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is developed with a tick loss function for Value at Risk (VaR) forecasts and a quadratic

loss function conditional on VaR forecasts for expected shortfall forecasts. Then, a joint

evaluation of the forecasts can be performed through a recursive GMM. In the case where

encompassing is rejected, the proposed test provides a basis for the combination of the

expected shortfall forecasts that outperforms individual forecasts. A simulation study

obtains good size and power of the test in �nite samples. Potential of the proposed test

is empirically illustrated in comparing forecasts obtained from the recently developed risk
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1 Introduction

The importance of expected shortfall has recently become more institutional since Basel Com-

mittee on Banking Supervision (BCBS) revised in 2016 the market risk framework to enhance

a shift from Value at Risk (VaR) to an expected shortfall (ES) measure of risk under stress.1

As a coherent measure of tail risks, expected shortfall is de�ned as the expected return in the

part of the return distribution that is more extreme than a given quantile (Artzner et al., 1999;

Tasche, 2002; Gerlach and Chen, 2016). Hence, the use of expected shortfall helps ensure a

more prudent capture of tail risks and capital adequacy of commercial banks during periods

of signi�cant �nancial market stress. The current literature in �nancial econometrics and risk

management has developed a variety of approaches to estimate expected shortfall.2

However, the evaluation and comparison of expected shortfall forecasts are still ongoing

in its infant stage. For instance, in the direction of backtesting expected shortfall forecasts,

studies have focused on the absolute evaluation, that is, on testing whether a forecasting model

is correctly speci�ed or whether a sequence of forecasts satis�es certain optimal properties, see,

e.g., Kerkhof and Melenberg (2004), Wong (2008), Bayer and Dimitriadis (2020), among others.

A practical problem with the absolute evaluation, nonetheless, is that if di�erent models are

rejected as being misspeci�ed or if more than one model are accepted, then the tests provide no

guidance as to which one to choose. In this article I thus focus on the relative evaluation, which

involves comparing the performance of competing, possibly misspeci�ed models or sequences

of forecasts for a variable and choosing the one that performs the best.

The goal of this paper is to develop a relative evaluation by testing conditional e�ciency

among expected shortfall forecasts. A forecast is said to be conditionally e�cient if the expected

loss of a combination of that forecast and a rival forecast is not signi�cantly less than the

expected loss of the original forecast alone.3 In this regard, one concludes that the original

forecast conditionally encompasses the rival, as it is able to explain the predictive ability of the

1The standards of minimum capital requirements for market risks published in January 2016 is available at
https://www.bis.org/bcbs/publ/d352.htm.

2See, e.g., Zhu and Galbraith (2011), Chen et al. (2012), Gerlach and Chen (2016), Taylor (2019), Gerlach
and Chen (2017), among others. Nadarajah (2014) provides a comprehensive review for the estimation methods
of expected shortfall.

3Early studies have applied this encompassing principle for conditional mean forecasts. See, e.g., Lu and
Mizon (1996), Clark and McCracken (2001), Fang (2003), Clements and Harvey (2010), among others,
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rival.

Based on this encompassing principle, I therefore propose a conditional encompassing test,

which involves a tick loss function for VaR forecasts and a quadratic loss function conditional

on the VaR forecasts for ES forecasts. In this regard, the performance of ES forecasts can be

evaluated conditional on the VaR forecasts. In particular, the test allows a standard recursive

GMM to estimate optimal combination weights for the VaR and ES forecasts, and then the

corresponding asymptotic properties of the GMM estimates are used to construct a Wald type

test for the null hypothesis that a forecast conditionally encompasses a rival forecast.

An important feature of the conditional encompassing test is that it gives a theoretical basis

for combinations of expected shortfall forecasts in cases when neither forecast encompasses its

competitor.4 Yet, expanding the information set through combination is particularly useful for

evaluating expected shortfall conditional on a quantile usually at a small probability level, i.e.,

1-5% in the Basel Accords regulations. VaR and ES at extreme probabilities are very sensitive

to the few observations in the tails of a sample distribution, and hence, combining forecasts

of di�erent information sets could be an e�ective way to make the forecast performance more

robust to the e�ects of sample-speci�c factors, such as fewer observations in extreme tails,

outliers, and so on.

This paper conducts Monte Carlo simulations to examine asymptotic properties of the

proposed test. Using daily S&P 500 index returns, I empirically illustrate the usefulness of the

conditional expected shortfall forecast encompassing (CESFE) test in evaluating and comparing

ES forecasts obtained from the recently developed risk models, including the parametric models

of Chen et al. (2012) and the semiparametric models of Taylor (2019).

The work closely related to this paper is the study of Dimitriadis and Schnaitmann (2020).

Nonetheless, this paper di�ers from their study in that they propose an unconditional encom-

passing test using the 2-elicitable loss functions, developed in Fissler and Ziegel (2016), for

jointly evaluating VaR and ES forecasts. In addition, they implement the test through an M-

estimation of optimal combination weights. The simulation study in Section 5.3 shows that the

4From a theoretical viewpoint, forecast combination can be seen as a way to pool the information contained
in the individual forecasts, and its bene�ts have been widely advocated by a large amount of studies. See, e.g.,
e.g., Stock and Watson (1999&2003), Fang (2003), Eklund and Karlsson (2007), among others.
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conditional and unconditional encompassing tests have their respective strengths in �nite sam-

ples. In particular, the conditional test obtains better test size, while the unconditional test has

stronger test power when the degree of model misspeci�cation is relatively low. As discussed in

Sections 4.2&5.3, the performance di�erence is partly due to the quadratic loss function chosen

for ES forecasts conditional on VaR forecasts, which captures the interdependence between ES

and VaR by a non-zero o�-diagonal element in the Jacobian derivative matrix in the Wald test.

The remainder of the paper is organized as follows. Section 2 de�nes conditional expected

shortfall and introduces forecast environment. Section 3 de�nes encompassing of conditional

expected shortfall forecasts with the chosen loss functions for jointly evaluating VaR and ES

forecasts. Section 4 constructs the conditional encompassing test through a recursive GMM

and obtains its asymptotic properties to compute the test statistics. Section 5 examines the size

and power properties of the test through a simulation study. Section 6 empirically illustrates

the test in evaluating and comparing alternative ES forecasts for the S&P 500 index returns.

Section 7 concludes the paper. The appendix presents proofs.

2 Conditional Expected Shortfall and Forecast Environ-

ment

Consider a stochastic process V ≡
{
V t : Ω→ Rk+1, k ∈ N, t = 1, ..., T

}
de�ned on a complete

probability space (Ω,F , P ), where F ≡ {Ft, t = 1, ..., T} and Ft ≡ σ {Vs, s ≤ t} is a chosen

σ-�eld. The observed vector V t is partitioned as V t ≡
(
Yt,X

′

t

)′
, where Yt : Ω → R is a

continuous random variable of interest, and X t : Ω → Rk is a k × 1 vector of explanatory

variables. This paper is interested in the expected shortfall forecast of the distribution of Yt+1

at a given probability level, τ ∈ (0, 1), conditional on the information set Ft, de�ned as

ESt+1(τ |Ft) =
1

τ

∫ τ

0

V aRt+1 (ι|Ft) dι (2.1)

where V aRt+1 (τ |Ft) is the τ × 100%th VaR forecast of the distribution of Yt+1 conditional on

Ft, de�ned as

Pr (Yt+1 < V aRt+1|Ft) = τ (2.2)
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or

V aRt+1 (τ |Ft) ≡ F−1
Yt+1

(τ |Ft) (2.3)

where F−1
Yt+1

(·|Ft) is the inverse of the conditional cumulative distribution function (FYt+1 (·|Ft))

of Yt+1, which is assumed continuous. Conditional expected shortfall in (2.1) can alternatively

be expressed as

ESt+1 (τ |Ft) = Et [Yt+1|Yt+1 < V aRt+1 (τ |Ft)] (2.4)

Both (2.1) and (2.4) show that ESt+1 (τ |Ft) is de�ned based on V aRt+1 (τ |Ft).5 For example,

(2.4) represents the expected value of Yt+1 conditional on Yt+1 being more extreme than its

τ × 100%th quantile at time t+ 1.

The goal of this paper is to propose a test for comparing alternative sequences of one-

step-ahead forecasts of ESt+1(τ |Ft). I perform the evaluation in an out-of-sample fashion.

This involves dividing the sample of size T into an in-sample part of size m and an out-of-

sample part of size n, so that T = m + n. The in-sample portion is used to produce the �rst

set of forecasts, and the evaluation is performed over the remaining out-of-sample portion. In

particular, the forecasts may be based on parametric models or be generated by semiparametric

or nonparametric techniques. The forecasts can be produced using either a �xed forecasting

scheme or a rolling window forecasting scheme.6 For example, for a parametric model, a �xed

forecasting scheme involves estimating the parameters only once on the �rstm observations and

using these estimates to produce all of the forecasts for the out-of-sample period t = m+1, ..., T .

In contrast, a rolling window forecasting scheme reestimates parameters at each out-of-sample

point t = m + 1, ..., T using an estimation sample containing the m most recent observations,

that is, the observation from t−m+ 1 to t.

To further simplify the notation, I hereafter drop the reference to the index τ and the

conditioning information Ft to simply denote the τ × 100%th ES and VaR at time t + 1

5(2.1) is often referred to as the integrated conditional quantile function (ICQF), see, e.g., Peracchi and
Tanase (2008), Leorato et al. (2012), among others

6The test requires the Ft-measurable functions of V aRt+1 and ESt+1 constant over time. This implies that
the use of an expanding estimation window (recursive forecasting scheme) is not allowed, whereas either a �xed
or a rolling window of constant length satis�es the requirement. See also Giacomini and Komunjer (2005).
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conditional on Ft as ESt+1 and V aRt+1. As a general rule, a lower-case letter is used to denote

observations of the corresponding random variable (i.e., vt and V t). The in-sample size m is a

�nite constant, chosen by the user a priori. As a consequence, all of the results in this paper

should be interpreted as being conditional on the given choice of m, but for ease of notation I

choose not to make this dependence explicit.

3 Encompassing Principles for Conditional Expected Short-

fall Forecasts

The approach to comparing conditional expected shortfall forecasts is based on the principle

of encompassing, see, e.g., Lu and Mizon (1996), Harvey et al. (1998), Clark and McCracken

(2001) and West (2001), among others. Encompassing arises when one of two competing

forecasts is able to explain the predictive ability of its rival. In this sense, a test for forecast

encompassing is a test of the conditional e�ciency of a forecast, where a forecast is said to be

conditionally e�cient if the expected loss of a combination of that forecast and a rival forecast

is not signi�cantly less than the expected loss of the original forecast alone (Clements and

Hendry, 1998; Giacomini and Komunjer, 2005).

