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1 Introduction

The importance of expected shortfall has recently become more institutional since Basel Com-
mittee on Banking Supervision (BCBS) revised in 2016 the market risk framework to enhance
a shift from Value at Risk (VaR) to an expected shortfall (ES) measure of risk under stress.!
As a coherent measure of tail risks, expected shortfall is defined as the expected return in the
part of the return distribution that is more extreme than a given quantile (Artzner et al., 1999;
Tasche, 2002; Gerlach and Chen, 2016). Hence, the use of expected shortfall helps ensure a
more prudent capture of tail risks and capital adequacy of commercial banks during periods
of significant financial market stress. The current literature in financial econometrics and risk
management has developed a variety of approaches to estimate expected shortfall.?

However, the evaluation and comparison of expected shortfall forecasts are still ongoing
in its infant stage. For instance, in the direction of backtesting expected shortfall forecasts,
studies have focused on the absolute evaluation, that is, on testing whether a forecasting model
is correctly specified or whether a sequence of forecasts satisfies certain optimal properties, see,
e.g., Kerkhof and Melenberg (2004), Wong (2008), Bayer and Dimitriadis (2020), among others.

A practical problem with the absolute evaluation, nonetheless, is that if different models are
rejected as being misspecified or if more than one model are accepted, then the tests provide no
guidance as to which one to choose. In this article I thus focus on the relative evaluation, which
involves comparing the performance of competing, possibly misspecified models or sequences
of forecasts for a variable and choosing the one that performs the best.

The goal of this paper is to develop a relative evaluation by testing conditional efficiency
among expected shortfall forecasts. A forecast is said to be conditionally efficient if the expected
loss of a combination of that forecast and a rival forecast is not significantly less than the
3

expected loss of the original forecast alone.” In this regard, one concludes that the original

forecast conditionally encompasses the rival, as it is able to explain the predictive ability of the

!The standards of minimum capital requirements for market risks published in January 2016 is available at
https://www.bis.org/bcbs/publ /d352.htm.

2See, e.g., Zhu and Galbraith (2011), Chen et al. (2012), Gerlach and Chen (2016), Taylor (2019), Gerlach
and Chen (2017), among others. Nadarajah (2014) provides a comprehensive review for the estimation methods
of expected shortfall.

3Early studies have applied this encompassing principle for conditional mean forecasts. See, e.g., Lu and
Mizon (1996), Clark and McCracken (2001), Fang (2003), Clements and Harvey (2010), among others,



rival.

Based on this encompassing principle, I therefore propose a conditional encompassing test,
which involves a tick loss function for VaR forecasts and a quadratic loss function conditional
on the VaR forecasts for ES forecasts. In this regard, the performance of ES forecasts can be
evaluated conditional on the VaR forecasts. In particular, the test allows a standard recursive
GMM to estimate optimal combination weights for the VaR and ES forecasts, and then the
corresponding asymptotic properties of the GMM estimates are used to construct a Wald type
test for the null hypothesis that a forecast conditionally encompasses a rival forecast.

An important feature of the conditional encompassing test is that it gives a theoretical basis
for combinations of expected shortfall forecasts in cases when neither forecast encompasses its
competitor.? Yet, expanding the information set through combination is particularly useful for
evaluating expected shortfall conditional on a quantile usually at a small probability level, i.e.,
1-5% in the Basel Accords regulations. VaR and ES at extreme probabilities are very sensitive
to the few observations in the tails of a sample distribution, and hence, combining forecasts
of different information sets could be an effective way to make the forecast performance more
robust to the effects of sample-specific factors, such as fewer observations in extreme tails,
outliers, and so on.

This paper conducts Monte Carlo simulations to examine asymptotic properties of the
proposed test. Using daily S&P 500 index returns, I empirically illustrate the usefulness of the
conditional expected shortfall forecast encompassing (CESFE) test in evaluating and comparing
ES forecasts obtained from the recently developed risk models, including the parametric models
of Chen et al. (2012) and the semiparametric models of Taylor (2019).

The work closely related to this paper is the study of Dimitriadis and Schnaitmann (2020).
Nonetheless, this paper differs from their study in that they propose an unconditional encom-
passing test using the 2-elicitable loss functions, developed in Fissler and Ziegel (2016), for
jointly evaluating VaR and ES forecasts. In addition, they implement the test through an M-

estimation of optimal combination weights. The simulation study in Section 5.3 shows that the

4From a theoretical viewpoint, forecast combination can be seen as a way to pool the information contained
in the individual forecasts, and its benefits have been widely advocated by a large amount of studies. See, e.g.,
e.g., Stock and Watson (1999&2003), Fang (2003), Eklund and Karlsson (2007), among others.



conditional and unconditional encompassing tests have their respective strengths in finite sam-
ples. In particular, the conditional test obtains better test size, while the unconditional test has
stronger test power when the degree of model misspecification is relatively low. As discussed in
Sections 4.2&5.3, the performance difference is partly due to the quadratic loss function chosen
for ES forecasts conditional on VaR forecasts, which captures the interdependence between ES
and VaR by a non-zero off-diagonal element in the Jacobian derivative matrix in the Wald test.

The remainder of the paper is organized as follows. Section 2 defines conditional expected
shortfall and introduces forecast environment. Section 3 defines encompassing of conditional
expected shortfall forecasts with the chosen loss functions for jointly evaluating VaR and ES
forecasts. Section 4 constructs the conditional encompassing test through a recursive GMM
and obtains its asymptotic properties to compute the test statistics. Section 5 examines the size
and power properties of the test through a simulation study. Section 6 empirically illustrates
the test in evaluating and comparing alternative ES forecasts for the S&P 500 index returns.

Section 7 concludes the paper. The appendix presents proofs.

2 Conditional Expected Shortfall and Forecast Environ-
ment

Consider a stochastic process YV = {Vt Q=R EeN t=1,..., T} defined on a complete
probability space (2, F, P), where F = {F;,,t =1,....,T} and F, = 0 {V,, s <t} is a chosen
o-field. The observed vector V; is partitioned as V; = (K,X;)l, where V; : @ — R is a
continuous random variable of interest, and X, : Q — R¥ is a k x 1 vector of explanatory
variables. This paper is interested in the expected shortfall forecast of the distribution of Y; 4

at a given probability level, 7 € (0, 1), conditional on the information set F;, defined as

1 T
ESt+1(T|./—"t) = ;/ VaRt+1 <L|E> du (21)

0
where VaR; 1 (7|F;) is the 7 x 100%th VaR forecast of the distribution of Y;,; conditional on
Fi, defined as

Pr (1/;+]_ < Va/Rt+1‘.F-t) =T (22)
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or

VaRy, (7|F) = FL (7| F) (2.3)

Yii1

where Fy, il (+]F) is the inverse of the conditional cumulative distribution function (Fy,,, (:|F))
of Y;11, which is assumed continuous. Conditional expected shortfall in (2.1) can alternatively

be expressed as
ESi1 (7|1 F) = B [Yia|Yip < VaRyy (7|1F))] (2.4)

Both (2.1) and (2.4) show that ESy, (7|F;) is defined based on VaR;,, (7|F;).° For example,
(2.4) represents the expected value of Y;,; conditional on Y;;; being more extreme than its
7 x 100%th quantile at time ¢ + 1.

The goal of this paper is to propose a test for comparing alternative sequences of one-
step-ahead forecasts of ES; 1(7|F:). I perform the evaluation in an out-of-sample fashion.
This involves dividing the sample of size T into an in-sample part of size m and an out-of-
sample part of size n, so that 7" = m + n. The in-sample portion is used to produce the first
set of forecasts, and the evaluation is performed over the remaining out-of-sample portion. In
particular, the forecasts may be based on parametric models or be generated by semiparametric
or nonparametric techniques. The forecasts can be produced using either a fixed forecasting
scheme or a rolling window forecasting scheme.® For example, for a parametric model, a fixed
forecasting scheme involves estimating the parameters only once on the first m observations and
using these estimates to produce all of the forecasts for the out-of-sample period t = m—+1,...,T.
In contrast, a rolling window forecasting scheme reestimates parameters at each out-of-sample
point t = m + 1, ..., T using an estimation sample containing the m most recent observations,
that is, the observation from ¢t — m + 1 to t.

To further simplify the notation, I hereafter drop the reference to the index 7 and the

conditioning information F; to simply denote the 7 x 100%th ES and VaR at time ¢ + 1

5(2.1) is often referred to as the integrated conditional quantile function (ICQF), see, e.g., Peracchi and
Tanase (2008), Leorato et al. (2012), among others

6The test requires the Fi-measurable functions of VaR;,1 and ES;,; constant over time. This implies that
the use of an expanding estimation window (recursive forecasting scheme) is not allowed, whereas either a fixed
or a rolling window of constant length satisfies the requirement. See also Giacomini and Komunjer (2005).



conditional on F; as E£S;y1 and VaR,, 1. As a general rule, a lower-case letter is used to denote
observations of the corresponding random variable (i.e., v; and V;). The in-sample size m is a
finite constant, chosen by the user a priori. As a consequence, all of the results in this paper
should be interpreted as being conditional on the given choice of m, but for ease of notation I

choose not to make this dependence explicit.

