNSTwSMOTE model on two out 

of nine months for the net demand (with BTMREG) scenario and on one month for the demand (without 

BTMREG) scenario. After comparing the sensitivity values between the net demand (with BTMREG) 

(see Figure 11.a) and the demand (without BTMREG) (see Figure 11.b) scenarios, it was concluded that 

these results do not provide clear evidence to claim that the presence of BTMREG affects the 

performance of the two ensemble PELD forecasting models evaluated. 

 

Fig. 11. Sensitivity achieved by the M11, E01 and E02 models for the (a) net demand (with BTMREG) 

and (b) the demand (without BTMREG) scenarios. 

 

Table 11 shows the average monthly sensitivity and balanced accuracy values, as well as the total number 

of false positives and false negatives predictions produced by the two ensemble PELD forecasting models 

evaluated and the M11_ClassANNSTwSMOTE model. The values in this table do not provide any clear 

evidence of a reduction in the performance level of the classification-based models caused by the 

presence of BTMREG. This table illustrates how the M11_ClassANNSTwSMOTE model outperformed 
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the remaining models at achieving the highest values for average monthly balanced accuracy. In terms of 

average monthly sensitivity and total number of false negatives, the M11_ClassANNSTwSMOTE model 

was only slightly outperformed by the E02_SingleVote model. However, the total number of false 

positives produced by the E02_SingleVote model is significantly greater than that produced by the other 

two models. Based on these results and the intent to select the most parsimonious of the models, the 

M11_ClassANNSTwSMOTE was selected as the best model to use for PELD prediction with BTMREG 

for this facility because of the model’s performance and lower complexity.  

Table 11 

Average monthly sensitivity and balanced accuracy values, number of false positives and false negatives 

produced by the M11, E01, and E02 models for the net demand (with BTMREG) and the demand 

(without BTMREG) scenarios. 

  M11 

ClassANNST

wSMOTE 

E01 

Majority 

E02 

SingleVote 

Average monthly 

sensitivity 

Net demand 

(with BTMREG) 

0.9444 0.3009 1 

Demand 

(without BTMREG) 

0.9778 0.4333 1 

Average monthly 

balanced accuracy 

Net demand 

(with BTMREG) 

0.8913 0.6505 0.7046 

Demand 

(without BTMREG) 

0.8906 0.7124 0.7333 

Total number of 

false negatives 

Net demand 

(with BTMREG) 

3 34 0 

Demand 

(without BTMREG) 

1 18 0 

Total number of  

false positives 

Net demand 

(with BTMREG) 

37 0 136 

Demand 48 2 133 
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(without BTMREG) 

 

5.4 Potential and model savings calculation 

 

Table 12 shows the potential and model savings expected upon implementation of the selected 

M11_ClassANNSTwSMOTE model for both the net demand (with BTMREG) and the demand (without 

BTMREG) scenarios. These values were calculated using a slight variation of the method proposed by 

Saxena et al. (2019). Figure 12 illustrates how the potential and model savings (in kW) were calculated 

for the month of August 2019 within the net demand (with BTMREG) scenario as an example. Potential 

savings in kW after executing demand response actions for each month were determined according to 

Equation 7. 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑖𝑛 𝑘𝑤 = 𝐻𝑃𝐸𝐿 − 𝐷𝑙𝑖𝑚                      (7) 

Where 

HPEL = highest peak electric load of the month in kW, and 

Dlim = monthly threshold established for the month. 

This methodology assumes that all peak loads predicted in the month are reduced to the level of the 

monthly threshold (Dlim) established for the month. Model savings in kW were only applicable for 

months during which the day with the highest peak load of the month was predicted by the model as a 

PELD (or true positive PELD prediction). These savings were determined according to Equation 8. 

𝑀𝑜𝑑𝑒𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑖𝑛 𝑘𝑤 =  𝐻𝑃𝐸𝐿 − max {𝐻𝐹𝑁, 𝐷𝑙𝑖𝑚}                    (8) 

Where 

HFN = highest non-detected (ergo not reduced) peak load (or false negative PELD prediction) of the 

month in kW, and HPEL and Dlim are the same as in Equation 7.  
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Table 12 

Potential and model savings in kW, and model achievement percentage during the testing period. 