The two key ingredients of a forecast encompassing test are, therefore, (1) the loss function

that is involved in the computation of the expected loss and (2) the weights of the forecast

combination. The choice of the loss function is closely related to which characteristic of the

unknown future distribution of the variable one wants to forecast. Let f̂t+1 be a forecast of

some characteristic of interest of a random variable Yt+1, conditional on the information set at

time t. The forecast f̂t+1 is said to be optimal at time t+1 if it minimizes Et

[
L
(
Yt+1 − f̂t+1

)]
,

where L is some loss function such that L : R→ R+.

3.1 The Loss Functions

The encompassing test requires two proper loss functions, one for VaR forecasts and the other

for expected shortfall forecasts conditional on VaR forecasts. Speci�cally, I consider the con-
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ventional quantile �tick� or �check� loss function for V aRt+1, given by

Tτ
(
Yt+1 − V̂ aRt+1

)
≡
[
τ − I

(
Yt+1 < V̂ aRt+1

)](
Yt+1 − V̂ aRt+1

)
(3.1)

which is the asymmetric linear loss function of order τ . This tick function T is the implicit loss

function whenever the object of interest is a forecast of a particular quantile of the conditional

distribution of Yt+1. Giacomini and Komunjer (2005) show that the focus on conditional (rather

than unconditional) expected loss, such as (3.1), is a central feature of the treatment of both

evaluation and combination of forecasts and distinguishes their approach from related literature,

e.g., Granger (1989), Taylor and Bunn (1998), Elliott and Timmermann (2004), among others.

This paper carries on this central feature to the evaluation and combination of conditional

expected shortfall forecasts, as discussed in details later.

In particular, the loss function considered for the object of interest, ESt+1, takes the form

Lτ
(
Yt+1 − ÊSt+1; V̂ aRt+1

)
=
(
Yt+1 − ÊSt+1

)2

I
(
Yt+1 < V̂ aRt+1

)
(3.2)

which depends on the forecast of conditional value-at-risk for time t + 1. Speci�cally, the

following lemma provides the basis for (3.2).

Lemma 1. (Conditionally consistent criterion). Under the de�nitions (2.1)-(2.4), if V̂ aRt+1
p→

V aRt+1 and ÊSt+1
p→ ESt+1 are consistent estimators as n → ∞, then the residual sequence,{

et+1 :≡ Yt+1 − ÊSt+1

}T−1

t=m
should be i.i.d. and that, conditional on I

(
Yt+1 < V̂ aRt+1

)
, it has

expected value zero, such that

Et

[(
Yt+1 − ÊSt+1

)
I
(
Yt+1 ≤ V̂ aRt+1

)]
= 0, a.s.− P. (3.3)

The proof of Lemma 1 is straightforward. Provided that V̂ aRt+1 and ÊSt+1 are assumed

consistent estimators of V aRt+1 and ESt+1 as n→∞, (3.3) can directly be obtained from the

de�nition of expected shortfall, (2.4), as the �rst-order moment condition of the expected loss

function of (3.2) given V̂ aRt+1.

If (3.3) does not hold, then ÊSt+1 is an inconsistent estimator of ESt+1 conditional on
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V̂ aRt+1. A negative value, et+1 < 0, therefore represents underestimation of this measure of

risk for τ < 0.5. The relevant literature has applied (3.3) to backtesting expected shortfall in

absolute evaluations, see, e.g., McNeil and Frey (2000), Ergun and Jun (2010), and Zhu and

Galbraith (2011), among others.

Of course, the validity of Lemma 1 also depends on the assumption of the consistent esti-

mator, V̂ aRt+1. Speci�cally, the following lemma expresses the �rst-order moment condition

of quantile regression.

Lemma 2. The loss function, (3.1), provides the �rst-order moment condition of quantile

regression as

Et

[
τ − I

(
Yt+1 − V̂ aRt+1 < 0

)]
= 0 a.s.− P. (3.4)

The proof for (3.4) can be found in Koenker (2005, �4). The literature has also used this �rst-

order condition as the basis in a variety of value-at-risk backtests. See Nieto and Ruiz (2016)

for a review.

3.2 The De�nition of Encompassing

Consider two competing methods,M1 andM2, which produce forecasts of conditional value-at-

risk and expected shortfall. Let ÊSt+1 =
(
ÊS1,t+1, ÊS2,t+1

)′
and V̂ aRt+1 =

(
V̂ aR1,t+1, V̂ aR2,t+1

)′
denote the forecasts of expected shortfall and value-at-risk from M1 and M2. This paper is

interested in testing whether ÊS1,t+1 from M1 conditionally encompasses ÊS2,t+1 from M2

over the entire out-of-sample period for t = m, ..., T − 1.7

Further, let θ = (θ1, θ2)
′
and w = (w1, w2)

′
, which lie in some compact subsets of R2, denote

the choices of weights in the combinations of conditional value-at-risk and expected shortfall

forecasts, respectively. The common practice is to obtain a weighted average of forecasts with

the weights adding up to unity, i.e., θ1 + θ2 = 1 and w1 + w2 = 1. However, Granger and

Ramanathan (1984) �nd that the best method is to add a constant term and not to constrain

the weights to add up to unity. Therefore, in this paper the unity restriction is not imposed on

θ and w. See also Giacomini and Komunjer (2005).

7For simplicity, I restrict attention to pairwise comparisons, but all of the techniques can readily be extended
to the general case of multiple forecasts.
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Based on the general principles of forecast encompassing,8 it is said that the forecast of

ES1,t+1 obtained fromM1 conditionally encompasses the forecast of ES2,t+1 fromM2 for time

t+ 1 if and only if

Et

[
Lτ
(
Yt+1 − ÊS1,t+1; V̂ aR1,t+1

)]
≤ Et

[
Lτ
(
Yt+1 −w

′
ÊSt+1;θ

′
V̂ aRt+1

)]
(3.5)

a.s.− P., ∀ (w1, w2) ∈ Θ ⊂ R2

∀ (θ1, θ2) ∈ Θ ⊂ R2

where L(·) is the loss function de�ned in (3.2) for ES forecasts. In practice, testing the inequality

(3.5) is not feasible, because it involves computing the expected loss for all (w1, w2) ∈ Θ

and (θ1, θ2) ∈ Θ. Instead, let w∗ = (w∗1, w
∗
2)
′
and θ∗ = (θ∗1, θ

∗
2)
′
denote the optimal sets

of combination weights for ES and VaR forecasts, respectively, which are the solutions to

jointly minimize (3.1) and (3.2). Therefore, I have the following de�nition of encompassing for

conditional expected shortfall forecasts.

De�nition 1. (Conditional expected shortfall forecast encompassing, CESFE). Let ÊS1,t+1 and

ÊS2,t+1 be alternative forecasts for ESt+1 and V̂ aR1,t+1 and V̂ aR2,t+1 be alternative forecasts

for V aRt+1 from the competing methods,M1 andM2, respectively. Then, ÊS1,t+1 is said to

encompass ÊS2,t+1 at time t+ 1 if and only if (3.5) is binding for
(
θ∗
′
w∗
′
)′

Et

[
Lτ
(
Yt+1 − ÊS1,t+1; V̂ aR1,t+1

)]
= Et

[
Lτ
(
Yt+1 −w∗

′
ÊSt+1;θ∗

′
V̂ aRt+1

)]
a.s.− P. (3.6)

that is, if and only if

(θ∗1, θ
∗
2, w

∗
1, w

∗
2) = (1, 0, 1, 0) (3.7)

8See e.g., Clements and Hendry (1998), Harvey et al. (1998), McCracken (2000), Clark and McCracken
(2001), among others.
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where θ∗ = (θ∗1, θ
∗
2)
′
and w∗ = (w∗1, w

∗
2)
′
jointly minimize (3.1) and (3.2), as

(θ∗1, θ
∗
2) ≡ arg min

(θ1,θ2)∈Θ⊂R2
Et

[
Tτ
(
Yt+1 −

(
θ1V̂ aR1,t+1 + θ2V̂ aR2,t+1

))]
(3.8)

(w∗1, w
∗
2) ≡ arg min

(w1,w2)∈Θ⊂R2
Et

[
Lτ
(
Yt+1 −

(
w1ÊS1,t+1 + w2ÊS2,t+1

)
;θ∗

′
V̂ aRt+1

)]
(3.9)

In this paper, I restrict attention to linear combinations. And, the equivalence between (3.6)

and (3.7) follows from the fact that the right side of (3.6) is the minimum of the conditionally

expected loss over Θ and Θ.

Consequently, the optimal combination of VaR forecasts from (3.8) satis�es the �rst-order

condition, (3.4), as

Et

[
τ − I

(
Yt+1 − θ∗

′
V̂ aRt+1 < 0

)]
= 0 a.s.− P. (3.10)

See Appendix A for the proof of (3.10). Similarly, the vector of optimal weights w∗ obtained

from the joint estimation satis�es the �rst-order condition, (3.3), such that

Et

[(
Yt+1 −w∗

′
ÊSt+1

)
I
(
Yt+1 < θ

∗′V̂ aRt+1

)]
= 0 a.s.− P. (3.11)

See Appendix B for the proof of (3.11).

Acerbi and Tasche (2002) show evidence that expected shortfall can be estimated e�ectively

even in cases where the usual estimators for VaR fail. On the other hand, Chen (2008) shows

that a better VaR estimation does not guarantee a corresponding better ES estimation. In

this regard, an encompassing test based on De�nition 1 must be �exible to accommodate a

variety of possible encompassing scenarios. For example, θ∗ = (1, 0) and w∗ = (0, 1) imply an

extreme scenario that ÊS2,t+1 encompasses ÊS1,t+1, whereas V̂ aR1,t+1 encompasses V̂ aR2,t+1.

In the case where θ∗ = (1, 0) and w∗ = (w∗1, w
∗
2), it suggests that ÊS1,t+1 and ÊS2,t+1 should be

combined via the optimal weights, w∗, although V̂ aR1,t+1 encompasses V̂ aR2,t+1. In the next

section I discuss implementation of the CESFE test. While the CESFE test in this paper is

illustrated for De�nition 1 with H0 : (θ∗1, θ
∗
2, w

∗
1, w

∗
2) = (1, 0, 1, 0), it can easily be implemented

to test other null hypotheses of encompassing.
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4 Conditional Expected Shortfall Forecast Encompassing

Test

To test the encompassing hypothesis in De�nition 1 for whether ÊS1,t+1 encompasses ÊS2,t+1

over the entire out-of-sample period, I jointly solve the optimal weights, θ∗ and w∗ by imple-

menting a standard GMM with the optimization procedure appropriately modi�ed to accom-

modate the nondi�erentiable loss functions.9 Next I describe the estimation procedure for the

optimal combination weights.