3 Encompassing Principles for Conditional Expected Short-
fall Forecasts

The approach to comparing conditional expected shortfall forecasts is based on the principle
of encompassing, see, e.g., Lu and Mizon (1996), Harvey et al. (1998), Clark and McCracken
(2001) and West (2001), among others. Encompassing arises when one of two competing
forecasts is able to explain the predictive ability of its rival. In this sense, a test for forecast
encompassing is a test of the conditional efficiency of a forecast, where a forecast is said to be
conditionally efficient if the expected loss of a combination of that forecast and a rival forecast
is not significantly less than the expected loss of the original forecast alone (Clements and
Hendry, 1998; Giacomini and Komunjer, 2005).

The two key ingredients of a forecast encompassing test are, therefore, (1) the loss function
that is involved in the computation of the expected loss and (2) the weights of the forecast
combination. The choice of the loss function is closely related to which characteristic of the
unknown future distribution of the variable one wants to forecast. Let ft+1 be a forecast of
some characteristic of interest of a random variable Y;,, conditional on the information set at
time ¢. The forecast ft+1 is said to be optimal at time ¢+ 1 if it minimizes F}; [E <Yt+1 — ft+1>} ,

where £ is some loss function such that £: R — R™T.

3.1 The Loss Functions

The encompassing test requires two proper loss functions, one for VaR forecasts and the other

for expected shortfall forecasts conditional on VaR forecasts. Specifically, T consider the con-



ventional quantile “tick” or “check” loss function for VaR;., given by
T (Yt+1 - v@Rt+l> - [T 1 (Ytﬂ < VaRtH)] <Yt+1 - VaRHl) (3.1)

which is the asymmetric linear loss function of order 7. This tick function 7 is the implicit loss
function whenever the object of interest is a forecast of a particular quantile of the conditional
distribution of Y;,;. Giacomini and Komunjer (2005) show that the focus on conditional (rather
than unconditional) expected loss, such as (3.1), is a central feature of the treatment of both
evaluation and combination of forecasts and distinguishes their approach from related literature,
e.g., Granger (1989), Taylor and Bunn (1998), Elliott and Timmermann (2004), among others.
This paper carries on this central feature to the evaluation and combination of conditional
expected shortfall forecasts, as discussed in details later.

In particular, the loss function considered for the object of interest, £S;,;, takes the form
—~ — —~ 2 —_—
£ (Yers = BSuni VaRyr ) = (Yo = BSit) 1(Yier < VaRi) (3.2)

which depends on the forecast of conditional value-at-risk for time ¢ 4+ 1. Specifically, the

following lemma provides the basis for (3.2).

Lemma 1. (Conditionally consistent criterion). Under the definitions (2.1)-(2.4), ifmt+1 RS

VaR;i 1 and ES;q N ES; 1 are consistent estimators as n — 0o, then the residual sequence,

— T—1
{€t+1 =Y — ESt+1}

expected value zero, such that

should be i.i.d. and that, conditional on 1 (YtH < th), it has

t=m

E, [(Yt+1 - Es*m) I <Yt+1 < @mﬂ -0, as—P (3.3)

The proof of Lemma 1 is straightforward. Provided that mt+1 and E\Stﬂ are assumed
consistent estimators of VaR;,; and ES;;1 as n — oo, (3.3) can directly be obtained from the
definition of expected shortfall, (2.4), as the first-order moment condition of the expected loss
function of (3.2) given @Hl.

If (3.3) does not hold, then ﬁS’tH is an inconsistent estimator of ES;;; conditional on



mt+1. A negative value, e;,7 < 0, therefore represents underestimation of this measure of
risk for 7 < 0.5. The relevant literature has applied (3.3) to backtesting expected shortfall in
absolute evaluations, see, e.g., McNeil and Frey (2000), Ergun and Jun (2010), and Zhu and
Galbraith (2011), among others.

Of course, the validity of Lemma 1 also depends on the assumption of the consistent esti-
mator, %\Rt+1. Specifically, the following lemma expresses the first-order moment condition

of quantile regression.

Lemma 2. The loss function, (3.1), provides the first-order moment condition of quantile

TEGression as

B [T 1 (Yt+1 —VaRy < 0)] —0  as.—P (3.4)

The proof for (3.4) can be found in Koenker (2005, §4). The literature has also used this first-
order condition as the basis in a variety of value-at-risk backtests. See Nieto and Ruiz (2016)

for a review.

3.2 The Definition of Encompassing

Consider two competing methods, M; and M, which produce forecasts of conditional value-at-

risk and expected shortfall. Let ES}H = (ETS”MH, ETS‘MH) and @tﬂ = (ml,t% ‘7(1?{2¢+1>

denote the forecasts of expected shortfall and value-at-risk from M; and M,. This paper is
interested in testing whether E:S‘Ltﬂ from M conditionally encompasses E:S”QJH from M,
over the entire out-of-sample period for t =m, ..., T — 1.7

Further, let 8 = (6;, 92)/ and w = (wy, wg)/, which lie in some compact subsets of R?, denote
the choices of weights in the combinations of conditional value-at-risk and expected shortfall
forecasts, respectively. The common practice is to obtain a weighted average of forecasts with
the weights adding up to unity, i.e., 6; + 6o = 1 and w; + wy = 1. However, Granger and
Ramanathan (1984) find that the best method is to add a constant term and not to constrain
the weights to add up to unity. Therefore, in this paper the unity restriction is not imposed on

0 and w. See also Giacomini and Komunjer (2005).

"For simplicity, I restrict attention to pairwise comparisons, but all of the techniques can readily be extended
to the general case of multiple forecasts.

/



Based on the general principles of forecast encompassing,® it is said that the forecast of
ES) 1+1 obtained from M, conditionally encompasses the forecast of £S5, from My for time

t + 1 if and only if

E, [ﬁf (Y},H — E'\Sl,t+1§ @uﬂ)] < E; [ﬁr (Ytﬂ — w/E:\StH; glmt+l)] (3.5)
a.s. — P., ¥ (wy,wy) € O C R?

Y (01,0,) € © C R?

where L(+) is the loss function defined in (3.2) for ES forecasts. In practice, testing the inequality
(3.5) is not feasible, because it involves computing the expected loss for all (wy,ws) € O
and (61,6,) € ©. Tnstead, let w* = (w},w3) and 8° = (67,6;) denote the optimal sets
of combination weights for ES and VaR forecasts, respectively, which are the solutions to
jointly minimize (3.1) and (3.2). Therefore, I have the following definition of encompassing for

conditional expected shortfall forecasts.

Definition 1. (Conditional expected shortfall forecast encompassing, CESFE). Let EB’MH and
E’;\SQ,HJ be alternative forecasts for £'S;;; and @ml and mth be alternative forecasts
for VaR,;,, from the competing methods, M; and M, respectively. Then, EB”MH is said to

!

encompass ETS'MH at time ¢ + 1 if and only if (3.5) is binding for (0*l w*’)

E; |:'C’T <Yt+1 - E'\Sl,t—&-l; ml,t-{-l)] =k [ﬁr (Y;H-l - w*/E'\S’t—l—l; e*lmtﬂﬂ

a.s. — P. (3.6)

that is, if and only if
(67,65, wy, w3) = (1,0,1,0) (3.7)

8See e.g., Clements and Hendry (1998), Harvey et al. (1998), McCracken (2000), Clark and McCracken
(2001), among others.



where 6* = (67,6%) and w* = (w{,w}‘)l jointly minimize (3.1) and (3.2), as

@5,05) = arg  min _E, [7; (Ytﬂ . (elmuﬂ + ezxﬁuﬂ))] (3.8)

(01,02)€EOCR2

(wi,wy) =arg min E [ﬁT (Yt+1 — (wlf/fTS’LtH + wQETgQ,t_i_l) ;H*IVaRtHﬂ (3.9)

(w1,w2)EOCR2

In this paper, I restrict attention to linear combinations. And, the equivalence between (3.6)
and (3.7) follows from the fact that the right side of (3.6) is the minimum of the conditionally

expected loss over © and ©.

Consequently, the optimal combination of VaR forecasts from (3.8) satisfies the first-order

condition, (3.4), as
E, [T ~1 (Yt+1 —0"VaR,,, < 0)} —0 a.s. — P. (3.10)

See Appendiz A for the proof of (3.10). Similarly, the vector of optimal weights w* obtained

from the joint estimation satisfies the first-order condition, (3.3), such that
Et |:<Y;g+1 — w*/E.\S'tH) I (-}/;Jrl < 0*/mt+1):| =0 a.s.— P. (311)

See Appendiz B for the proof of (3.11).