 Net demand (with BTMREG) Demand (without BTMREG) 

Period Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

 

Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

Mar. 2019 247.38  247.38  100%        38.20  38.20  100% 

Apr. 2019 749.38  749.38  100%            513.42  513.42  100% 

May 2019 766.07  766.07  100%            775.28  0.00    0% 

Jun. 2019 884.60  884.60  100%         1,045.36  1,045.36  100% 

Jul. 2019 1,657.66  1,657.66  100%         1,281.79  1,281.79  100% 

Aug. 2019 1,247.15  1,008.00  81%            835.31  835.31  100% 

Sep. 2019 1,169.79  753.00  64%            731.44  731.44  100% 

Oct. 2019 2,163.22  2,163.22  100%         2,701.08  2,701.08  100% 

Dec. 2019 131.22  131.22  100% 94.62  94.62  100% 

Aggregate 9,016.47  8,360.53  93%        8,016.50  7,241.22  90% 

 

 

Fig. 12. (a) Potential savings and (b) model savings calculations (in kW) for the net demand (with 

BTMREG) scenario during August 2019. 
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Potential and model savings is US$ were calculated by applying a US$17.00 per kW peak load rate to the 

previously calculated potential and model savings in kW (see Table 13). This peak load rate was obtained 

from the utility that serves the university campus chosen for this study. This was still the approximate 

active peak load rate at the time of this paper’s submission. The results presented in Tables 12 and 13 

demonstrate how the selected M11_ClassANNSTwSMOTE model would have achieved 93% of the 

potential savings in kW and US$ 142,129.01 savings in electricity costs for the university selected for the 

current study within the net demand (with BTMREG) scenario. The results also show how there are more 

potential and model savings to be achieved after adopting BTMREG. At first glance, this is a very 

counterintuitive finding because by definition a customer’s load profile is reduced when BTMREG is 

present (net demand scenario) as we have seen in Figures 3 and 4. Figure 13 illustrates how this finding 

can be explained by the fact that the demand reduction targets set for demand response actions (based on 

the monthly threshold (Dlim)) when BTMREG is present (net demand), are typically lower than the 

targets set when BTMREG is not present (demand). The values for monthly threshold (Dlim) for the 

complete testing period can be compared by looking back at Table 5. In addition, there is always the 

possibility of peak loads within the net demand (with BTMREG) scenario to be as high as those within 

the demand (without BTMREG) scenario if there is a considerable drop in BTMREG levels. 

Table 13 

Potential, model, and missed savings in US$ during the testing period. 

 Net demand (with BTMREG) Demand (without BTMREG) 

Period Potential 

savings 

(in US$) 

Model 

savings 

(in US$) 

Missed 

savings 

(in US$) 

Potential 

savings 

(in US$) 

Model 

savings 

(in US$) 

Missed 

savings 

(in US$) 

Mar. 2019        4,205.46  4,205.46  0.00             649.40  649.40  0.00 

Apr. 2019 12,739.46  12,739.46  0.00          8,728.14  8,728.14  0.00 

May 2019 13,023.19  13,023.19  0.00       13,179.76  0.00    13,179.76  

Jun. 2019 15,038.20  15,038.20  0.00     17,771.12  17,771.12  0.00    
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Jul. 2019 28,180.22  28,180.22  0.00       21,790.43  21,790.43  0.00    

Aug. 2019 21,201.55  17,136.00  4,065.55    14,200.27  14,200.27  0.00    

Sep. 2019 19,886.43  12,801.00  7,085.43  12,434.48  12,434.48  0.00    

Oct. 2019 36,774.74  36,774.74  0.00       45,918.36  45,918.36  0.00    

Dec. 2019 2,230.74  2,230.74  0.00      1,608.54  1,608.54  0.00    

Aggregate 153,279.99  142,129.01  11,150.98  136,280.50  123,100.74  13,179.76  

 

 

Fig. 13. Model savings calculations (in kW) for the (a) net demand (with BTMREG) and (b) the demand 

(without BTMREG) scenarios during July 2019. 

 

Figure 14 provides more insight into this finding by illustrating the demand, net demand, solar generation, 

monthly thresholds (Dlim), and model savings (in kW) during the day with the highest peak electric load 

for the month of July 2019, the 19th. The figure shows how the peak electric load in the scenario without 

BTMREG (demand) is higher than the peak electric load in the scenario with BTMREG (net demand). 