4.1 Generalized Method-of-Moments Estimation for Optimal Combi-

nation Weights

According to De�nition 1, ÊS1,t+1 conditionally encompasses ÊS2,t+1 for all t, m ≤ t ≤ T − 1

if and only if
(
θ∗
′

m+1,w
∗′
m+1

)′
= · · · =

(
θ∗
′

T ,w
∗′
T

)′
= (1, 0, 1, 0)

′
. In other words, the optimal

combination weights are constant in time and equal to (1, 0, 1, 0)
′
. By (3.10) and (3.11), it should

therefore be the case that for e1 = (1, 0)
′
, E

{[
τ − I

(
Yt+1 − e

′
1V̂ aRt+1 < 0

)]
Z1t

}
= 0 and

E
{[(

Yt+1 − e
′
1ÊSt+1

)
I (Yt+1 < e

′
1V̂ aRt+1

)]
Z2t

}
= 0 for all Ft-measurable information

functions, {Z1t,Z2t}, and for all t, m ≤ t ≤ T − 1. In particular, Z1t and Z2t are k1 × 1 and

k2×1 vectors of instrumental variables, respectively, which are observed at time t. {Z1t,Z2t} is

assumed strictly stationary and mixing series, and can include previous forecasts (or measures

of past forecast performance), provided that they are produced by either a �xed or a rolling

window forecasting scheme. The reason for this is that in these two cases the forecasts are

constant measurable functions of a �nite window of data and thus inherit the properties of

stationarity and mixing from the underlying series (Giacomini and Komunjer, 2005).

Further, de�ne g1 as a k1-vector-valued function g1 : Θ × R × Rk1 → Rk1 and g2 as a

9One may consider a two-step encompassing test approach by (i) solving the optimal weight vector θ∗ for
conditional value-at-risk forecasts in the �rst step, and (ii) then estimating the optimal weight vector w∗ given

θ̂
∗
for conditional expected shortfall forecasts in the second step. This two-step approach is based on the similar

weak exogenous reasoning of Engle (2002) as the �rst-step estimation does not involve w. However, this two-
step approach that generally involves some loss of estimation e�ciency is a special case of the general approach
discussed in this section.
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k2-vector-valued function g2 : Θ × R× Rk2 → Rk2 , such that

g1 (θ; yt+1, z1t) ≡
[
τ − I

(
yt+1 < θ

′
V̂ aRt+1

)]
z1t (4.1)

g2 (w; yt+1, z2t,θ) ≡
[(
yt+1 −w

′
ÊSt+1

)
I
(
yt+1 < θ

′
V̂ aRt+1

)]
z2t (4.2)

The key element in the implementation of the encompassing test is that under the null of

encompassing, it has, based on (3.10) and (3.11), the following moment conditions

go1 (θ∗;Yt+1,Z1t) ≡ E [g1 (θ∗;Yt+1,Z1t)] = 0 (4.3)

go2 (w∗;Yt+1,Z2t,θ
∗) ≡ E [g2 (w∗;Yt+1,Z2t,θ

∗)] = 0 (4.4)

jointly to be true, or equivalently

go (θ∗,w∗; Yt+1,Z1t,Z2t) = E [g (θ∗,w∗; Yt+1,Z1t,Z2t)] = 0 (4.5)

where g (θ,w; Yt+1,Z1t,Z2t) =
(
g1 (θ;Yt+1,Z1t)

′
, g2 (w;Yt+1,Z2t,θ)

′
)′

is a k × 1 vector of

the moment conditions with k = k1 + k2.

Given the out-of-sample portion of size n = T−m, consisting of the sequence of observations

(z1m, z2m, ym+1, ...,z1,T−1, z2,T−1, yT )
′
, I then use Hansen's (1982) GMM approach to estimate

θ∗ and w∗ as a solution to the minimization problem of (4.5), denoted by θ̂ and ŵ, as

min
θ∈Θ,w∈Θ

[gn (θ,w)]
′
Ŝ
−1

n [gn (θ,w)] (4.6)

where gn (·) is the sample moment function, gn (θ,w) ≡ n−1
∑T−1

t=m g (θ,w; yt+1, z1t, z2t), and

Ŝn is a consistent estimator of the asymptotic variance matrix S,

S ≡ E
[
g (θ∗,w∗; Yt+1,Z1t,Z2t) g (θ∗,w∗; Yt+1,Z1t,Z2t)

′
]

(4.7)

which is a k × k positive semi-de�nite matrix. Using the fact that the �rst-order conditions

(3.10) and (3.11) imply that {g (θ∗,w∗;Yt+1,Z1t,Z2t) ,Ft} is a martingale di�erence sequence,
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I obtain a consistent estimator of S as

Ŝn

(
θ̃n, w̃n

)
≡

1

n

T−1∑
t=m

g
(
θ̃n, w̃n; yt+1,z1t,z2t

)
g
(
θ̃n, w̃n; yt+1,z1t,z2t

)′

=
1

n

T−1∑
t=m

 g1

(
θ̃n; yt+1,z1t

)
g1

(
θ̃n; yt+1,z1t

)′

g1

(
θ̃n; yt+1,z1t

)
g2

(
w̃n; yt+1,z2t, θ̃n

)′

g2

(
w̃n; yt+1,z2t, θ̃n

)
g1

(
θ̃n; yt+1,z1t

)′

g2

(
w̃n; yt+1,z2t, θ̃n

)
g2

(
w̃n; yt+1,z2t, θ̃n

)′

 (4.8)

with

g1

(
θ̃n; yt+1,z1t

)
g1

(
θ̃n; yt+1,z1t

)′

=

[
τ − I

(
yt+1 < θ̃

′

nV̂ aRt+1

)]2
z1tz

′
1t

g1

(
θ̃n; yt+1,z1t

)
g2

(
w̃n; yt+1,z2t, θ̃n

)′

=

[
τ − I

(
yt+1 < θ̃

′

nV̂ aRt+1

)]
[(yt+1−

w̃
′
nÊSt+1

)
I
(
yt+1 < θ̃

′

nV̂ aRt+1

)]
z1tz

′
2t

g2

(
w̃n; yt+1,z2t, θ̃n

)
g1

(
θ̃n; yt+1,z1t

)′

=

[
τ − I

(
yt+1 < θ̃

′

nV̂ aRt+1

)]
[(yt+1−

w̃
′
nÊSt+1

)
I
(
yt+1 < θ̃

′

nV̂ aRt+1

)]
z2tz

′
1t

g2

(
w̃n; yt+1,z2t, θ̃n

)
g2

(
w̃n; yt+1,z2t, θ̃n

)′

=

[(
yt+1 − w̃

′
nÊSt+1

)2
I
(
yt+1 < θ̃

′

nV̂ aRt+1

)]
z2tz

′
2t

where θ̃n and w̃n are some initial consistent estimates of θ∗ and w∗, respectively.

Let β =
(
θ
′
,w

′
)′

denote the vector of weighting parameters to be estimated by GMM.

The computation of β̂n and Ŝn is typically done recursively. I �rst choose a conformable

identity-weighting matrix in (4.6), and then estimate the corresponding β̂
(1)

n . The resulting

new weighting matrix, Ŝn

(
β̂

(1)

n

)
, is more e�cient than the previous one, and solving (4.6)

leads to a new estimator β̂
(2)

n . These steps are repeated until the sequence of β̂n converges.

In practice, the choice of Z1t and Z2t depends on the nature of the application considered,

which is discussed in more details in Section 6. Z1t and Z2t may or may not be the same in

the identi�cation of the weighting parameters. In cases where the information vectors fail to

incorporate all of the relevant information, condition go (θ∗,w∗) = 0 is no longer equivalent to

the �rst-order condition (4.5), and {g (θ∗,w∗;Yt+1,Z1t,Z2t) ,Ft} is no longer a martingale dif-

ference sequence. However, S can still be consistently estimated using some heteroscedasticity-

and autocorrelation-robust estimator, like Newey and West's (1987) estimator. I next focus on

the asymptotic properties of the GMM estimator, β̂n =
(
θ̂
′

n, ŵ
′

n

)′
.
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4.2 Asymptotic Properties of the GMM Estimator

The following assumptions are considered for the asymptotic properties of the GMM estimator,

β̂n =
(
θ̂
′

n, ŵ
′

n

)′
.

Assumption 1. (Consistency). Assume that Proposition 1 of Giacomini and Komunjer (2005)

holds with the extension to conditional expected shortfall.10 That is, for every t, m ≤ t ≤ T −1,

(a) the conditional density of Yt+1, ft(·) is continuous, strictly positive and bounded, and the

conditional cumulative distribution function of Yt+1, Ft (·) is continuous and lies in [0, 1]; (b)

for i = 1, 2, V̂ aRi,t+1 6= 0, a.s.-P, and corr
(
V̂ aR1,t+1, V̂ aR2,t+1

)
6= ±1. Similarly, given

V̂ aRt+1, ÊSi,t+1 6= 0, a.s.-P, and corr
(
ÊS1,t+1, ÊS2,t+1

)
6= ±1; (c)

{(
Z
′
1t,Z

′
2t,V

′

t

)′}
is

strictly stationary and α-mixing with α of size −r/(r − 2) and r > 2; (d) E
[
Z1tZ

′
1t

]
and

E
[
Z2tZ

′
2t

]
are nonsingular; and (e) there exist some δ > 0 such that E ‖Zit‖2r+δ <∞ for i =

1, 2. Then, θ̂n
p→ θ∗ and ŵn

p→ w∗ or equivalently β̂n
p→ β∗, as n→∞. (f) E

∥∥∥V̂ aRt+1

∥∥∥4

<

∞ and E
∥∥∥ÊSt+1

∥∥∥4

<∞; (g) β∗ is an interior point of Ξ ≡ (Θ, Θ).

Assumption 2. (Convergence). The data generating process is assumed to meet the conditions

for a law of large numbers to apply, so that one may assume that the empirical moments converge

in probability to their expectation.

gn (θ,w) ≡ 1

n

T−1∑
t=m

g (θn,wn; yt+1, z1t, z2t)
p→ go (θ,w; Yt+1,Z1t,Z2t) = 0

Assumption 3. (Asymptotic distribution of empirical moments). Assume that the empirical

moments obey a central limit theorem. This assumes that the moments have a �nite asymptotic

covariance matrix, S, in (4.7), so that

√
ngn (θ,w)

d→ N (0,S)

10The extension to expected shortfall is followed straightforward to the proof of Proposition 1 in Giacomini
and Komunjer (2005).
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Assumption 1(b) is a mild condition ruling out the possibility that the sequences of forecasts

are perfectly correlated, which would happen if, for example, the models were proportional or

di�ered only by a constant. One could in principle relax the assumption of strict stationarity

in Assumption 1(c) and rely on existing results on the consistency and asymptotic normality

of GMM estimators for mixing sequences. However, as discussed in Giacomini and Komunjer

(2005), relaxing this strict assumption would cause the optimal weights to depend on the sample

size, and thus result in a less intuitive formulation of the null hypothesis of encompassing.

Assumption 1(d)&(e) are fairly standard and imply in particular that all of the components of

the information vector are not linearly dependent. Assumption 1(f) implicitly places conditions

on the existence of the �nite-sample moments of the estimators on which V̂ aRt+1 and ÊSt+1

are based.