Acerbi and Tasche (2002) show evidence that expected shortfall can be estimated effectively
even in cases where the usual estimators for VaR fail. On the other hand, Chen (2008) shows
that a better VaR estimation does not guarantee a corresponding better ES estimation. In
this regard, an encompassing test based on Definition 1 must be flexible to accommodate a
variety of possible encompassing scenarios. For example, 8* = (1,0) and w* = (0,1) imply an
extreme scenario that ETS’MH encompasses EASMH, whereas @Ltﬂ encompasses ‘7a\R27t+1.
In the case where 8" = (1,0) and w* = (wj, w;}), it suggests that EL\S”MH and ETS’%H should be
combined via the optimal weights, w*, although mu“ encompasses mg,tﬂ. In the next
section I discuss implementation of the CESFE test. While the CESFE test in this paper is
illustrated for Definition 1 with Hy : (05,05, w},w;) = (1,0, 1,0), it can easily be implemented

to test other null hypotheses of encompassing.



4 Conditional Expected Shortfall Forecast Encompassing

Test

To test the encompassing hypothesis in Definition 1 for whether E’tgl,tﬂ encompasses ETS'MH
over the entire out-of-sample period, I jointly solve the optimal weights, 8" and w* by imple-
menting a standard GMM with the optimization procedure appropriately modified to accom-
modate the nondifferentiable loss functions.” Next I describe the estimation procedure for the

optimal combination weights.

4.1 Generalized Method-of-Moments Estimation for Optimal Combi-

nation Weights

According to Definition 1, ETS’MH conditionally encompasses ﬁgztﬂ forallt, m <t<T -1

/ /
’ !

if and only if (0:”1,11;;;“) = ... = (0*T/,w2_}> = (1,0, 1,0)/. In other words, the optimal
combination weights are constant in time and equal to (1,0, 1,0)". By (3.10) and (3.11), it should
therefore be the case that for e; = (1,0)/, E { [7’ —1I (YtH — e’lth < 0)} th} = (0 and
E { [(Y;H — e’lﬁtH) I(Yi1 < e;ﬁtﬂﬂ th} = 0 for all F;-measurable information
functions, {Z14, Z2}, and for all t, m <t < T — 1. In particular, Zy, and Zy; are k; x 1 and
ko x 1 vectors of instrumental variables, respectively, which are observed at time ¢t. {Zy;, Zo;} is
assumed strictly stationary and mixing series, and can include previous forecasts (or measures
of past forecast performance), provided that they are produced by either a fixed or a rolling
window forecasting scheme. The reason for this is that in these two cases the forecasts are
constant measurable functions of a finite window of data and thus inherit the properties of
stationarity and mixing from the underlying series (Giacomini and Komunjer, 2005).

Further, define g, as a kj-vector-valued function g, : ©® x R x R® — R* and g, as a

®One may consider a two-step encompassing test approach by (i) solving the optimal weight vector 8* for
conditional value-at-risk forecasts in the first step, and (ii) then estimating the optimal weight vector w* given
" for conditional expected shortfall forecasts in the second step. This two-step approach is based on the similar
weak exogenous reasoning of Engle (2002) as the first-step estimation does not involve w. However, this two-
step approach that generally involves some loss of estimation efficiency is a special case of the general approach
discussed in this section.

10



ko-vector-valued function g, : © x R x R*? — R*2 such that

g1 (0: Y11, 211) = [T —1I (yt+1 < O,th)] 214 (4.1)
9o (W; Ypy1, 224, 0) = [(ytﬂ - w,E‘\S’tJrl) I <Z/t+1 < OIthﬂ Zot (4.2)

The key element in the implementation of the encompassing test is that under the null of

encompassing, it has, based on (3.10) and (3.11), the following moment conditions

91 (0% Y1,Zy) = Elg,(0%Y141,Z1,)] =0 (4.3)
g5 (w*; Yip1, Zy, 9*) =F [92 (w*; Yip1, Zo, 0*)] =0 (4-4)

jointly to be true, or equivalently
g° (0", w*; Y1, Zyy, Z2t) =F [9 (0", w"; Y1, Zyy, Z2t)] =0 (4-5)

/

where g (0, w; Y11, Z1, Zo) = (g1 (O;YtH,ZM)/, g- (w;YtH,ZQt,O)/) is a k x 1 vector of
the moment conditions with k& = ki + ks.

Given the out-of-sample portion of size n = T'—m, consisting of the sequence of observations
(Z1ms Z2ms Ym-t1s -s 2171, Z2.7—1, yT)/, I then use Hansen’s (1982) GMM approach to estimate
0" and w* as a solution to the minimization problem of (4.5), denoted by 0 and W, as

i 19, (0,w)]' 8, [g, (6,w) (4.6)

where g, (+) is the sample moment function, g,, (6, w) = n™! ZtT:;ig (0, w; Yyii1, 214, Z2t), and

~

S, is a consistent estimator of the asymptotic variance matrix S,

S=F|g (9*»’10*; Yit1, Z s, ZQt).g (O*a w*; Y1, 2y, ZQt)l (4-7)

which is a k£ x k positive semi-definite matrix. Using the fact that the first-order conditions
(3.10) and (3.11) imply that {g (0", w*; Y11, Z1s, Zot) , Fi} is a martingale difference sequence,

11



I obtain a consistent estimator of S as

T-1 ’

. e 1 . A
Sn <9nywn) =— g <9n7wn§ yt+1,zlt722z> g <9n,wn§ yt+1,z1z,z2t>
n t=m
1! 9. (9n;yt+1,Z1t) a1 (én;yt+17z1t) g1 <9n;yt+1,Z1t> 92 ('a’n;yt-&-l»z%vén) (18)
- ; ~ ~ ~ ’ B ~ - ~ ’
t=m \ gy (wn;yt+17z2t70n) g1 (0n§yt+lyzlt> gs (wn;yt+1,z2t,9n) go (wn;ytJrlyz2t70n)

with

’

2
~ ~ ~ ’
g, <9n;yt+1,Z1t> g1 <9n;yt+1,zlz> = [T —1 (yt+1 < OnvaRt+1>:| 214214

’

g1 (én§yz+1721t> gs <ﬁ7n§yt+1722uén) = [T —1I (yt+1 < énmt-‘—l)} (yt41—

—_— ~7 —
ﬂ);,LESt+1) I (yt+1 < enVa,Rt+1>:| zltz;t

’ P
gs (1177L§yt+17z2t79n) g1 <9n;yt+1,z1t) = [T —1I (yt+1 < OnVaRtH)} [(ye41—

ﬂl;l.ﬁt_,_l) I (yt+1 < énmt+1>:| ZQf,let

’

_ -~ _ ~ = 2 ~— ’
go (wn;yt+17z2t79n) gs (wn§yt+1722t79n> = [(yt-H - 'wnESH—l) I <yt+1 < OnVaRt-H) 22129

where 0,, and w,, are some initial consistent estimates of 8* and w*, respectively.

Let B = (Ol,w'>/ denote the vector of weighting parameters to be estimated by GMM.
The computation of Bn and S, is typically done recursively. T first choose a conformable
identity-weighting matrix in (4.6), and then estimate the corresponding [37(11). The resulting

new weighting matrix, S, ([A'JS)

), is more efficient than the previous one, and solving (4.6)
leads to a new estimator BS). These steps are repeated until the sequence of Bn converges.

In practice, the choice of Z; and Z5; depends on the nature of the application considered,
which is discussed in more details in Section 6. Z;; and Z5; may or may not be the same in
the identification of the weighting parameters. In cases where the information vectors fail to
incorporate all of the relevant information, condition g° (6", w*) = 0 is no longer equivalent to
the first-order condition (4.5), and {g (0", w*; Y, 11, Z 11, Zo:) , F;} is no longer a martingale dif-

ference sequence. However, S can still be consistently estimated using some heteroscedasticity-

and autocorrelation-robust estimator, like Newey and West’s (1987) estimator. I next focus on

’

n

the asymptotic properties of the GMM estimator, Bn = <9n, W, ) .

12



4.2 Asymptotic Properties of the GMM Estimator

The following assumptions are considered for the asymptotic properties of the GMM estimator,

Assumption 1. (Consistency). Assume that Proposition 1 of Giacomini and Komunjer (2005)
holds with the extension to conditional expected shortfall.'® That is, for everyt, m <t <T —1,
(a) the conditional density of Yiy1, fi(+) is continuous, strictly positive and bounded, and the
conditional cumulative distribution function of Y1, Fi(+) is continuous and lies in [0,1]; (b)
for i = 1,2, @ml # 0, a.s.-P, and corr <m17t+1,m27t+1) # +1. Similarly, given
mt+1, E’TQMH # 0, a.s.-P, and corr (E’TSYLHI,EA\SYZHO #+ +1; (¢) {(let,Z;t,V;y} is
strictly stationary and o-mizing with o of size —r/(r —2) and r > 2; (d) E [Z1,Z;,] and

2r+9

E [thZ;t] are nonsingular; and (e) there exist some § > 0 such that E ||Z|| < oo fori=

. . 4
1,2. Then, 6, 5 0* and w,, > w* or equivalently B8, % 3%, asn — co. (f) E HVaRtH ‘ <

4
oo and E‘ ES, || <oo; (g) B is an interior point of = = (0,0).