This figure also shows how the peak electric load in the scenario with BTMREG (net demand) was 

caused by a drop in solar generation. However, more model savings (1,911 kW vs 1,282 kW) are 

achieved because the presumptive demand reduction target set for demand response actions (based on the 

monthly threshold (Dlim)) is lower when BTMREG is present (net demand). The results shown in Tables 
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12 and 13 also indicate that the highest savings at the university selected for this study are achieved 

during the summer months (June to August) and the first two months of autumn (also referred to as fall), 

September and October. This can be explained by the fact that these are typically the months with the 

highest outside temperatures and consequently the highest energy usage for cooling purposes at the 

university selected for this study.  

 

Fig. 14. Demand, net demand, solar generation, monthly thresholds (Dlim), and model savings (in kW) 

during July 19th, 2019. 

 

6. Conclusions and potential future research 

 

The research described in this paper has provided three main contributions in order to address the lack of 

published studies detailing accurate PELDs forecasting methodologies applicable to the increasing 

number of facilities adopting BTMREG, as well as the lack of published studies comparing the 

performance of these methodologies in both the presence and absence of BTMREG. The most interesting 

insight provided by these contributions to the authors is that counterintuitively, there can be more 

potential and model savings to be achieved by facilities using PELD forecasting methodologies after 

adopting BTMREG. The results show how implementing these methodologies after BTMREG adoption 
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becomes even more important than before the adoption in order to achieve financial savings. At first, 

many researchers and practitioners might not consider this outcome because by definition, a customer’s 

load profile is reduced when BTMREG is adopted (net demand scenario) which can translate into less 

opportunities for load reduction.  

 

The first of the three main contributions is the development and testing of a PELD forecasting 

methodology applicable to both consumers with and without BTMREG. This methodology was tested 

using ARIMA, CART, random regression and classification forest, ANN, and ensemble (also known as 

hybrid) based models. However, the methodology is model agnostic and different models can be tested in 

future research efforts. The experimental results showed that an ANN based model using features selected 

by a CART based model (M11_ClassANNSTwSMOTE) and one of the ensemble models 

(E02_SingleVote) achieved the highest average monthly sensitivity values for both the net demand (with 

BTMREG) and the demand (without BTMREG) scenarios. Based on the average monthly sensitivity and 

balanced accuracy values, the number of false positives and negatives produced by the model, and the 

intent to select the most parsimonious of the models, the M11_ClassANNSTwSMOTE was selected as 

the preferred model to use for PELD prediction for this facility with BTMREG present. This model 

showed superior performance and reduced complexity. Furthermore, this model demonstrated the 

capacity to have achieved 93% of the potential savings in kW and US$ 142,129.01 savings in electricity 

costs during a yearlong testing period for the scenario with BTMREG. Given these results, it was 

concluded that practitioners interested in achieving the best model performance using parsimonious 

models should start with the implementation of classification-based models. Based on the results obtained 

from these models, more elaborated approaches such as threshold-based PELD classification and 

ensemble approaches might not be needed. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 41 of 46 
 

The second contribution is the documentation of the first of their kind side-by-side empirical comparisons 

between the performance of ARIMA, CART, random regression and classification forest, ANN, and 

ensemble (also known as hybrid) based models at forecasting electric load and PELDs in both scenarios 

(with and without BTMREG). The results obtained while testing the proposed methodology in the 

scenario without BTMREG serve as additional validation of the work published by Saxena et al. (2019) 

about forecasting PELDs without BTMREG. The results obtained through the side-by-side empirical 

comparisons in the scenario with BTMREG provided four important insights in regards to past, present, 

and potential future research. First, both a random forest (M03_RegRF) and an ANN based regression 

model (M05_RegANNST) outperformed ARIMA and CART regression-based models at predicting 

future electric load levels for both the net demand (with BTMREG) and the demand (without BTMREG) 

scenarios. Second, comparing the results of the scenario with BTMREG and the scenario without 

BTMREG, empirical evidence suggesting that the presence of BTMREG affects the performance of the 

models was only observed for the regression-based models evaluated. The results obtained from the 

classification-based models as well as the ensemble models evaluated did not show evidence of an effect 

on the performance of these models due to the presence of BTMREG.  