The underlying requirements on the data for Assumption 3 to hold will vary and will be

complicated if the observations comprising the empirical moments are not independent. For

samples of independent observations, assuming the conditions underlying the Lindeberg-Feller

or Liapounov central limit theorem will su�ce (Greene, 2012). For the more general case, it

is necessary to make some assumptions about the data, including Assumption 2. If one can

go a step further and assume that the function g (θ,w) is an ergodic, stationary martingale

di�erence series, then it can invoke the central limit theorem for the martingale di�erence

series (Greene (2012), Theorem 20.3, p.916). It is generally fairly complicated to verify this

martingale assumption for nonlinear models, so it is usually assumed outright.

With the assumptions in place, I have the asymptotic distribution of β̂n in the following

theorem.

Theorem 1. (Asymptotic distribution of the GMM estimator). Let Assumptions 1-3 hold.

Then, β̂n is asymptotically normal,

(
γ

′
S−1γ

)−1/2√
n
(
β̂n − β∗

)
d→ N (0, I) (4.9)
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with

γ = E [∇βg(β)]

= −

 E

[
ft

(
θ∗

′
V̂ aRt+1

)
Z1tV̂ aR

′

t+1

]
0

E

[
ft

(
θ∗

′
V̂ aRt+1

)(
yt+1 −w∗

′
ÊSt+1

)
Z2tV̂ aR

′

t+1

]
τE

[
Z2tÊS

′

t+1

]
 (4.10)

where ∇βg(β) is a Jacobian derivative matrix of g(β) with respect to β, and S is de�ned in

(4.7).

Proof. See Appendix C.

It should be noticed that the o�-diagonal element of γ in (4.10) is non-zero, di�erent from

the (approximately) zero o�-diagonal element of Λ in Dimitriadis and Schnaitmann (2020).

This non-zero o�-diagonal element is mainly due to the quadratic loss function chosen for ES

forecasts conditional on VaR forecasts, which captures the interdependence between ES and

VaR.

Theorem 1 requires that gn (β) be once di�erentiable, which is not the case here due to

the indicator function. Nonetheless, Newey and McFadden (1994) can be used to obtain the

asymptotic normality for nonsmooth moment functions, which is also applied to Theorem 1.

The basic insight of their approach is that a smoothness condition on gn (β) can be replaced

by the smoothness of its limit go (β), with the requirement that certain remainder terms are

small.

Speci�cally in (4.10), the expression for γ depends on the value of the conditional density

function ft evaluated at the optimal combination of VaRs. If data distribution is assumed, the

density value can easily be evaluated. Otherwise, I adopt the idea in Giacomini and Komunjer

(2005) to use a smooth approximation to the indicator function (see e.g., Bracewell (2000), p.

63-65) to estimate the conditional density ft for γ in (4.10) as

ft

(
θ̂
′

nV̂ aRt+1

)
=

1

ς
exp

(
yt+1 − θ̂

′

nV̂ aRt+1

ς

)
I
(
yt+1 < θ̂

′

nV̂ aRt+1

)
(4.11)

where ς > 0. Convergences of γ̂11,n and γ̂21,n in γ to their expected values are uniform in ς in

a neighborhood of 0, which ensures that limς→0γ̂11,n

p→ γ11 and limς→0γ̂21,n

p→ γ21.
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In principle, ς is the choice of a researcher over an arbitrage range of small values, such as

a range from 0.2× 10−2 to 10−2 considered in Giacomini and Komunjer (2005). Alternatively,

I propose the following result to determine the value of ς,

ς̂ =
1

n

T−1∑
t=m

(
yt+1 − θ̂

′

nV̂ aRt+1

) [
τ − I

(
yt+1 ≤ θ̂

′

nV̂ aRt+1

)]
(4.12)

Note that (4.12) is the minimized �tick� loss function of (3.1) from (4.6) evaluated at the GMM

estimates of optimal weights, so that under Assumption 2 ς̂ → 0 ensures convergences of

γ̂11,n and γ̂21,n in γ. Taylor (2019) shows that the recent literature has used an asymmetric

Laplace distribution as a quasi-maximum likelihood function to regression quantiles, where the

maximum likelihood estimator for its scale parameter is obtained the same as ς̂ in (4.12).11

An advantage to use (4.12) is to avoid the grid search for ς, where no criterion is available for

determining the best value of ς among the search. The performance of (4.12) in evaluating

(4.11) will be examined in Section 5 by the simulation study and then applied to the empirical

illustration in Section 6.

4.3 CESFE Test Statistics

This subsection considers the tests for two null hypotheses: H10 : (θ∗1, θ
∗
2, w

∗
1, w

∗
2) = (1, 0, 1, 0)

against H1a : (θ∗1, θ
∗
2, w

∗
1, w

∗
2) 6= (1, 0, 1, 0), and H20 : (θ∗1, θ

∗
2, w

∗
1, w

∗
2) = (0, 1, 0, 1) against H2a :

(θ∗1, θ
∗
2, w

∗
1, w

∗
2) 6= (0, 1, 0, 1), which correspond to testing whether forecasts ÊS1t+1and V̂ aR1t+1

fromM1 encompass ÊS2t+1 and V̂ aR2t+1 fromM2 or whether ÊS2t+1 and V̂ aR2t+1 fromM2

encompass ÊS1t+1and V̂ aR1t+1 from M1. This section provides the test statistics and the

limiting distributions.

Let r1 = (1, 0, 1, 0)
′
and r2 = (0, 1, 0, 1)

′
. Using the GMM estimators, I then propose a

11For an asymmetric Laplace distribution (ALD), its density function takes the form,

f (y;µ, τ, ς) =
τ (1− τ)

ς
exp

{
− (y − µ)

ς
[τ − I (y < µ)]

}
where µ ∈ R, τ ∈ (0, 1) and ς > 0 are the location, asymmetric and scale parameters, respectively. Having

µ = θ̂
′

nV̂ aRt+1 and the chosen τ , ALD implies Pr

(
Yt+1 < θ̂

′

nV̂ aRt+1

)
= τ . Taylor (2019) shows that (4.12)

is the quasi-maximum likelihood estimate of ς from the ALD distribution, which eventually is the average of
the tick loss function and can be interpreted as an estimator of the expectation of the tick loss function.
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Wald test of the hypotheses H10 and H20 in the following theorem.

Theorem 2. (CESFE test). Apply Theorem 1 to construct the test statistics

CESFE1n = n
(
β̂n − r1

)′
Ω̂
−1

n

(
β̂n − r1

)
(4.13)

and

CESFE2n = n
(
β̂n − r2

)′
Ω̂
−1

n

(
β̂n − r2

)
(4.14)

where β̂n =
(
θ̂
′

n, ŵ
′

n

)′
solves (4.6) and Ω̂n is some consistent estimate of Ω ≡

(
γ

′
S−1γ

)−1
.

Then, for i = 1, 2, (a) under Hi0 : CESFEin
d→ χ2

4 as n → ∞, and (b) under Hia :

CESFEin → +∞, as n→∞.

Proof. See Appendix D.

The CESFE test can then be implemented as follows. For a desired level of con�dence, one

�rst chooses the corresponding critical value c from the χ2
4 distribution. Then, H10 is rejected

if CESFE1n > c and H20 is rejected if CESFE2n > c. In the context of real-time forecast

selection, that is, for selecting at time T a best forecast method for time T + 1, I propose the

following decision rule. Perform the two tests of H10 and H20 on data up to time T . Hence,

there are four possible scenarios. (1) If neither H10 nor H20 are rejected, then the test is not

helpful for forecast selection (one could decide either to use the more parsimonious model or to

conservatively set equal weights to the forecasts, i.e., ŵ1n = ŵ2n = 0.5). (2) If H10 is rejected

while H20 is not rejected, then one would choose ÊS2,T+1 as the best forecast so that ŵ1n = 0

and ŵ2n = 1. (3) If H20 is rejected while H10 is not rejected, then one would choose ÊS1,T+1

as the best forecast so that ŵ1n = 1 and ŵ2n = 0. (4) If both H10 and H20 are rejected, then

one would choose the combination of ÊS
∗
T+1 = ŵ1nÊS2,T+1 + ŵ2nÊS2,T+1 as the best forecast,

where ŵ1n and ŵ2n are out-of-sample estimates of the combination weights from (4.6). In this

paper I illustrate Theorem 2 for encompassing of conditional expected shortfall forecasts, which

can be easily generalized to compare more than two alternative forecasts.
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5 Simulation Study

I evaluate the performance of the proposed CESFE test in �nite samples along three dimensions:

the size of the test, its power, and the choice of ς for evaluating ft. The simulation experiment is

designed to match the problem of ES evaluation and combination in the empirical application.

Speci�cally, I consider the following data generating process (DGP)

yt+1 = σt+1εt+1 (5.1)

where εt+1 ∼ D (0, 1). σt+1 follows a standard deviation version of either the GARCH(1,1)

model (Zakoian, 1994)

σt+1 = β0 + β1σt + β2 |yt| (5.2)

or the GJR-GARCH(1,1) model (Glosten et al., 1993)

σt+1 = β0 + β1σt + β+
2 |yt| I (yt > 0) + β−2 |yt| I (yt < 0) (5.3)

(5.3) allows conditional variance to respond di�erently to past positive and negative innovations.

This asymmetry is sometimes referred to in the literature as a �leverage e�ect.�

Particularly, Xiao and Koenker (2009) and Gerlach et al. (2011) show that quantile dy-

namics implied by (5.2) and (5.3) are the special cases of symmetric absolute value (SAV)

and asymmetric slope (AS) CAViaR models, respectively, proposed by Engle and Manganelli

(2004), as

V aRt+1 = β0(τ) + β1(τ)V aRt + β2 (τ) |yt| (5.4)

V aRt+1 = β0(τ) + β1(τ)V aRt + β+
2 (τ) |yt| I (yt > 0) + β−2 (τ) |yt| I (yt < 0) (5.5)

where β0 (τ) = β0D−1
ε (τ), β1(τ) = β1, β2(τ) = β2D−1

ε (τ), β+
2 (τ) = β+

2 D−1
ε (τ), and β−2 (τ) =

β−2 D−1
ε (τ). D−1

ε (τ) is the τ × 100%th theoretical quantile of εt+1 under a distribution assump-

tion, D. Note that (5.4) and (5.5) implied respectively by (5.2) and (5.3) are restricted in that

18



β1(τ) = β1 is independent of τ , while Engle and Manganelli (2004) allow the quantile persis-

tence coe�cient β1(τ) in the SAV- and AS-CAViaR models dependent of τ so as to capture

asymmetric quantile persistence across τ .