Assumption 2. (Convergence). The data generating process is assumed to meet the conditions
for a law of large numbers to apply, so that one may assume that the empirical moments converge

wn probability to their expectation.

T-1
1
g, (0,’(17) = E E g(enawna yt+1azlt7z2t) £> go (07w7 }/;H-la Z1t7Z2t) =0
t=m

Assumption 3. (Asymptotic distribution of empirical moments). Assume that the empirical
moments obey a central limit theorem. This assumes that the moments have a finite asymptotic

covariance matriz, S, in (4.7), so that

Vg, (8,w) % N (0,8)

10The extension to expected shortfall is followed straightforward to the proof of Proposition 1 in Giacomini
and Komunjer (2005).
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Assumption 1(b) is a mild condition ruling out the possibility that the sequences of forecasts
are perfectly correlated, which would happen if, for example, the models were proportional or
differed only by a constant. One could in principle relax the assumption of strict stationarity
in Assumption 1(c) and rely on existing results on the consistency and asymptotic normality
of GMM estimators for mixing sequences. However, as discussed in Giacomini and Komunjer
(2005), relaxing this strict assumption would cause the optimal weights to depend on the sample
size, and thus result in a less intuitive formulation of the null hypothesis of encompassing.
Assumption 1(d)€(e) are fairly standard and imply in particular that all of the components of
the information vector are not linearly dependent. Assumption 1(f)implicitly places conditions
on the existence of the finite-sample moments of the estimators on which Vcﬁtﬂ and E.\S'tH
are based.

The underlying requirements on the data for Assumption 3 to hold will vary and will be
complicated if the observations comprising the empirical moments are not independent. For
samples of independent observations, assuming the conditions underlying the Lindeberg-Feller
or Liapounov central limit theorem will suffice (Greene, 2012). For the more general case, it
is necessary to make some assumptions about the data, including Assumption 2. If one can
go a step further and assume that the function g (@, w) is an ergodic, stationary martingale
difference series, then it can invoke the central limit theorem for the martingale difference
series (Greene (2012), Theorem 20.3, p.916). It is generally fairly complicated to verify this
martingale assumption for nonlinear models, so it is usually assumed outright.

With the assumptions in place, I have the asymptotic distribution of Bn in the following

theorem.

Theorem 1. (Asymptotic distribution of the GMM estimator). Let Assumptions 1-3 hold.

Then, Bn s asymptotically normal,

(vs7y) " va (B, - 87) SN (0.D) (1.9)
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with

v =E[Vsg(B)]

E {ft (9*’%71t+1) thﬁﬁzt“} 0

U - . - (4.10)
E [ft (0* VaRtH) (yt+1 —w Esm) Z»VaR, H} TE [zgtEst H}

where Vgg(B) is a Jacobian derivative matriz of g(B) with respect to B3, and S is defined in

(4.7).
Proof. See Appendiz C. O]

It should be noticed that the off-diagonal element of v in (4.10) is non-zero, different from
the (approximately) zero off-diagonal element of A in Dimitriadis and Schnaitmann (2020).
This non-zero off-diagonal element is mainly due to the quadratic loss function chosen for ES
forecasts conditional on VaR forecasts, which captures the interdependence between ES and
VaR.

Theorem 1 requires that g, () be once differentiable, which is not the case here due to
the indicator function. Nonetheless, Newey and McFadden (1994) can be used to obtain the
asymptotic normality for nonsmooth moment functions, which is also applied to Theorem 1.
The basic insight of their approach is that a smoothness condition on g, (3) can be replaced
by the smoothness of its limit g° (3), with the requirement that certain remainder terms are
small.

Specifically in (4.10), the expression for v depends on the value of the conditional density
function f; evaluated at the optimal combination of VaRs. If data distribution is assumed, the
density value can easily be evaluated. Otherwise, I adopt the idea in Giacomini and Komunjer
(2005) to use a smooth approximation to the indicator function (see e.g., Bracewell (2000), p.

63-65) to estimate the conditional density f; for 4 in (4.10) as

/\//\

Yt+1 — en VaR,
S

fi (dlmm) = %exp ( ) I (ym < é;@m) (4.11)

where ¢ > 0. Convergences of 7, ,, and ¥y, ,, in v to their expected values are uniform in ¢ in

a neighborhood of 0, which ensures that lim¢ 0%, % ~,, and lime_50Y91 N
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In principle, ¢ is the choice of a researcher over an arbitrage range of small values, such as
a range from 0.2 x 1072 to 1072 considered in Giacomini and Komunjer (2005). Alternatively,

I propose the following result to determine the value of ¢,

~
L

(yt—l—l — én@t—s—l) |:7' —1I (yt+1 S énmﬂ_l)} (412)

Ny
I
S|

I
3

Note that (4.12) is the minimized “tick” loss function of (3.1) from (4.6) evaluated at the GMM
estimates of optimal weights, so that under Assumption 2 ¢ — 0 ensures convergences of
Y11, and 7y, in . Taylor (2019) shows that the recent literature has used an asymmetric
Laplace distribution as a quasi-maximum likelihood function to regression quantiles, where the
maximum likelihood estimator for its scale parameter is obtained the same as ¢ in (4.12).!
An advantage to use (4.12) is to avoid the grid search for ¢, where no criterion is available for
determining the best value of ¢ among the search. The performance of (4.12) in evaluating
(4.11) will be examined in Section 5 by the simulation study and then applied to the empirical

illustration in Section 6.

4.3 CESFE Test Statistics

This subsection considers the tests for two null hypotheses: Hiq : (67, 65, wi,w3) = (1,0,1,0)
against Hy, @ (07,05, wi,w3) # (1,0,1,0), and Hy : (07,605, wi,wi) = (0,1,0,1) against Ha, :
(07,05, wy,ws) # (0,1,0,1), which correspond to testing whether forecasts E.\S’ltﬂand @HH
from M encompass ETS”%H and mgtﬂ from My or whether ETS’%H and @Qtﬂ from M,
encompass ﬁglt+1and 17(17%115“ from M. This section provides the test statistics and the
limiting distributions.

Let 71 = (1,0, 1,0), and ro = (0,1,0,1) . Using the GMM estimators, I then propose a

HFor an asymmetric Laplace distribution (ALD), its density function takes the form,

flyspT,c) = 7(1; T)efvp{(ygu) [r—1I(y< u)]}

where p € R, 7 € (0,1) and ¢ > 0 are the location, asymmetric and scale parameters, respectively. Having
"= énth and the chosen 7, ALD implies Pr | Y41 < @nth = 7. Taylor (2019) shows that (4.12)

is the quasi-maximum likelihood estimate of ¢ from the ALD distribution, which eventually is the average of
the tick loss function and can be interpreted as an estimator of the expectation of the tick loss function.
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Wald test of the hypotheses Hyy and Hy in the following theorem.

Theorem 2. (CESFFE test). Apply Theorem 1 to construct the test statistics

/7

CESFE1, =n (ﬁ - rl) Q. (Bn - r1> (4.13)

and

CESFE2, =n (Bn - rg)/ Q. (Bn - r2> (4.14)

/

where Bn = (énv’ﬁ);z> solves (4.6) and Q, is some consistent estimate of Q = (7’5717)_1.
Then, for i = 1,2, (a) under Hyy : CESFFEi, L X2 as n — oo, and (b) under Hy, :

CESFFEi, — 400, as n — 00.
Proof. See Appendizx D. O

The CESFE test can then be implemented as follows. For a desired level of confidence, one
first chooses the corresponding critical value ¢ from the x3 distribution. Then, Hy, is rejected
if CESFFE1, > c and Hy is rejected if CESFE2, > c. In the context of real-time forecast
selection, that is, for selecting at time 7" a best forecast method for time 7'+ 1, I propose the
following decision rule. Perform the two tests of Hiy and Hyy on data up to time 7. Hence,
there are four possible scenarios. (1) If neither Hyg nor Hyy are rejected, then the test is not
helpful for forecast selection (one could decide either to use the more parsimonious model or to
conservatively set equal weights to the forecasts, i.e., Wy, = W, = 0.5). (2) If Hyq is rejected
while Hyg is not rejected, then one would choose ETSZTH as the best forecast so that wy,, = 0
and wy, = 1. (3) If Hy is rejected while Hyq is not rejected, then one would choose E’TS’LTH
as the best forecast so that w;, = 1 and s, = 0. (4) If both Hyq and Hy are rejected, then
one would choose the combination of E\S;ﬂ = wln@27T+1 + @Z)gnﬁ%;ﬂ as the best forecast,
where 0, and 0y, are out-of-sample estimates of the combination weights from (4.6). In this
paper lillustrate Theorem 2 for encompassing of conditional expected shortfall forecasts, which

can be easily generalized to compare more than two alternative forecasts.
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5 Simulation Study

I evaluate the performance of the proposed CESFE test in finite samples along three dimensions:
the size of the test, its power, and the choice of ¢ for evaluating f;. The simulation experiment is
designed to match the problem of ES evaluation and combination in the empirical application.