 

The third and fourth insights provide important details about the methodology to consider for future 

research based on past publications and the current results. The third insight was that class imbalance 

issues in the data set need to be addressed in order to achieve the best performances when implementing 

the classification-based PELD forecasting approach regardless of the presence or absence of BTMREG. 

The fourth insight was that the single vote ensemble approach outperformed the current majority vote 

approach proposed by Saxena et al. (2019) but produced a significantly greater number of false positive 

predictions when compared to the other models evaluated. The use of ensemble forecasting for PELD 

forecasting can be further explored by evaluating other ensemble forecasting methodologies.  
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A first of its kind PELD forecasting model savings comparison for scenarios with and without BTMREG 

was presented as the third and final contribution of this research. We have already discussed the first 

insight provided by this contribution at the beginning of this section. This was also the most interesting 

insight to the authors and it was the discovery of the possibility for more potential and model savings to 

be achieved by facilities using PELD forecasting methodologies when BTMREG is adopted. The second 

insight provided by this contribution was that the months with the highest outside temperatures and 

consequently the highest energy usage for cooling purposes were also the moths with the greatest savings 

to be achieved at the university selected for this study. 

 

There are still many research questions to address in regards to PELDs forecasting methodologies for 

future research. How does the resolution of the data set (30 mins. vs 60 mins. vs x mins) affect the 

performance of the models? What is the optimal size of the training data set for each model? What are the 

effects of training the models with just the hours when peak loads occur? Will the addition of new 

variables and/or models improve the forecasting performance? How effective is the methodology for 

other types of REG sources such as wind and hydro? These are just some of the many remaining research 

questions that could be addressed by future studies in order to increase buildings’ energy efficiency and 

reduce their energy related costs and environmental impact. 
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Maximum peak load charge rates by 
utility service territory in 2017. [I03]

1. 39% of the total energy consumed in the USA in 2019 was for 

residential and commercial use. (USEIA, 2020)

2. Buildings : 28% of global energy-related carbon dioxide (CO2) 

emissions in 2018. (IEA, 2019)

3. Peak load charges can amount 

to up to 70% of electricity costs.
(Dutta and Mitra, 2017; McLaren et al., 2017; 

Hledik, 2014)
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Peak Electric Loads (PELs) : Highest loads registered during the month. 

Peak Electric Load Days (PELDs) : Days of the month when PELs occurred.

Threshold
PELs

Non-PELs

PELDs

Potential Savings
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4. The impact of peak electric loads can be reduced by acting on 

the intelligence provided by load forecasts and PELD forecasts. 
(Saxena et al., 2019)

5. The share of renewable energy in global power capacity 

increased to 33% in 2018. (REN21, 2019)

[I04]
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6. Renewable electricity generation (REG) output is as variable as 

weather itself. (Staffell and Pfenninger, 2018; Chaiamarit and Nuchprayoon, 2014)

7. This characteristic of REG challenges the accuracy of both electric 

load forecasts (Tushar et al., 2018) and PELD forecasts (Aponte and McConky, 2019) .

Electric demand, net demand, and solar generation during May 9th-11th, 2019.
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8. The challenges faced by the increasing number of facilities 

adopting behind the meter renewable electricity generation 

(BTMREG) worldwide to accurately forecast PELDs have not been 

addressed by the published literature.

Facility with BTMREG in Rochester, NY. [I05]
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1. Accurately predict if an upcoming day will be a PELD for the month 

for scenarios with and without BTMREG.

2. Identify any differences between the performances of several 

electric load and PELD forecasting models for scenarios with and 

without BTMREG.

3. Identify any differences between the expected potential and model 

savings generated by a PELD forecasting methodology for 

scenarios with and without BTMREG.
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Based on the previously published work of Saxena et al. (2019)



Methodology

11

About the dataset:

• 29,952 records @ 30-minutes frequency

• 32 variables in total

• Complete period: Jun. 16th, 2018 – Feb. 29th, 2020 

(Approx. 1 year and 9 months)

• Testing period: Mar. 1st, 2019 – Feb. 29th, 2020 (1 year)

• Electric load and electricity generation data from facility’s smart meters

• Operational data (HVAC and Calendar) provided by the facility

• National Oceanic and Atmospheric Administration (NOAA) weather data
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Threshold-based PELD forecasting process

1) A threshold is determined at the beginning of the month.