However, for the purpose of data simulation, I consider the DGP by (5.1)-(5.3), as theoretical

values of VaR and ES at time t+ 1 can explicitly be obtained as follows12

V aRt+1 = σt+1D−1
ε (τ) (5.6)

ESt+1 = σt+1E
[
εt+1|εt+1 < D−1

ε (τ)
]

(5.7)

For example, in the case where εt+1 ∼ N (0, 1) is assumed, then the theoretical VaR and ES

values can be computed as

V aRN
t+1 = σt+1Φ−1 (τ) (5.8)

ESNt+1 = −σt+1
φ (Φ−1 (τ))

τ
(5.9)

where Φ(·) and φ(·) are the CDF and PDF of the standard normal distribution, respectively.

See also, e.g., Bertsimas et al. (2004), Broda and Paolella (2011), Nadarajah et al. (2014),

among others.

In addition, if a Student-t distribution, εt+1 ∼ tv, is assumed with v degrees of freedom,

then the theoretical VaR values can be obtained as

V aRTv
t+1 = σt+1

T−1
v (τ)√
v/(v − 2)

(5.10)

where Tv(·) is the CDF of a Student-t distribution with v degrees of freedom. And, the theo-

retical ES values are given by

ESTvt+1 = −σt+1
fT (qτ , v) (v + q2

τ )

τ (v − 1)
(5.11)

where qτ = T−1
v (τ) /

√
v/(v − 2), and fT (x, v) =

[
v−1/2/B

(
v
2
, 1

2

)]
(1 + x2/v)

−(v+1)/2
is the

12See e.g., McNeil and Frey (2000), Righi and Ceretta (2015), Martins-Filho et al. (2018), among others.
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standard (location-zero, scale-one) Student-t PDF with v degrees of freedom and the beta

function, B (·, ·). See Broda and Paolella (2011), �2.2.2 and Nadarajah et al. (2014) for more

details.

I consider the following parameter values: (β0, β1, β2) = (0.005, 0.85, 0.1) for (5.2) and(
β0, β1, β

+
2 , β

−
2

)
= (0.005, 0.85,−0.02, 0.1) for (5.3), v = 4 for the Student-t distribution, and

a range of values for the out-of-sample size, n = (1000, 2500, 5000). In these particular cases,

the in-sample size m is 0 and T = n. A range of values for the parameter ς in (4.11) are

considered from 0.002 to 0.02 in increments of 0.002. The proposed approach to approxi-

mate ς by (4.12) is also experimented. For each sample size, I generate 5,000 Monte Carlo

replications for each of the time series M1 = {yt+1, V aRt+1, ESt+1;GJR,N (0, 1)}n−1
t=0 , M2 =

{yt+1, V aRt+1, ESt+1;GARCH,N (0, 1)}n−1
t=0 , M3 = {yt+1, V aRt+1, ESt+1;GJR, tv=4}n−1

t=0 , and

M4 = {yt+1, V aRt+1, ESt+1;GARCH, tv=4}n−1
t=0 . The tail risk level, τ = 0.025, is used for V aR

and ES forecasts.13

5.1 Size of the Test

The combinations for an encompassing test betweenMi andMj are thus given by

V aR
(i,j)
t+1 = θ0 + θMi

V aRMi,t+1 + θMj
V aRMj ,t+1

ES
(i,j)
t+1 =

(
w0 + wMi

ESMi,t+1 + wMj
ESMj ,t+1

)
I
(
yMi,t+1 < V aR

(i,j)
t+1

)

for the null hypothesis, H
(i,j)
10 : Mi encompassesMj with i, j = 1, 2, 3, 4 and i 6= j. According

to the procedure described in Section 4, the GMM estimators are constructed as β̂
(i,j)

n =(
θ̂0,ij, θ̂Mi

, θ̂Mj
, ŵ0,ij, ŵMi

, ŵMj

)
. Granger and Ramanathan (1984) �nd that the best method

of combinations is to add a constant term and not to constrain the weights to add up to unity.

See also Giacomini and Komunjer (2005). Therefore, I include constant terms in the forecast

combinations and do not restrict combination weights to sum up to one.

In particular, this simulation study considers the null hypothesis that forecasts from the

13Basel Committee on Banking Supervision (BCBS) of Bank for International Settlements (BIS) published
in January 2016 the regulation document, �Standards: Minimum capital requirements for market risk.� Section
C.3 on pp. 52 of the document requires that in calculating the expected shortfall, individual banks should use
a one-tailed 2.5th percentile.
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GJR model which implies AS-CAViaR quantile dynamics encompass forecasts from the GARCH

model which implies SAV-CAViaR quantile dynamics. Therefore, the hypotheses are tested for

H
(1,2)
10 andH

(3,4)
10 with normal and Student-t distributions, respectively. In these particular cases,

forecasts from the GJR model will display correct empirical coverage by construction, whereas

forecasts from the misspeci�ed GARCH model will in general be biased. The information

vectors are Z
(i,j)
1t =

(
1, yMi,t, V aRMi,t, V aRMj ,t

)
and Z

(i,j)
2t =

(
1, yMi,t, ESMi,t, ESMj ,t

)
for

H
(i,j)
10 . The test statistics that are given in Theorem 2 are used to compute the proportion of

rejections at the 5% nominal level for the null hypotheses H
(1,2)
10 and H

(3,4)
10 .

The simulation results show that the nominal 5% test appears to be well sized. For n =

(1000, 2500, 5000), the rejection probabilities are, respectively, (7.1%, 6.5%, 5.7%) for the null

hypothesis H
(1,2)
10 (normal distribution) and (8.4%, 7.2%, 5.7%) for the null hypothesis H

(3,4)
10 (t-

distribution), when the true density, ft, of yt+1 in (5.1) is used to evaluate γ in (4.10).

In a more plausible setup in which the true density ft is unknown and where (4.11) and

(4.12) are used to estimate ft for computing γ in (4.10), the empirical rejection probabilities

vary with the sample size n and the smoothing parameter ς, as shown in Figure (1), which

plots size curves for the rejection probabilities against the range of ς values. The cycle dots, ς̂,

in Figure 1 are estimates of ς from (4.12) to evaluate ft in (4.11) for computing γ in (4.10).

A general pattern that emerges from Figure 1 is that the test appears generally well sized

in that rejection probabilities approach the 5% nominal level as the sample size increases.

Nonetheless, the size curves are relatively �at, indicating that the marginal e�ects of varying the

value of ς on rejection probabilities are small. For instance, the ranges of rejection probabilities

for n = 2500 are from 7.2% to 7.8% for the normal distribution and from 8.2% to 8.7% for the

Student-t distribution across di�erent values of ς. This result is mainly due to the component

γ22 in (4.10) that is independent of the choice of ς. The simulation results also show that the

test is well-sized for ς̂ estimated from (4.12).

5.2 Power of the Test

To generate data under the alternative hypothesis of no encompassing of GJR forecasts with

respect to GARCH forecasts, I �rst replicate data simulations following the procedure described

21



0.005 0.010 0.015 0.020

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

Size curves: Normal

ς

P
ro

ba
bi

lit
y

●

ς̂

●

ς̂

●

ς̂

n=1,000
n=2,500
n=5,000

0.005 0.010 0.015 0.020

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

Size curves: Student−t

ς
P

ro
ba

bi
lit

y

●

ς̂

●

ς̂

●

ς̂

n=1,000
n=2,500
n=5,000

Figure 1: Size Curves of the CESFE test from the simulation experiment for the 5% nominal
level. Rejection frequencies are computed over 5,000 Monte Carlo replications of the null
hypothesis that forecasts from the GJR model encompass forecasts from the the GARCH
model when the DGP is the GJR model. n is the sample size. ς is a user-de�ned constant
required in evaluating ft in (4.11) for computing γ in (4.10). A range of values for ς are
evaluated for (4.11) from 0.002 to 0.02 in increments of 0.002. (4.11) is also evaluated by ς̂
estimated from (4.12).

in the previous section, and then let the DGP be

yt+1 = δyGARCHt+1 + (1− δ) yGJRt+1 (5.12)

where yGARCHt+1 and yGJRt+1 are simulated from (5.1) with (5.2) and (5.3), respectively, and 0 <

δ ≤ 1. (5.12) implies that

V aRt+1 = δV aRGARCH
t+1 + (1− δ)V aRGJR

t+1

ESt+1 =
[
δESGARCHt+1 + (1− δ)ESGJRt+1

]
I (yt+1 < V aRt+1)

Note that the size study is obtained when the data are generated according to (5.12) with

δ = 0. Accordingly, increasing δ toward 1 allows to obtain the power curve for the CESFE test.

I consider a number of di�erent values for δ, ranging from 0.05 to 1 in increments of 0.05. For

each parameterization, I generate 5,000 Monte Carlo replications of the time series from (5.12)
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for normal and Student-t distributions, and proceed as previously by computing the proportion

of rejections of the null hypothesis that forecasts from the GJR model encompass forecasts from

the GARCH model at the 5% nominal level.

Figure 2 plots the power curves for n = (1000, 2500, 5000) when using the true conditional

density ft in the expression (4.10) for γ. As expected, the power increases with n. The loss of

power induced by estimating γ with the estimator γ̂n,ς in (4.11) is shown in Figure 3 for the

case where n = 2, 500 and for di�erent values of the smoothing parameter ς and the estimated

smoothing parameter, ς̂, from (4.12). This �gure shows that the powers are very similar based

on di�erent values of ς and ς̂, while smaller values of ς have slightly higher powers. A possible

explanation to the power insensitive to the values of ς is mainly due to the component γ22 in

(4.10) that is independent of the choice of ς.14
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Figure 2: Power Curves of the CESFE test from the simulation experiment for known
densities. Each curve represents the rejection frequency - computed by assuming ft in (4.10)
known - over 5,000 Monte Carlo replications. The null hypothesis being tested is that
forecasts from the GJR model encompass forecasts from the GARCH model when the DGP is
a convex combination of the two, with weights δ and 1− δ.

14I verify this conjecture by testing V aRt+1 only for the null hypothesis that forecasts of V aRt+1 from the
GJR model encompass those from the GARCH model, and obtain the conclusions for the test power similar to
those drawn by Giacomini and Komunjer (2005). The test results are available upon request.
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Figure 3: Power Curves of the CESFE test from the simulation experiment for n = 2, 500.
Each curve represents the rejection frequency over 5,000 Monte Carlo replications. The
unknown ft in (4.10) is evaluated by chosen ς and estimated ς̂ values. The null hypothesis
being tested is that forecasts from the GJR model encompass forecasts from the GARCH
model when the DGP is a convex combination of the two, with weights δ and 1− δ.

5.3 Test Comparisons

This subsection conducts simulation to compare the conditional encompassing test proposed

in this paper to the unconditional encompassing test of Dimitriadis and Schnaitmann (2020)

in order to understand their relative strengths. Di�erent from this study, Dimitriadis and

Schnaitmann (2020) use the 2-elicitable loss functions, developed in Fissler and Ziegel (2016),

for jointly evaluating the VaR and ES through an M-estimation. The comparison between the

two encompassing tests is based on the data simulated in Sections 5.1&5.2 for the same null

hypotheses.