Specifically, I consider the following data generating process (DGP)

Yt+1 = Ot+41E¢4+1 (5-1)

where .41 ~ D(0,1). 0441 follows a standard deviation version of either the GARCH(1,1)

model (Zakoian, 1994)

o1 = Bo + ot + B2 |yl (5.2)

or the GJR-GARCH(1,1) model (Glosten et al., 1993)

01 = Po + Broe + B3 [ye| L(ye > 0) + B3 |ye| I (e < 0) (5.3)

(5.3) allows conditional variance to respond differently to past positive and negative innovations.
This asymmetry is sometimes referred to in the literature as a “leverage effect.”

Particularly, Xiao and Koenker (2009) and Gerlach et al. (2011) show that quantile dy-
namics implied by (5.2) and (5.3) are the special cases of symmetric absolute value (SAV)
and asymmetric slope (AS) CAViaR models, respectively, proposed by Engle and Manganelli
(2004), as

VaRi = Bo(1) + Bi(T)VaR + B2 (7) |yl (5.4)

VaRiy = Bo(7) + Ai(m)VaR + B3 (7) [yl T(ye > 0) + By (7) wel T(ye <0)  (5.5)

where fo (1) = BoD" (7), Pi(7) = B, Ba(7) = BD' (1), B3 (1) = B3 D" (7), and By (1) =
By D1 (7). D1(7) is the 7 X 100%th theoretical quantile of €, 1 under a distribution assump-

€

tion, D. Note that (5.4) and (5.5) implied respectively by (5.2) and (5.3) are restricted in that
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p1(7) = B1 is independent of 7, while Engle and Manganelli (2004) allow the quantile persis-
tence coefficient §1(7) in the SAV- and AS-CAViaR models dependent of 7 so as to capture
asymmetric quantile persistence across 7.

However, for the purpose of data simulation, I consider the DGP by (5.1)-(5.3), as theoretical

values of VaR and ES at time ¢ + 1 can explicitly be obtained as follows'?

VaRi1 = 0,1 D* (7) (5.6)

ESt—l—l = O't+1E [5154_1’6“_1 < Ds_l (T)] (57)

For example, in the case where ;.1 ~ N(0,1) is assumed, then the theoretical VaR and ES

values can be computed as

VaRY, = 0,197 (1) (5.8)

ESY, = —atﬂw (5.9)

where ®(-) and ¢(-) are the CDF and PDF of the standard normal distribution, respectively.
See also, e.g., Bertsimas et al. (2004), Broda and Paolella (2011), Nadarajah et al. (2014),
among others.

In addition, if a Student-t distribution, 4,1 ~ t,, is assumed with v degrees of freedom,

then the theoretical VaR values can be obtained as

T, (1)

v

Vou/(v—2)

where T,,(+) is the CDF of a Student-t distribution with v degrees of freedom. And, the theo-

VaRl = o (5.10)

retical ES values are given by

fT (QT7 U) (U + q72—)
i (5.11)

T,
ESi{ = =0

where ¢, = T, (1) /\/v/(v—2), and fr(z,v) = [v7?/B(%,3)] (1 +22/0) T2 g the

12See e.g., McNeil and Frey (2000), Righi and Ceretta (2015), Martins-Filho et al. (2018), among others.
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standard (location-zero, scale-one) Student-t PDF with v degrees of freedom and the beta
function, B (-,-). See Broda and Paolella (2011), §2.2.2 and Nadarajah et al. (2014) for more
details.

I consider the following parameter values: (5o, 51, 52) = (0.005,0.85,0.1) for (5.2) and
(Bo, 51, B, By) = (0.005,0.85, —0.02,0.1) for (5.3), v = 4 for the Student-t distribution, and
a range of values for the out-of-sample size, n = (1000, 2500, 5000). In these particular cases,
the in-sample size m is 0 and T = n. A range of values for the parameter ¢ in (4.11) are
considered from 0.002 to 0.02 in increments of 0.002. The proposed approach to approxi-
mate ¢ by (4.12) is also experimented. For each sample size, I generate 5,000 Monte Carlo
replications for each of the time series My = {y;411, VaRy 1, ESii1; GIJR,N(0,1) 1:01, My =
{yi+1, VaR1, ESii1; GARCH,N(0,1)};=, M3 = {11, VaRy1, ESip1; GIR, tyes})—,, and
My = {yis1,VaR1, ESiy1; GARCH, t,—4}7—, . The tail risk level, 7 = 0.025, is used for VaR

and ES forecasts.'?

5.1 Size of the Test

The combinations for an encompassing test between M, and M, are thus given by

VaR{) = 0y + 0, VaRag, o1 + Ot VaRag, 41

ESED = (wo 4+ wat, ESa, a1+ wat, ESp, 141) T (yMi,tH < VaRﬁ;?)

for the null hypothesis, H%’j) : M, encompasses M, with 7,5 =1,2,3,4 and ¢ # j. According
to the procedure described in Section 4, the GMM estimators are constructed as BSJ) =
(éoﬂ-j, éMi, éMJ,wo,ij, W, wMj). Granger and Ramanathan (1984) find that the best method
of combinations is to add a constant term and not to constrain the weights to add up to unity.
See also Giacomini and Komunjer (2005). Therefore, I include constant terms in the forecast

combinations and do not restrict combination weights to sum up to one.

In particular, this simulation study considers the null hypothesis that forecasts from the

13Basel Committee on Banking Supervision (BCBS) of Bank for International Settlements (BIS) published
in January 2016 the regulation document, “Standards: Minimum capital requirements for market risk.” Section
C.3 on pp. 52 of the document requires that in calculating the expected shortfall, individual banks should use
a one-tailed 2.5th percentile.
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GJR model which implies AS-CAViaR quantile dynamics encompass forecasts from the GARCH
model which implies SAV-CAViaR quantile dynamics. Therefore, the hypotheses are tested for
H 1((1)’2) and H 1(3’4) with normal and Student-t distributions, respectively. In these particular cases,
forecasts from the GJR model will display correct empirical coverage by construction, whereas
forecasts from the misspecified GARCH model will in general be biased. The information
vectors are Z%’j) = (1,yMi,t, VaRm, VaRMjJ) and Zéi’j) = (1,yMz.7t, ESMi,t,ESMj,t) for
Hfé’j ). The test statistics that are given in Theorem 2 are used to compute the proportion of
rejections at the 5% nominal level for the null hypotheses Hf(l)z) and Hl(g’4).

The simulation results show that the nominal 5% test appears to be well sized. For n =
(1000, 2500, 5000), the rejection probabilities are, respectively, (7.1%,6.5%,5.7%) for the null
hypothesis Hf(l)z) (normal distribution) and (8.4%,7.2%, 5.7%) for the null hypothesis H{f;"*) (t-
distribution), when the true density, f;, of ¥4 in (5.1) is used to evaluate 4 in (4.10).

In a more plausible setup in which the true density f; is unknown and where (4.11) and
(4.12) are used to estimate f; for computing « in (4.10), the empirical rejection probabilities
vary with the sample size n and the smoothing parameter ¢, as shown in Figure (1), which
plots size curves for the rejection probabilities against the range of ¢ values. The cycle dots, ¢,
in Figure 1 are estimates of ¢ from (4.12) to evaluate f; in (4.11) for computing 7 in (4.10).

A general pattern that emerges from Figure 1 is that the test appears generally well sized
in that rejection probabilities approach the 5% nominal level as the sample size increases.
Nonetheless, the size curves are relatively flat, indicating that the marginal effects of varying the
value of ¢ on rejection probabilities are small. For instance, the ranges of rejection probabilities
for n = 2500 are from 7.2% to 7.8% for the normal distribution and from 8.2% to 8.7% for the
Student-t distribution across different values of ¢. This result is mainly due to the component
4o in (4.10) that is independent of the choice of ¢. The simulation results also show that the

test is well-sized for ¢ estimated from (4.12).