Threshold
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Non-PELs
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Threshold-based PELD forecasting process

2) Every day at midnight, a regression-based model generates a day ahead 

(24 hours) electric load forecast based on historical data.

Threshold
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Threshold-based PELD forecasting process

3) All forecasted loads are compared to the threshold and if any is found to be 

above it, then it is classified as a PEL and the day as a PELD.
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Threshold-based PELD forecasting process

3) All forecasted loads are compared to the threshold and if any is found to be 

above it, then it is classified as a PEL and the day as a PELD.

Threshold
PELs

Non-PELs
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Classification-based PELD forecasting process

1) Every day at midnight, a classification-based model generates a day ahead 

(24 hours) classification of each load as either a PEL or a Non-PEL based 

on historical data and known features about the upcoming day.
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Classification-based PELD forecasting process

2) If any of the loads of the day is classified as a PEL by the classification-

based model, then the day is classified as a PELD.

Non-PELD
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Classification-based PELD forecasting process

2) If any of the loads of the day is classified as a PEL by the classification-

based model, then the day is classified as a PELD.

PELD
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Based on the previously published work of Saxena et al. (2019)
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MAPE achieved by the M01 to M05 models.

Model Average monthly MAPE 

Net demand 

(with BTMREG) 
Demand 

(without BTMREG) 

M01_Reg SARIMA 10.4121 7.6004 

M02_RegST 11.2159 8.9645 

M03_RegRF 8.2921 5.6494 

M04_RegANN 9.9221 7.3715 

M05_RegANNST 8.8404 5.1544 

 

1. BTMREG seems to affect the 
performance of the regression-
based electric load forecasting 
models evaluated.

Net demand (with BTMREG) Demand (without BTMREG)



Findings: Threshold-Based Approach
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Sensitivity achieved by the M01 to M05 models.

2. BTMREG seems to not affect the 
performance of the models 
evaluated at the threshold-based 
PELD classification stage.

Model Average monthly 

sensitivity 

Average monthly 

balanced accuracy 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

M01_Reg SARIMA 0.4167 0.3481 0.6294 0.6102 

M02_RegST 0.2963 0.3852 0.6258 0.6508 

M03_RegRF 0.0741 0.1000 0.5370 0.5500 

M04_RegANN 0.5417 0.5185 0.6953 0.6963 

M05_RegANNST 0.3981 0.6852 0.6652 0.8236 

 

Net demand (with BTMREG) Demand (without BTMREG)
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Sensitivity achieved by the M06 to M11 models.

3. Addressing the class imbalance is 
important regardless of BTMREG.

4. BTMREG seems to not affect the 
performance of the classification-
based models evaluated.

Model Average monthly 

sensitivity 

Average monthly 

balanced accuracy 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

Net demand 

(with 

BTMREG) 

Demand  

(without 

BTMREG) 

M06_ClassST 0.0000 0.1111 0.5000 0.5517 

M07_ClassRF 0.0000 0.0778 0.5000 0.5389 

M08_ClassSTwSMOTE 0.5185 0.5852 0.6315 0.6770 

M09_ClassRFwSMOTE 0.6574 0.5593 0.7211 0.7055 

M10_ClassANNwSMOTE 0.8981 0.8778 0.8329 0.8430 

M11_ClassANNSTwSMOTE 0.9444 0.9778 0.8913 0.8906 
 

Net demand (with BTMREG) Demand (without BTMREG)
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Sensitivity achieved by the M11, E01, and E02 models.

5. The E02_SingleVote model and the M11_ClassANNSTwSMOTE model 
outperformed the E01_Majority model under both scenarios. 

6. The E02_SingleVote model outperformed the M11_ClassANNSTwSMOTE 
model on two out of nine months for the net demand (with BTMREG) 
scenario and on one month for the demand (without BTMREG) scenario.