Figure 4 plots the size and power comparisons of the tests. The �gure shows that: (i) the

conditional encompassing test obtains a consistently better test size than the unconditional

test for each n considered. On average, the conditional encompassing test has the test size

8.7% closer to the 5% nominal level, relative to 11.3% obtained from the unconditional encom-

passing test; and (ii) the conditional encompassing test presents an increasing test power with

the increased degree of misspeci�cation, especially for δ > 0.4 beyond which the conditional
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Figure 4: Plots of the size and power comparisons between the conditional encompassing
test proposed in this paper based on a recursive GMM estimation and the unconditional test
of Dimitriadis and Schnaitmann (2020) (DS) based on an M-estimation. The joint
encompassing test of Dimitriadis and Schnaitmann (2020) is reported here. δ takes the values
from 0.05 to 1 in increments of 0.05.

test power exceeds the unconditional one. Nonetheless, the unconditional test has stronger

power when the degree of model misspeci�cation is relatively low (δ < 0.4). I claim that the

performance di�erence is partly attributed to the non-zero o�-diagonal element of γ in (4.10)

of Theorem 1, which captures the interdependence between ES and VaR, di�erent from the

corresponding zero o�-diagonal element of Λ in Dimitriadis and Schnaitmann (2020).

6 Empirical Illustration

This section illustrates the potential usefulness of the proposed CESFE test by applying it to

evaluate and compare expected shortfall forecasts for daily S&P 500 index returns. Expected

shortfall must be computed on a daily basis for the bank-wide internal model for regulatory

capital purposes. In calculating expected shortfall, BCBS requires a one-tailed 2.5th percentile

to be used, so that τ = 0.025 is considered in this empirical illustration.

The daily S&P 500 price index was taken from Yahoo.Finance to compute returns from June

5, 1998 to April 18, 2018 (T = 5000 observations). The �rst 40% of the sample, corresponding

to the period from June 5, 1998 to May 17, 2006 (m = 2000 observations), is used as the
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in-sample period, while the remaining 60% (n = 3000 observations) are reserved to evaluate

the out-of-sample forecasting performance. I adopt a �xed forecasting scheme, which means

that all forecasts depend on the same set of parameters estimated over the �rst m observations,

while the information set is daily updated for forecasts.

6.1 Risk Models

In addition to the four models in Section 5 used for the simulation study, in this empirical

application I also consider the recently developed risk models by Chen et al. (2012) and Taylor

(2019). In particular, Taylor (2019) uses a semiparametric method to forecast VaR and ES

based on the asymmetric Laplace distribution with the probability density function of the form

f(yt) =
τ − 1

ESt
exp

(
(yt − V aRt) (τ − I (yt ≤ V aRt))

τESt

)
(6.1)

where V aRt follows either SAV- or AS-CAViaR process of Engle and Manganelli (2004) who

generalize (5.4) and (5.5) by allowing β1(τ) dependent of τ . The simple formulation for ES in

(6.1) takes the form

ESt = [1 + exp (γ0)]V aRt (6.2)

where γ0 is a constant parameter to be estimated. Since dynamics of VaR may not be the same

as dynamics of ES, I suggest an alternative formulation for ES as15

ESt = (1 + δt)V aRt (6.3)

15Taylor (2019) suggests a di�erent dynamic process for modeling expected shortfall as ESt = V aRt − xt
where

xt =

{
γ0 + γ1 (V aRt−1 − yt−1) + γ2xt−1 if yt−1 ≤ V aRt−1

xt−1 otherwise

However, given that τ = 0.025 is an extreme lower tail, 97.5% of probability mass of yt thus have xt = xt−1,
which behaves like a unit root. In the empirical application of this paper, this issue has caused nonstationary
behavior in expected shortfall forecasts from a �xed forecast scheme.
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with an autoregressive process for δt

log (δt) = γ0 + γ1log (δt−1) + γ2 |yt−1| (6.4)

Note that (6.2) and (6.3) ensure that the estimates of VaR and ES do not cross each other. I

denote the model with (5.4) and (6.2) as SAV − CAV iaRES, the model with (5.4) and (6.3)

as SAV − AR − CAV iaRES, the model with (5.5) and (6.2) as AS − CAV iaRES, and the

model with (5.5) and (6.3) as AS − AR− CAV iaRES.

It should be noted that (6.1) is used as a quasi-maximum likelihood to infer the values of

V aRt and ESt. In this context, the observations yt are not assumed to follow the asymmetric

Laplace distribution. To emphasize this, Gerlach et al. (2011), Liu (2016) and Liu and Luger

(2018) clarify that the parameter τ is not estimated, but is a chosen �xed value, and that it

is only a quantile that is estimated. The asymmetric Laplace quasi-likelihood simply provides

a computationally convenient basis with which to enable their Bayesian approach to quantile

regression.

By contrast, to capture potential skewness and heavy tails, Chen et al. (2012) assume that

yt follows an asymmetric Laplace distribution as

yt = (εt − µε)σt, εt
i.i.d∼ AL(0, 1, p) (6.5)

where AL (0, 1, p) represents the standard asymmetric Laplace distribution with mode 0 and

variance 1, and the shape parameter p which is de�ned such that p = Pr (εt < 0). The

AL (0, 1, p) probability density takes the following form

f (ε; p) = bpexp

[
−bp |ε|

(
1

p
I (ε < 0) +

1

1− p
I (ε > 0)

)]
(6.6)

where bp =
√
p2 + (1 + p)2 . The variance is 1 in (6.6), but the mean is E(εt) = 1−2p

bp
denoted

as µε. Thus, et = εt − µε has an AL distribution with mean 0, variance 1, and the shape

parameter p. Note that p = 0.5 implies an symmetric AL distribution. Speci�cally, if p < 0.5,

the density is skewed to the right, while the opposite applies for p > 0.5. Di�erent from τ in
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(6.1), the shape parameter p in (6.6) will be estimated from data.

The time-varying variance in (6.5) follows either a standard GARCH(1,1) process as

σ2
t = β0 + β1σ

2
t−1 + β2y

2
t−1 (6.7)

or a GJR-GARCH(1,1) process as

σ2
t = β0 + β1σ

2
t−1 + β+

2 I (yt−1 > 0) y2
t−1 + β−2 I (yt−1 < 0) y2

t−1 (6.8)

The forecasts of VaR can then be obtained as

V aRt+1 (τ |Ft) =


σt+1

p
bp
log
(
τ
p

)
− µεσt+1, for 0 ≤ τ < p

−σt+1
1−p
bp
log
(

1−τ
1−p

)
− µεσt+1, for p ≤ τ < 1

and the forecasts of expected shortfall conditional on yt+1 being below V aRt+1 is given by

ESt+1 (τ |Ft) =

1− 1

log
(
τ
p

)
V aRt+1 (τ |Ft) ; 0 ≤ τ < p

where only the relevant case τ < p is shown. I denote the models of (6.7) and (6.8) with a

constant shape parameter, p, as ALGARCH − CP and ALGJR− CP , respectively.

To allow dynamics of ES di�erent from dynamics of VaR, the following speci�cation for the

shape parameter p is speci�ed to allow a time-varying shape

pt =
1

1 +
√

ut
vt

where

ut = (1− λ) |et−1| I (et−1 ≥ 0) + λut−1

vt = (1− λ) |et−1| I (et−1 < 0) + λvt−1

and 0 ≤ λ ≤ 1 is an exponential smoothing parameter. The dynamic speci�cation of the shape
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parameter allows all higher moments to change over time, in a manner directly in�uenced by the

standardized data sample et = yt/σt. I denote the models of (6.7) and (6.8) with a time-varying

shape parameter, pt, as ALGARCH − TV P and ALGJR− TV P , respectively.

For each of the twelve models, I �rst construct a vector of estimates of the unknown param-

eters by using the �rst m = 2000 observations. I then use this vector of parameter estimates

to form out-of-sample VaR and ES forecasts according to a �xed forecasting scheme. In other

words, at each data time period t, m ≤ t ≤ T −1, I compute one-step-ahead forecasts, V aRi,t+1

and ESi,t+1, for i = 1, 2, ..., 12, based on the twelve models by updating the information set

Ft−1 to Ft.

For illustration, I report the parameter estimates of the twelve models in Table 1 where

t-statistics are included in parentheses. The table shows that the parameter estimates are

statistically signi�cant at 5% level, except the insigni�cant estimates of β+
2 (τ) from the ALGJR-

TVP model and a few β0(τ)'s. The estimates of λ that determines the time-varying shape

parameter pt are signi�cant at all conventional levels, while estimates for the constant shape

parameter p suggest that the returns are left-skewed, as p̂ > 0.5. The results also show that

the quantile persistence, β1(τ = 2.5%), estimated from the SAV- and AS-CAViaRES models,

appears to be higher than the volatility persistence, β1, from the GARCH and GJR models.

As a quick check of the out-of-sample performance of individual risk models, I compute the

empirical coverage ratio, τ̂ /τ , for V aR, where τ̂ = n−1
∑n−1

t=0 I
(
yt+1 < V̂ aRt+1

)
, and the em-

pirical loss ratio, ELR =
∑n−1

t=0

(
ÊSt+1I

(
yt+1 < V̂ aRt+1

))
/
∑n−1

t=0 (yt+1 I
(
yt+1 < V̂ aRt+1

))
for ES. Note that these ratios are absolute evaluations. If a risk model under consideration

performs well to satisfy (3.3) and (3.4), then both ratios are expected to equal one. Table 2

reports the empirical out-of-sample coverage and loss ratios. Models with the ratios closer to

1 are preferred. Average deviation is measured as the average of the absolute deviations of the

empirical coverage and loss ratios from the value of 1, such as (|1− τ̂ /τ |+ |1− ELR|) /2.