5.2 Power of the Test

To generate data under the alternative hypothesis of no encompassing of GJR forecasts with

respect to GARCH forecasts, I first replicate data simulations following the procedure described
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Figure 1: Size Curves of the CESFE test from the simulation experiment for the 5% nominal
level. Rejection frequencies are computed over 5,000 Monte Carlo replications of the null
hypothesis that forecasts from the GJR model encompass forecasts from the the GARCH
model when the DGP is the GJR model. n is the sample size. ¢ is a user-defined constant
required in evaluating f; in (4.11) for computing ~ in (4.10). A range of values for ¢ are
evaluated for (4.11) from 0.002 to 0.02 in increments of 0.002. (4.11) is also evaluated by ¢
estimated from (4.12).

in the previous section, and then let the DGP be

Yrp1 = 0yCATOH 4+ (1 — 0) y2 I (5.12)

where yZARCH and y&F are simulated from (5.1) with (5.2) and (5.3), respectively, and 0 <

d < 1. (5.12) implies that

VaR;y, = 6VaRIAROH + (1 — §) VaRGE

ESp = [0ESZARM + (1= 6) ESGF] L (yer < VaRys)

Note that the size study is obtained when the data are generated according to (5.12) with
0 = 0. Accordingly, increasing ¢ toward 1 allows to obtain the power curve for the CESFE test.
I consider a number of different values for ¢, ranging from 0.05 to 1 in increments of 0.05. For

each parameterization, I generate 5,000 Monte Carlo replications of the time series from (5.12)
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for normal and Student-t distributions, and proceed as previously by computing the proportion
of rejections of the null hypothesis that forecasts from the GJR model encompass forecasts from
the GARCH model at the 5% nominal level.

Figure 2 plots the power curves for n = (1000, 2500, 5000) when using the true conditional
density f; in the expression (4.10) for . As expected, the power increases with n. The loss of
power induced by estimating « with the estimator 4, . in (4.11) is shown in Figure 3 for the
case where n = 2,500 and for different values of the smoothing parameter ¢ and the estimated
smoothing parameter, ¢, from (4.12). This figure shows that the powers are very similar based
on different values of ¢ and ¢, while smaller values of ¢ have slightly higher powers. A possible
explanation to the power insensitive to the values of ¢ is mainly due to the component ~,, in

(4.10) that is independent of the choice of ¢.'*

Power curves with known density: Normal Power curves with known density: Student-t
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Figure 2: Power Curves of the CESFE test from the simulation experiment for known
densities. Each curve represents the rejection frequency - computed by assuming f; in (4.10)
known - over 5,000 Monte Carlo replications. The null hypothesis being tested is that
forecasts from the GJR model encompass forecasts from the GARCH model when the DGP is
a convex combination of the two, with weights ¢ and 1 — .

1T verify this conjecture by testing VaR;,, only for the null hypothesis that forecasts of VaR;,; from the
GJR model encompass those from the GARCH model, and obtain the conclusions for the test power similar to
those drawn by Giacomini and Komunjer (2005). The test results are available upon request.
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Power curves for n=2500: Normal Power curves for n=2500: Student-t

1.0
1.0

0.8
1
0.8
1

0.6
0.6

0.4

0.4
1
Probability of Rejections

Probability of Rejections

N N
© /i —— Known density °© / —— Known density
- - ¢=0.002 P - - ¢=0.002
c... ¢=0.01 <.+ ¢=0.01
¢=0.02 ¢=0.02
g 1 —- ¢ S - —- ¢
T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
3 3

Figure 3: Power Curves of the CESFE test from the simulation experiment for n = 2, 500.
Each curve represents the rejection frequency over 5,000 Monte Carlo replications. The
unknown f; in (4.10) is evaluated by chosen ¢ and estimated ¢ values. The null hypothesis
being tested is that forecasts from the GJR model encompass forecasts from the GARCH
model when the DGP is a convex combination of the two, with weights ¢ and 1 — .

5.3 Test Comparisons

This subsection conducts simulation to compare the conditional encompassing test proposed
in this paper to the unconditional encompassing test of Dimitriadis and Schnaitmann (2020)
in order to understand their relative strengths. Different from this study, Dimitriadis and
Schnaitmann (2020) use the 2-elicitable loss functions, developed in Fissler and Ziegel (2016),
for jointly evaluating the VaR and ES through an M-estimation. The comparison between the
two encompassing tests is based on the data simulated in Sections 5.1&5.2 for the same null

hypotheses.

Figure 4 plots the size and power comparisons of the tests. The figure shows that: (i) the
conditional encompassing test obtains a consistently better test size than the unconditional
test for each n considered. On average, the conditional encompassing test has the test size
8.7% closer to the 5% nominal level, relative to 11.3% obtained from the unconditional encom-
passing test; and (ii) the conditional encompassing test presents an increasing test power with

the increased degree of misspecification, especially for 6 > 0.4 beyond which the conditional
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Figure 4: Plots of the size and power comparisons between the conditional encompassing
test proposed in this paper based on a recursive GMM estimation and the unconditional test
of Dimitriadis and Schnaitmann (2020) (DS) based on an M-estimation. The joint
encompassing test of Dimitriadis and Schnaitmann (2020) is reported here. 0 takes the values
from 0.05 to 1 in increments of 0.05.

test power exceeds the unconditional one. Nonetheless, the unconditional test has stronger
power when the degree of model misspecification is relatively low (0 < 0.4). I claim that the
performance difference is partly attributed to the non-zero off-diagonal element of « in (4.10)
of Theorem 1, which captures the interdependence between ES and VaR, different from the

corresponding zero off-diagonal element of A in Dimitriadis and Schnaitmann (2020).

6 Empirical Illustration

This section illustrates the potential usefulness of the proposed CESFE test by applying it to
evaluate and compare expected shortfall forecasts for daily S&P 500 index returns. Expected
shortfall must be computed on a daily basis for the bank-wide internal model for regulatory
capital purposes. In calculating expected shortfall, BCBS requires a one-tailed 2.5th percentile
to be used, so that 7 = 0.025 is considered in this empirical illustration.

The daily S&P 500 price index was taken from Yahoo.Finance to compute returns from June
5, 1998 to April 18, 2018 (7" = 5000 observations). The first 40% of the sample, corresponding

to the period from June 5, 1998 to May 17, 2006 (m = 2000 observations), is used as the
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in-sample period, while the remaining 60% (n = 3000 observations) are reserved to evaluate
the out-of-sample forecasting performance. I adopt a fixed forecasting scheme, which means
that all forecasts depend on the same set of parameters estimated over the first m observations,

while the information set is daily updated for forecasts.

6.1 Risk Models

In addition to the four models in Section 5 used for the simulation study, in this empirical
application I also consider the recently developed risk models by Chen et al. (2012) and Taylor
(2019). In particular, Taylor (2019) uses a semiparametric method to forecast VaR and ES

based on the asymmetric Laplace distribution with the probability density function of the form

r—1 (g~ VaR)(r —I(y < V“Rt))) (6.1)

fo) = “ggrear ( TES,

where VaR, follows either SAV- or AS-CAViaR process of Engle and Manganelli (2004) who

generalize (5.4) and (5.5) by allowing 1 (7) dependent of 7. The simple formulation for £S in
(6.1) takes the form

ES; =1+ exp(y0)] VaR; (6.2)

where 7 is a constant parameter to be estimated. Since dynamics of VaR may not be the same

as dynamics of ES, I suggest an alternative formulation for ES as'®

5 Taylor (2019) suggests a different dynamic process for modeling expected shortfall as ES; = VaR; — x;
where

b — L0 +7 (VaRi—1 —yi—1) + v2xi—1 if o1 < VaRi_
¢ Ti_1 otherwise

However, given that 7 = 0.025 is an extreme lower tail, 97.5% of probability mass of y; thus have x; = x;_1,

which behaves like a unit root. In the empirical application of this paper, this issue has caused nonstationary
behavior in expected shortfall forecasts from a fixed forecast scheme.
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with an autoregressive process for ¢,

log (6:) = Yo + 11log (6:-1) + V2 |ye—1] (6.4)

Note that (6.2) and (6.3) ensure that the estimates of VaR and ES do not cross each other. T
denote the model with (5.4) and (6.2) as SAV — CAViaRES, the model with (5.4) and (6.3)
as SAV — AR — CAViaRES, the model with (5.5) and (6.2) as AS — CAViaRES, and the
model with (5.5) and (6.3) as AS — AR — CAViaRES.

It should be noted that (6.1) is used as a quasi-maximum likelihood to infer the values of
VaR; and ES;. In this context, the observations y; are not assumed to follow the asymmetric
Laplace distribution. To emphasize this, Gerlach et al. (2011), Liu (2016) and Liu and Luger
(2018) clarify that the parameter 7 is not estimated, but is a chosen fixed value, and that it
is only a quantile that is estimated. The asymmetric Laplace quasi-likelihood simply provides
a computationally convenient basis with which to enable their Bayesian approach to quantile
regression.