Net demand (with BTMREG) Demand (without BTMREG)
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  M11 

ClassANNST

wSMOTE 

E01 

Majority 

E02 

SingleVote 

Average monthly 

sensitivity 

Net demand 

(with BTMREG) 

0.9444 0.3009 1 

Demand 

(without BTMREG) 

0.9778 0.4333 1 

Average monthly 

balanced accuracy 

Net demand 

(with BTMREG) 

0.8913 0.6505 0.7046 

Demand 

(without BTMREG) 

0.8906 0.7124 0.7333 

Total number of 

false negatives 

Net demand 

(with BTMREG) 

3 34 0 

Demand 

(without BTMREG) 

1 18 0 

Total number of  

false positives 

Net demand 

(with BTMREG) 

37 0 136 

Demand 

(without BTMREG) 

48 2 133 

 

7. The M11 
ClassANNSTwSMOTE
model was selected as 
the best model overall 
for this facility with 
BTMREG based on:
 High performance
 Lower complexity

8. BTMREG seems to not 
affect the performance 
of the ensemble 
models evaluated.
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 Net demand (with BTMREG) Demand (without BTMREG) 

Period Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

 

Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

Mar. 2019 247.38  247.38  100%        38.20  38.20  100% 

Apr. 2019 749.38  749.38  100%            513.42  513.42  100% 

May 2019 766.07  766.07  100%            775.28  0.00    0% 

Jun. 2019 884.60  884.60  100%         1,045.36  1,045.36  100% 

Jul. 2019 1,657.66  1,657.66  100%         1,281.79  1,281.79  100% 

Aug. 2019 1,247.15  1,008.00  81%            835.31  835.31  100% 

Sep. 2019 1,169.79  753.00  64%            731.44  731.44  100% 

Oct. 2019 2,163.22  2,163.22  100%         2,701.08  2,701.08  100% 

Dec. 2019 131.22  131.22  100% 94.62  94.62  100% 

Aggregate 9,016.48  8,360.54  93%        8,016.51  7,241.22  90% 

 

9. The M11_ClassANNSTwSMOTE model would have achieved 93% of the 
potential savings in kW and US$ 142,129.18 (8,360.54 kW x 17 US$/kW) 
savings in electricity costs.
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 Net demand (with BTMREG) Demand (without BTMREG) 

Period Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

 

Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

Mar. 2019 247.38  247.38  100%        38.20  38.20  100% 

Apr. 2019 749.38  749.38  100%            513.42  513.42  100% 

May 2019 766.07  766.07  100%            775.28  0.00    0% 

Jun. 2019 884.60  884.60  100%         1,045.36  1,045.36  100% 

Jul. 2019 1,657.66  1,657.66  100%         1,281.79  1,281.79  100% 

Aug. 2019 1,247.15  1,008.00  81%            835.31  835.31  100% 

Sep. 2019 1,169.79  753.00  64%            731.44  731.44  100% 

Oct. 2019 2,163.22  2,163.22  100%         2,701.08  2,701.08  100% 

Dec. 2019 131.22  131.22  100% 94.62  94.62  100% 

Aggregate 9,016.48  8,360.54  93%        8,016.51  7,241.22  90% 

 

10.There are more potential and model savings to be achieved when BTMREG 
is present for the facility evaluated.



Main Contributions

27

1. Development and testing of a PELD forecasting 

methodology applicable to both consumers with and without 

BTMREG. 

A model selected after implementing the methodology for a 

facility with BTMREG demonstrated the capacity to have 

achieved 93% of the potential savings in kW and 

US$ 142,129.18 savings in electricity costs during a 

yearlong testing period.
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2. Documentation of the first of its kind side-by-side empirical 

comparisons between the performance of ARIMA, RCT, 

random regression and classification forest, ANN, and 

ensemble based models at forecasting electric load and 

PELDs for scenarios with and without BTMREG.

Evidence suggesting an impact on model performance due to 

the presence of BTMREG was only observed for the 

regression-based models evaluated. The classification-based 

and ensemble models evaluated did not show such evidence. 
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3. A side-by-side comparison of the potential and model savings 

achieved by implementing the PELD forecasting methodology 

in a scenario with BTMREG versus a scenario without 

BTMREG.

Experimental results suggest that the variability 

(intermittency) of BTMREG can create opportunities for more 

potential and model savings to be achieved.



Thank you for your attention!
Please feel free to ask questions.

Contact information:

I
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Ph.D. Student / Graduate Research Assistant

oxa4944@rit.edu

Katie T. McConky, Ph.D.
Associate Professor

ktmeie@rit.edu
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