Table 2 shows that the best model for forecasting VaR is ALGARCH-TVP with empirical

coverage ratio, 0.907, followed by ALGJR-TVP with the ratio of 0.813. Nonetheless, the table

29



Table 1: Parameter Estimates of the Risk Models

Volatility Models β0 × 104 β1 β2 β+
2 β−2 v p λ

GARCH-N 4.123 0.853 0.147

(2.192) (15.31) (7.143)

GJR-N 1.582 0.955 -0.018 0.098

(2.264) (62.79) (-1.956) (4.375)

GARCH-t 3.365 0.879 0.120 11.79

(2.264) (18.79) (2.131) (9.067)

GJR-t 1.671 0.854 -0.011 0.101 16.32

(3.790) (16.79) (-1.913) (10.29) (8.298)

ALGARCH-CP 0.022 0.895 0.104 0.541

(2.356) (12.15) (3.987) (11.07)

ALGJR-CP 0.022 0.906 0.001 0.185 0.541

(3.124) (26.37) (1.889) (5.537) (16.91)

ALGARCH-TVP 0.031 0.894 0.105 0.961

(1.317) (18.94) (6.013) (102.4)

ALGJR-TVP 0.031 0.902 0.001 0.192 0.971

(1.926) (19.02) (1.432) (9.631) (78.33)

CAViaRES Models β0 (τ)× 104 β1 (τ) β2 (τ) β+
2 (τ) β−2 (τ) γ0(τ) γ1(τ) γ2(τ)

SAV −3.144 0.923 -0.152 -1.317

(-1.404) (52.39) (-2.213) (-40.23)

SAV-AR −1.398 0.977 -0.048 -0.144 0.916 3.229

(-1.445) (32.59) (-2.001) (-2.346) (7.511) (20.19)

AS −1.325 0.975 -0.113 0.030 -1.441

(-1.367) (86.45) (-6.051) (3.161) (-29.50)

AS-AR −1.337 0.974 -0.116 0.029 -0.811 0.469 8.396

(-1.487) (45.45) (-3.025) (2.788) (-6.385) (2.934) (49.86)

This table reports parameter estimates of the twelve risk models for τ = 0.025. t-statistics are reported

in parentheses. The models are estimated for daily S&P 500 index returns sampled from June 5, 1998 to

May 17, 2006 (2000 observations). SAV, SAV-AR, AS, and AS-AR represent the risk models proposed

by Taylor (2019). ALGARCH-CP, ALGJR-CP, ALGARCH- TVP, and ALGJR-TVP are the risk models

proposed by Chen et al. (2012). These models are speci�ed in Section 6.1.

shows that the models with the assumed AL distribution have generally overestimated risks, as

their empirical coverage ratios are less than 1. Therefore, as being conservative, these models

are favored by regulators in requiring higher level of minimum capital from commercial banks.

Among models that underestimate risks with coverage ratios greater than 1, the best model for

forecasting VaR is the SAV model with empirical coverage ratio, 1.453, followed by the GARCH-

t model which has the ratio of 1.48. Commercial banks would prefer these models with empirical

coverage ratios greater than 1 in that lower levels of minimum capital are required.
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Table 2: Out-of-Sample Empirical Coverage and Loss Ratios

Models VaR Coverage Ratio ES Loss Ratio Average Deviation
GARCH-N 1.507 0.904 0.302

GJR-N 1.733 0.890 0.422

GARCH-t 1.480 0.952 0.264

GJR-t 1.680 0.922 0.379

SAV 1.453 0.960 0.247

SAV-AR 1.680 0.940 0.370

AS 1.747 0.890 0.429

AS-AR 1.773 0.911 0.431

ALGARCH-CP 0.747 1.063 0.158

ALGJR-CP 0.653 1.068 0.208

ALGARCH-TVP 0.907 1.070 0.082

ALGJR-TVP 0.813 1.079 0.133

τ̂ = n−1
∑n−1

t=0 I
(
yt+1 < V̂ aRt+1

)
as the empirical coverage is expected to equal the nominal coverage τ . τ̂ /τ is

referred to as empirical coverage ratio for VaR forecasts. The empirical loss ratio is computed for expected shortfall

forecasts as ELR =
∑n−1

t=0

(
ÊSt+1I

(
yt+1 < V̂ aRt+1

))
/
∑n−1

t=0

(
yt+1I

(
yt+1 < V̂ aRt+1

))
. Models with these

ratios closer to 1 are preferred. Average deviation is measured as the average of the absolute deviations of the

empirical coverage and loss ratios from the value of 1, such as (|1− τ̂/τ |+ |1− ELR|) /2.

On the other hand, Table 2 shows that the best model for forecasting expected shortfall is

the SAV model with the loss ratio, 0.960, followed by the GARCH-t model with the loss ratio of

0.952. Similar to the VaR forecasts, the SAV and GARCH-t models tend to underestimate tail

risks due to their loss ratios smaller than 1, while the models with the assumed AL distribution

have overestimated tail risks as their loss ratios are greater than 1. Among the twelve competing

models, the ALGARCH-TVP model has the smallest average deviation (0.082) of the ratios

from the value of 1, followed by the model of ALGJR-TVP with the average deviation of 0.133.

6.2 CESFE Test Results

To assess the relative performance of the models with the best empirical coverage and loss

ratios as identi�ed in Table 2, I perform the proposed CESFE test for the model set, M =

(ALGARCH − TV P,ALGJR− TV P, SAV,GARCH − t). Speci�cally, I test the following

null hypotheses: (1) ALGARCH-TVP encompasses SAV, (2) ALGARCH-TVP encompasses

GARCH-t, (3) ALGARCH-TVP encompasses ALGJR-TVP, and (4) SAV encompasses GARCH-

t. The optimal combination weights, β∗ij =
(
θ∗0,ij, θ

∗
i , θ
∗
j , w

∗
0,ij, w

∗
i , w

∗
j

)
are estimated for the
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forecast combinations θ0,ij + θiV aRi,t+1 + θjV aRj,t+1 and w0,ij + wiESi,t+1 + wjESj,t+1 using

the GMM approach described in Section 4. For the purposes of this empirical application, I set

Z1t = (1, yt, V aRi,t, V aRj,t) and Z2t = (1, yt, ESi,t, ESj,t) for i, j ∈M and i 6= j.

Table 3 reports the estimated combination weights, θ̂i,n, θ̂j,n, ŵi,n, ŵj,n, together with t-

statistics in parentheses. It is important to note that the computation of t-statistics is based on

the estimator γ̂n,τ of (4.10) to obtain the standard errors from Theorem 1. In particular, based

on the simulation results from the previous section, I report the test results for several selected

values of ς, including 0.002, 0.01, 0.02 and the estimate of ς from (4.12). For these values of ς,

the CESFE test has reasonable size and power properties, as shown in the simulation exercise.

Table 3 also contains the corresponding test statistics CESFE1n and CESFE2n de�ned in

Theorem 2, which are marked with * if they are statistically signi�cant at the 5% level.

The CESFE test results in Table 3 reject the null hypotheses that the tail risk forecasts

from the ALGARCH-TVP model encompass the forecasts from either SAV or GARCH-t model,

since both CESFE1n and CESFE2n are statistically signi�cant at 5% level using χ2
4. These

results imply that the forecast combinations via the estimated optimal weights will outperform

the individual forecasts. While the optimal VaR weights, 0.029 and 0.002, respectively, for SAV

and GARCH-t are small and statistically insigni�cant, their optimal weights, -0.993 and -0.647,

of expected shortfall forecasts are statistically signi�cant. The estimated negative weights tend

to correct the overestimated tail risks by the ALGARCH-TVP model, consistent with the

results from Table 2 .

In addition, the CESFE test results reject the null hypothesis that ALGARCH-TVP en-

compasses ALGJR-TVP. While the forecasts from the ALGJR-TVP model have received much

higher positive and signi�cant optimal combination weights, the negative optimal combination

weight (-0.132) of ALGARCH-TVP, which is signi�cant at 10% level for the expected shortfall

forecast, appears to be important in correcting the overestimated risk by the ALGJR-TVP

model. Note that in Table 2 the overestimated risk from the ALGJR-TVP model is implied by

its empirical coverage ratio, 0.813, which is lower than the value of 0.907 from the ALGARCH-

TVP model.
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Table 3: Conditional Expected Shortfall Forecast Encompassing Test Results

Models θ1n θ2n w1n w2n CESFE1n CESFE2n

ALGARCH-TVP vs. SAV 0.982 0.029 1.629 -0.993

ς = 0.002 (2.564) (0.041) (5.730) (-2.659) 64.99* 92.27*

ς = 0.01 (2.195) (0.031) (5.694) (-2.653) 66.02* 73.90*

ς = 0.02 (1.960) (0.024) (5.645) (-2.638) 66.34* 66.49*

ς̂ = 0.0007 (2.717) (0.045) (5.749) (-2.670) 63.99* 111.5*

ALGARCH-TVP vs. GARCH-t 0.982 0.002 1.319 -0.647

ς = 0.002 (2.226) (0.003) (2.907) (-2.114) 86.94* 51.68*

ς = 0.01 (1.971) (0.001) (2.899) (-2.110) 83.13* 24.34*

ς = 0.02 (1.732) (0.001) (2.887) (-2.106) 81.90* 17.58*

ς̂ = 0.0007 (3.316) (0.004) (2.893) (-2.112) 91.10* 104.5*

ALGARCH-TVP vs. ALGJR-TVP 0.042 0.932 -0.132 0.960

ς = 0.002 (0.097) (2.261) (-1.753) (1.913) 54.64* 105.9*

ς = 0.01 (0.060) (1.970) (-1.760) (1.960) 59.03* 96.91*

ς = 0.02 (0.046) (1.767) (-1.761) (1.969) 60.34* 94.48*

ς̂ = 0.0007 (0.131) (3.190) (-1.746) (1.857) 53.43* 120.9*

SAV vs. GARCH-t 1.116 -0.077 0.625 0.268

ς = 0.002 (1.773) (-0.122) (0.300) (0.126) 8.709 9.370

ς = 0.01 (1.322) (-0.091) (0.301) (0.126) 9.166 9.079

ς = 0.02 (1.034) (-0.071) (0.299) (0.126) 9.342 8.373

ς̂ = 0.0008 (1.535) (-0.104) (0.298) (0.125) 7.935 8.978

This table reports out-of-sample CESFE test results for risk measures. The combination weights are estimated using

the GMM approach described in Section 4. t-statistics are reported in parentheses and calculated based on Theorem 1

with ς = 0.002, 0.01, 0.02 and ς̂ estimated from (4.12). The marked (*) values of CESFE1n and CESFE2n are

statistically signi�cant at the 5% level.

By contrast, Table 3 shows that both CESFE1n and CESFE2n are statistically insigni�cant

in the case of SAV versus GARCH-t, so that the CESFE test results are inconclusive for forecast

selection between these two competing models. Since the quantile function of the GARCH-t

model is a special case of the SAV model, this inconclusive test result indicates that the SAV

model might collapse to the GARCH-t model for daily S&P 500 index returns.

Table 4 summarizes the results of the CESFE test which is applied to 66 pairwise compar-

isons among the 12 competing models. Average optimal combination weights, θ̄ and w̄, are

reported for each competing model with average t-statistics in parentheses. The columns of

Inconclusive, Encompassing, Encompassed and Combination contain the proportion of times

among 11 comparisons that the row-heading model: (1) has inconclusive CESFE test results,

(2) encompasses other competing models, (3) is encompassed by other competing models, and
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(4) is combined with other competing models using the estimated optimal combination weights,

respectively.