By contrast, to capture potential skewness and heavy tails, Chen et al. (2012) assume that

y; follows an asymmetric Laplace distribution as
ii.d
Y= (et — pe) or, & ~ AL(0,1,p) (6.5)

where AL (0,1, p) represents the standard asymmetric Laplace distribution with mode 0 and
variance 1, and the shape parameter p which is defined such that p = Pr(s; <0). The

AL (0,1, p) probability density takes the following form
1 1
f(e;p) = byexp [—bp le] (1_9]1 (e<0)+ Tpl[ (e > O))} (6.6)
where b, = 1/p? + (1 4+ p)? . The variance is 1 in (6.6), but the mean is E(g;) = 1;—;” denoted
as .. Thus, e, = ¢, — p. has an AL distribution with mean 0, variance 1, and the shape

parameter p. Note that p = 0.5 implies an symmetric AL distribution. Specifically, if p < 0.5,

the density is skewed to the right, while the opposite applies for p > 0.5. Different from 7 in
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(6.1), the shape parameter p in (6.6) will be estimated from data.

The time-varying variance in (6.5) follows either a standard GARCH(1,1) process as

Uf = Bo + 5103_1 + 52%2_1 (6.7)

or a GJR-GARCH(1,1) process as

of =B+ 5103_1 + B3I (y—1 > 0) ?/tQ_1 + 651 (yi—1 < 0) 93_1 (6.8)
The forecasts of VaR can then be obtained as

Ut+1%l09 (%) — [0y, for 0<7T<p
VaR 1 (T|F) =

1- —T
_gtHWplog GTP) — U011, for p<t<l1

and the forecasts of expected shortfall conditional on y;,; being below VaR,;; is given by

1
ESi (1| F) = |1— ——— | VaRu (7|F); 0<7<p
log <I>
P
where only the relevant case 7 < p is shown. I denote the models of (6.7) and (6.8) with a
constant shape parameter, p, as ALGARCH — CP and ALGJR — CP, respectively.

To allow dynamics of ES different from dynamics of VaR, the following specification for the

shape parameter p is specified to allow a time-varying shape
B 1
SESTAVE
where

Ut = (1 — )\) ‘6,571’ I (et,l 2 O) + )\Ut,1

Ve = (1 — /\) ‘et,ﬂ I (et,l < 0) + )\Ut,1

and 0 < A <1 is an exponential smoothing parameter. The dynamic specification of the shape
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parameter allows all higher moments to change over time, in a manner directly influenced by the
standardized data sample e; = y;/0;. I denote the models of (6.7) and (6.8) with a time-varying
shape parameter, p;, as ALGARCH — TV P and ALGJR — TV P, respectively.

For each of the twelve models, I first construct a vector of estimates of the unknown param-
eters by using the first m = 2000 observations. I then use this vector of parameter estimates
to form out-of-sample VaR and ES forecasts according to a fixed forecasting scheme. In other
words, at each data time period ¢, m <t < T —1, I compute one-step-ahead forecasts, VaR,; +11
and ES; 41, for « = 1,2,...,12, based on the twelve models by updating the information set
Fi_1 to Fi.

For illustration, I report the parameter estimates of the twelve models in Table 1 where
t-statistics are included in parentheses. The table shows that the parameter estimates are
statistically significant at 5% level, except the insignificant estimates of 35 (7) from the ALGJR-
TVP model and a few [5y(7)’s. The estimates of A that determines the time-varying shape
parameter p; are significant at all conventional levels, while estimates for the constant shape
parameter p suggest that the returns are left-skewed, as p > 0.5. The results also show that
the quantile persistence, (7 = 2.5%), estimated from the SAV- and AS-CAViaRES models,

appears to be higher than the volatility persistence, 51, from the GARCH and GJR models.

As a quick check of the out-of-sample performance of individual risk models, I compute the
empirical coverage ratio, 7/7, for VaR, where 7 = n~! Z;:Ol I (ytﬂ < @t+1>, and the em-
pirical loss ratio, ELR = 21:01 (ﬁgt+1ﬂ (ytﬂ < %\Rt+1)) /Z?:_Ol (ye1 I (ytH < mt+1)>
for £S. Note that these ratios are absolute evaluations. If a risk model under consideration
performs well to satisfy (3.3) and (3.4), then both ratios are expected to equal one. Table 2
reports the empirical out-of-sample coverage and loss ratios. Models with the ratios closer to
1 are preferred. Average deviation is measured as the average of the absolute deviations of the

empirical coverage and loss ratios from the value of 1, such as (|1 —7/7|+ |1 — ELR|) /2.

Table 2 shows that the best model for forecasting VaR is ALGARCH-TVP with empirical
coverage ratio, 0.907, followed by ALGJR-TVP with the ratio of 0.813. Nonetheless, the table
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Table 1: Parameter Estimates of the Risk Models

Volatility Models Bo x 10 B1 B2 feas By v P A
GARCH-N 4.123 0.853 0.147
(2.192) (15.31)  (7.143)
GJR-N 1.582 0.955 -0.018 0.098
(2.264) (62.79) (-1.956)  (4.375)
GARCH-t 3.365 0.879 0.120 11.79
(2.264) (18.79)  (2.131) (9.067)
GJR-t 1.671 0.854 -0.011 0.101 16.32
(3.790) (16.79) (-1.913)  (10.29)  (8.298)
ALGARCH-CP 0.022 0.895 0.104 0.541
(2.356) (12.15)  (3.987) (11.07)
ALGJR-CP 0.022 0.906 0.001 0.185 0.541
(3.124) (26.37) (1.889)  (5.537) (16.91)
ALGARCH-TVP 0.031 0.894 0.105 0.961
(1.317) (18.94)  (6.013) (102.4)
ALGJR-TVP 0.031 0.902 0.001 0.192 0.971
(1.926) (19.02) (1.432)  (9.631) (78.33)
CAViaRES Models gy (r) x 10 Bi(r) B2 (r) S By (1) () m(r) a(n)
SAV —3.144 0.923 -0.152 -1.317
(-1.404) (52.39)  (-2.213) (-40.23)
SAV-AR —1.398 0.977 -0.048 -0.144 0.916 3.229
(-1.445) (32.59)  (-2.001) (-2.346)  (7.511) (20.19)
AS —1.325 0.975 -0.113 0.030 -1.441
(-1.367) (86.45) (-6.051)  (3.161)  (-29.50)
AS-AR —1.337 0.974 -0.116 0.029 -0.811 0.469 8.396
(-1.487) (45.45) (-3.025)  (2.788) (-6.385)  (2.934)  (49.86)

This table reports parameter estimates of the twelve risk models for 7 = 0.025. t-statistics are reported
in parentheses. The models are estimated for daily S&P 500 index returns sampled from June 5, 1998 to
May 17, 2006 (2000 observations). SAV, SAV-AR, AS, and AS-AR represent the risk models proposed
by Taylor (2019). ALGARCH-CP, ALGJR-CP, ALGARCH- TVP, and ALGJR-TVP are the risk models
proposed by Chen et al. (2012). These models are specified in Section 6.1.

shows that the models with the assumed AL distribution have generally overestimated risks, as
their empirical coverage ratios are less than 1. Therefore, as being conservative, these models
are favored by regulators in requiring higher level of minimum capital from commercial banks.
Among models that underestimate risks with coverage ratios greater than 1, the best model for
forecasting VaR is the SAV model with empirical coverage ratio, 1.453, followed by the GARCH-
t model which has the ratio of 1.48. Commercial banks would prefer these models with empirical

coverage ratios greater than 1 in that lower levels of minimum capital are required.
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Table 2: Out-of-Sample Empirical Coverage and Loss Ratios

Models VaR Coverage Ratio ES Loss Ratio Average Deviation
GARCH-N 1.507 0.904 0.302
GJR-N 1.733 0.890 0.422
GARCH-t 1.480 0.952 0.264
GJR-t 1.680 0.922 0.379
SAV 1.453 0.960 0.247
SAV-AR 1.680 0.940 0.370
AS 1.747 0.890 0.429
AS-AR 1.773 0.911 0.431
ALGARCH-CP 0.747 1.063 0.158
ALGJR-CP 0.653 1.068 0.208
ALGARCH-TVP 0.907 1.070 0.082
ALGJR-TVP 0.813 1.079 0.133

F=n"1 Z?;()l I (yz+1 < \ﬁ.ﬁ—‘ml) as the empirical coverage is expected to equal the nominal coverage 7. 7/7 is
referred to as empirical coverage ratio for VaR forecasts. The empirical loss ratio is computed for expected shortfall
forecasts as ELR = Z;L;Ol (ESH_lll <yt+1 < VaRt_H)) /Z;L;Ol (yt+1ﬂ (yt+1 < VaRH_l)). Models with these
ratios closer to 1 are preferred. Average deviation is measured as the average of the absolute deviations of the

empirical coverage and loss ratios from the value of 1, such as (|1 — 7/7| 4+ |1 — ELR|) /2.