Table 4: Summary of Conditional Expected Shortfall Forecast Encompassing Test Results

Models θ̄ w̄ Inconclusive Encompassing Encompassed Combination

GARCH-N 0.056 0.339 18.2% 0.0% 36.4% 45.4%

(0.253) (1.156)

GJR-N 0.184 -0.693 9.1% 4.5% 22.7% 63.7%

(0.680) (-9.314)

GARCH-t 0.228 0.110 6.8% 4.5% 31.8% 56.9%

(1.427) (0.095)

GJR-t 0.368 0.868 6.8% 9.1% 11.4% 72.7%

(1.308) (2.329)

SAV 0.409 0.010 18.2% 18.2% 13.6% 50.0%

(1.695) (0.231)

SAV-AR 0.368 0.051 2.3% 0.0% 18.2% 79.5%

(1.372) (0.151)

AS 0.478 -0.112 15.9% 6.8% 34.1% 43.2%

(1.496) (-5.325)

AS-AR 0.615 0.388 9.1% 34.1% 18.2% 38.6%

(2.046) (1.383)

ALGARCH-CP 0.737 0.696 0.0% 63.6% 0.0% 36.4%

(1.917) (1.771)

ALGJR-CP 0.815 1.091 0.0% 27.3% 9.1% 63.6%

(4.359) (5.421)

ALGARCH-TVP 0.876 1.023 0.0% 18.2% 0.0% 81.8%

(2.531) (1.863)

ALGJR-TVP 0.962 1.166 0.0% 9.1% 0.0% 90.9%

(4.798) (3.325)

This table summarizes the CESFE test results for 66 pairwise comparisons among the 12 competing models. Average

optimal combination weights, θ̄ and w̄, are reported for each model with average t-statistics in parentheses. The

columns of Inconclusive, Encompassing, Encompassed and Combination contain the proportion of times that

the row-heading model: (1) has inconclusive CESFE test results, (2) encompasses other competing models,

(3) is encompassed by other competing models, and (4) is combined with other competing models using

the estimated optimal combination weights, respectively.

Table 4 shows that among the competing models, the ALGJR-TVP model has obtained the

highest and signi�cant average optimal combination weights, 0.962 and 1.166, respectively for

its VaR and ES forecasts. The CESFE test results show that in about 90.9% of the comparisons,

the ALGJR-TVP model signi�cantly contributes useful information to improve risk forecasting

performance through combinations. In about 63.6% of comparisons, the forecasts from the
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ALGARCH-CP model encompass those from competing models. The ALGARCH-CP model

has signi�cant combination weights, 0.737 and 0.696, on average for its VaR and ES forecasts,

respectively. By contrast, about 36.4% of the CESFE test results show that the forecasts from

the GARCH-N model are encompassed by the forecasts of other competing models.

Overall, Table 4 shows that the risk models with the assumption of an asymmetric Laplace

distribution outperform other competing models considered in this empirical application for

daily S&P 500 index returns, although these models tend to overestimate tail risks so that higher

levels of minimum capital will be required for commercial banks. However, when encompassing

is rejected, forecast combination via the estimated optimal weights can to some extent correct

the overestimation of tail risks.

7 Conclusion

In this paper I propose a conditional encompassing test for comparing alternative VaR and ES

forecasts in an out-of-sample framework. I base the evaluation on the concept of encompassing,

which requires that a forecast be able to explain the predictive ability of a rival forecast. The

test thus can be viewed as a test of superior predictive ability. The setup proposed in this

paper also allows for discussing the bene�t of forecast combination for VaR and ES forecasts,

which becomes relevant in cases where neither forecast encompasses its competitor.

The test relies on a conditional, rather than unconditional, approach to out-of-sample eval-

uation, and the proposed test is derived in an environment with asymptotically nonvanishing

estimation uncertainty. These features allow comparison of forecasts based on both nested

and nonnested models and of forecasts produced by general estimation procedures. A fairly

standard GMM estimation technique is implemented for the encompassing test, with the op-

timization procedure appropriately modi�ed to accommodate the non-di�erentiable criterion

functions. The proposed test displays good size and power properties for samples of sizes

typically available in �nancial applications.

I apply the new encompassing test to evaluate and compare forecasts of conditional value-

at-risk and expected shortfall for daily S&P 500 index returns. In addition to standard GARCH
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models with the assumptions of normal and Student-t distributions, several recently developed

risk models are considered to forecast tail risks, including the semiparametric approach of Taylor

(2019) based on a quasi-maximum likelihood function and the parametric approach of Chen

et al. (2012) that assumes that error terms follow an asymmetric Laplace distribution with a

time-varying shape parameter to capture potential skewness and heavy tails.

The encompassing test results have revealed that the risk models of Chen et al. (2012) not

only often encompass other competing models, but also contribute useful information to improve

risk forecasting performance through forecast combinations. Nonetheless, the risk models of

Chen et al. (2012) tend to overestimate tail risks so that higher levels of minimum capital

are required for commercial banks. On the other hand, when neither forecast encompasses

its competitor (for example, encompassing is rejected), a forecast combination through the

estimated optimal weights outperforms individual forecasts.
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A Proof for (3.10)

Proof. Let

ξt(θ) ≡ Et
[
τ − I

(
Yt+1 − θ

′
V̂ aRt+1 < 0

)](
Yt+1 − θ

′
V̂ aRt+1

)
=

∫
R
τ
(
yt+1 − θ

′
V̂ aRt+1

)
dFt (yt+1)

−
∫
R
I
(
Yt+1 − θ

′
V̂ aRt+1 < 0

)(
Yt+1 − θ

′
V̂ aRt+1

)
dFt (yt+1)

=

∫ +∞

−∞
τ
(
yt+1 − θ

′
V̂ aRt+1

)
dFt (yt+1)−

∫ 0

−∞
εt+1dFt

(
εt+1 + θ

′
V̂ aRt+1

)
where εt+1 = Yt+1−θ

′
V̂ aRt+1. Thus,∇θξt(θ) = −τ V̂ aRt+1−

∫ 0

−∞ V̂ aRt+1εt+1ft (εt+1+

θ
′
V̂ aRt+1

)
dεt+1, because I assume that the random variable Yt+1 has a continuously

di�erentiable density ft, that is, dFt (yt+1) = ft(yt+1)dyt+1 and ft continuous. By
arranging the previous equality, I obtain

∇θξt(θ) = −τ V̂ aRt+1 −
[
V̂ aRt+1εt+1f

(
εt+1 + θ

′
V̂ aRt+1

)]0

−∞

+

∫ 0

−∞
V̂ aRt+1ft

(
εt+1 + θ

′
V̂ aRt+1

)
dεt+1

so that ∇θξt(θ) = −τ V̂ aRt+1 + V̂ aRt+1

∫ θ′ V̂ aRt+1

−∞ ft (yt+1) dyt+1. I can then write

∇θξt(θ) = −E
{[
τ − I

(
Yt+1 − θ

′
V̂ aRt+1 < 0

)]
V̂ aRt+1

}
. If θ∗ is a solution to the

minimization problem of quantile regression, then

∇θξt(θ)|θ∗ = 0 a.s.− P

that is,

Et

{[
τ − I

(
Yt+1 − θ∗

′
V̂ aRt+1 < 0

)]
V̂ aRt+1

}
= 0, a.s.− P

Because V̂ aRt+1 is Ft−measurable, I can rewrite the previous equation as

Et

[
τ − I

(
Yt+1 − θ∗

′
V̂ aRt+1 < 0

)]
= 0, a.s.− P

B Proof for (3.11)

Proof. Consider the �rst-order condition of optimization,

∇wLτ
(
Yt+1 −w

′
ÊSt+1;θ∗

′
V̂ aRt+1

)
= −2ÊSt+1

(
Yt+1 −w

′
ÊSt+1

)
I
(
Yt+1 < θ

∗′ V̂ aRt+1

)
= 0
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so that the solution, w∗, satis�es

Et

[
ÊSt+1

(
Yt+1 −w∗

′
ÊSt+1

)
I
(
Yt+1 < θ

∗′ V̂ aRt+1

)]
= 0, a.s.− P

Because ÊSt+1 is Ft−measurable, I can rewrite the previous equation as

Et

[(
Yt+1 −w∗

′
ÊSt+1

)
I
(
Yt+1 < θ

∗′ V̂ aRt+1

)]
= 0, a.s.− P

C Proof of Theorem 1

Proof. The derivative of g (β; Yt+1,Z1t,Z2t) with respect to β is given by

∇βg(β) =

 ∂g1(θ;Yt+1,Z1t)

∂β
′

∂g2(w;Yt+1,Z2t,θ)

∂β
′

 (C.1)

which is a k×4 derivative matrix. (C.1) requires that g(β) be once di�erentiable, which
is not the case here. Applying Newey and McFadden (1994), Giacomini and Komunjer

(2005) have shown that ∂
[
τ − I

(
Yt+1 < θ

′
V̂ aRt+1

)]
Z1t/∂θ

′
= −δ

(
θ
′
V̂ aRt+1 − Yt+1

)
Z1tV̂ aR

′

t+1 is a k1×2 derivative matrix, where δ (·) represents the Dirac function, that
is, δ(x) = 0 if x 6= 0 and

∫
R δ(x)dx = 1. Using this result, I obtain the following matrix

of two partitions

∇βg1(θ) =

(
−δ
(
θ
′
V̂ aRt+1 − Yt+1

)
Z1tV̂ aR

′

t+1

... 0k1×2

)
which is a k1 × 4 derivative matrix. Furthermore,

∇βg2(β) =

(
−δ
(
θ
′
V̂ aRt+1 − Yt+1

)
Z2tV̂ aR

′

t+1

(
yt+1 −w

′
ÊSt+1

) ...
−Z2tÊS

′

t+1I
(
yt+1 < θ

′
V̂ aRt+1

))
is a k2 × 4 derivative matrix of two partitions.

The proof of Proposition 2 in Giacomini and Komunjer (2005) shows that Et

[
δ
(
θ∗
′

V̂ aRt+1 − Yt+1

)]
= ft

(
θ∗
′
V̂ aRt+1

)
where ft(·) is the density of Yt+1 conditional on

the information set Ft. From (3.10), it is easy to show thatEt

[
I
(
yt+1 < θ

∗′V̂ aRt+1

)]
=

Ft

(
θ∗
′
V̂ aRt+1

)
p→ τ where Ft(·) is the continuous cumulative distribution function

of Yt+1 conditional on Ft. Then, I have

γ1 = E [∇βg1(θ)] =

(
−E

[
ft

(
θ∗
′
V̂ aRt+1

)
Z1tV̂ aR

′

t+1

]
... 0k1×2

)
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and

γ2 = E [∇βg2(β)]

=

(
−E

[
ft
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)(
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ÊSt+1

)
Z2tV̂ aR

′

t+1

]
... − τE
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such that
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γ11 γ12
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FromAssumptions 2&3, I can now apply theDelta method to show that
√
n
(
β̂n − β∗

)
d→

N
(
0,
(
γ
′
S−1γ

)−1
)
.

D Proof of Theorem 2

Proof. From Theorem 1, it follows that
√
n
(
β̂n − β∗

)
d→ N (0,Ω), with nonsingular

Ω =
(
γ
′
S−1γ

)−1
. A consistent estimate Ω̂ of Ω provides that

n
(
β̂n − β∗

)′
Ω̂
−1

n

(
β̂n − β∗

)
d→ χ2

4 (D.1)

see, e.g., Theorem 4.30 of White (2001), Greene (2012), �13. From (D.1) Theorem
2(a)&(b) follow.
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