On the other hand, Table 2 shows that the best model for forecasting expected shortfall is
the SAV model with the loss ratio, 0.960, followed by the GARCH-t model with the loss ratio of
0.952. Similar to the VaR forecasts, the SAV and GARCH-t models tend to underestimate tail
risks due to their loss ratios smaller than 1, while the models with the assumed AL distribution
have overestimated tail risks as their loss ratios are greater than 1. Among the twelve competing
models, the ALGARCH-TVP model has the smallest average deviation (0.082) of the ratios
from the value of 1, followed by the model of ALGJR-TVP with the average deviation of 0.133.

6.2 CESFE Test Results

To assess the relative performance of the models with the best empirical coverage and loss
ratios as identified in Table 2, I perform the proposed CESFE test for the model set, M =
(ALGARCH — TV P,ALGJR — TV P,SAV,GARCH —t). Specifically, T test the following
null hypotheses: (1) ALGARCH-TVP encompasses SAV, (2) ALGARCH-TVP encompasses
GARCH-t, (3) ALGARCH-TVP encompasses ALGJR-TVP, and (4) SAV encompasses GARCH-

* *

t. The optimal combination weights, 3;; = ( 0.ij> i,9j,w37ij,wf,w;-‘) are estimated for the
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forecast combinations 6y ,; + 60;VaR; 11 + 0;VaR;;+1 and wg;j + w;ES; ;11 + w; ES; 41 using
the GMM approach described in Section 4. For the purposes of this empirical application, I set
Zy =L y,VaR;;,VaR;,;) and Zy = (1,4, ES;y, ES;¢) for i, j € M and i # j.

Table 3 reports the estimated combination weights, HAM, ém, Wi n, Wjn, together with ¢-
statistics in parentheses. It is important to note that the computation of ¢-statistics is based on
the estimator 4, of (4.10) to obtain the standard errors from Theorem 1. In particular, based
on the simulation results from the previous section, I report the test results for several selected
values of ¢, including 0.002,0.01,0.02 and the estimate of ¢ from (4.12). For these values of ¢,
the CESFE test has reasonable size and power properties, as shown in the simulation exercise.
Table 3 also contains the corresponding test statistics CESFEy, and CESF FE,, defined in
Theorem 2, which are marked with * if they are statistically significant at the 5% level.

The CESFE test results in Table 3 reject the null hypotheses that the tail risk forecasts
from the ALGARCH-TVP model encompass the forecasts from either SAV or GARCH-t model,
since both CESFE),, and CESFE,, are statistically significant at 5% level using x3. These
results imply that the forecast combinations via the estimated optimal weights will outperform
the individual forecasts. While the optimal VaR weights, 0.029 and 0.002, respectively, for SAV
and GARCH-t are small and statistically insignificant, their optimal weights, -0.993 and -0.647,
of expected shortfall forecasts are statistically significant. The estimated negative weights tend
to correct the overestimated tail risks by the ALGARCH-TVP model, consistent with the
results from Table 2 .

In addition, the CESFE test results reject the null hypothesis that ALGARCH-TVP en-
compasses ALGJR-TVP. While the forecasts from the ALGJR-TVP model have received much
higher positive and significant optimal combination weights, the negative optimal combination
weight (-0.132) of ALGARCH-TVP, which is significant at 10% level for the expected shortfall
forecast, appears to be important in correcting the overestimated risk by the ALGJR-TVP
model. Note that in Table 2 the overestimated risk from the ALGJR-TVP model is implied by
its empirical coverage ratio, 0.813, which is lower than the value of 0.907 from the ALGARCH-

TVP model.
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Table 3: Conditional Expected Shortfall Forecast Encompassing Test Results

Models O1n 0o, W1in Wan, CESFE,, CESFE,,
ALGARCH-TVP vs. SAV 0.982 0.029 1.629 -0.993

¢ =0.002 (2.564)  (0.041)  (5.730) (-2.659)  64.99* 92.27%
¢ =0.01 (2.195)  (0.031)  (5.694) (-2.653)  66.02* 73.90%
¢ =0.02 (1.960)  (0.024)  (5.645) (-2.638)  66.34* 66.49%
¢ = 0.0007 (2.717)  (0.045)  (5.749) (-2.670)  63.99* 111.5%
ALGARCH-TVP vs. GARCH-t 0.982 0.002 1.319 -0.647

¢ =0.002 (2.226)  (0.003) (2.907) (-2.114)  86.94* 51.68%
¢ =10.01 (1.971)  (0.001)  (2.899) (-2.110)  83.13* 24.34%
¢ =0.02 (1.732)  (0.001) (2.887) (-2.106)  81.90* 17.58*
¢ =0.0007 (3.316) (0.004) (2.893) (-2.112)  91.10% 104.5%
ALGARCH-TVP vs. ALGJR-TVP 0.042 0.932 -0.132 0.960

¢ = 0.002 (0.097) (2.261) (-1.753) (1.913) 54.64% 105.9%
¢ =001 (0.060) (1.970) (-1.760)  (1.960) 59.03* 96.91*
¢ =0.02 (0.046) (1.767) (-1.761) (1.969)  60.34* 04.48*
¢ =0.0007 (0.131)  (3.190) (-1.746)  (1.857) 53.43* 120.9%
SAV vs. GARCH-t 1.116 -0.077 0.625 0.268

¢ =0.002 (1.773) (-0.122) (0.300)  (0.126) 8.709 9.370
¢ =0.01 (1.322)  (-0.091)  (0.301)  (0.126) 9.166 9.079
¢ =0.02 (1.034)  (-0.071)  (0.299)  (0.126) 9.342 8.373
¢ =0.0008 (1.535) (-0.104) (0.298)  (0.125) 7.935 8.978

This table reports out-of-sample CESFE test results for risk measures. The combination weights are estimated using

the GMM approach described in Section 4. t-statistics are reported in parentheses and calculated based on Theorem 1

with ¢ = 0.002,0.01,0.02 and ¢ estimated from (4.12). The marked (*) values of CESFE,, and CESF Es,, are

statistically significant at the 5% level.

By contrast, Table 3 shows that both CESF E;,, and CESF FE,, are statistically insignificant

in the case of SAV versus GARCH-t, so that the CESFE test results are inconclusive for forecast

selection between these two competing models. Since the quantile function of the GARCH-t

model is a special case of the SAV model, this inconclusive test result indicates that the SAV

model might collapse to the GARCH-t model for daily S&P 500 index returns.

Table 4 summarizes the results of the CESFE test which is applied to 66 pairwise compar-

isons among the 12 competing models. Average optimal combination weights, § and w, are

reported for each competing model with average t-statistics in parentheses. The columns of

Inconclusive, Encompassing, Encompassed and Combination contain the proportion of times

among 11 comparisons that the row-heading model: (1) has inconclusive CESFE test results,

(2) encompasses other competing models, (3) is encompassed by other competing models, and
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(4) is combined with other competing models using the estimated optimal combination weights,

respectively.

Table 4: Summary of Conditional Expected Shortfall Forecast Encompassing Test Results

Models 0 W Inconclusive Encompassing Encompassed Combination

GARCH-N 0.056 0.339 18.2% 0.0% 36.4% 45.4%
(0.253)  (1.156)

GJR-N 0.184  -0.693 9.1% 4.5% 22.7% 63.7%
(0.680) (-9.314)

GARCH-t 0.228 0.110 6.8% 4.5% 31.8% 56.9%
(1.427)  (0.095)

GJR-t 0.368 0.868 6.8% 9.1% 11.4% 72.7%
(1.308) (2.329)

SAV 0.409 0.010 18.2% 18.2% 13.6% 50.0%
(1.695)  (0.231)

SAV-AR 0.368 0.051 2.3% 0.0% 18.2% 79.5%
(1.372)  (0.151)

AS 0.478 -0.112 15.9% 6.8% 34.1% 43.2%
(1.496) (-5.325)

AS-AR 0.615 0.388 9.1% 34.1% 18.2% 38.6%
(2.046)  (1.383)

ALGARCH-CP 0.737 0.696 0.0% 63.6% 0.0% 36.4%
(1.917)  (1.771)

ALGJR-CP 0.815 1.091 0.0% 27.3% 9.1% 63.6%
(4.359)  (5.421)

ALGARCH-TVP 0.876 1.023 0.0% 18.2% 0.0% 81.8%
(2.531)  (1.863)

ALGJR-TVP 0.962 1.166 0.0% 9.1% 0.0% 90.9%

(4.798)  (3.325)

This table summarizes the CESFE test results for 66 pairwise comparisons among the 12 competing models. Average
optimal combination weights, § and w, are reported for each model with average t-statistics in parentheses. The
columns of Inconclusive, Encompassing, Encompassed and Combination contain the proportion of times that

the row-heading model: (1) has inconclusive CESFE test results, (2) encompasses other competing models,

(3) is encompassed by other competing models, and (4) is combined with other competing models using

the estimated optimal combination weights, respectively.

Table 4 shows that among the competing models, the ALGJR-TVP model has obtained the
highest and significant average optimal combination weights, 0.962 and 1.166, respectively for
its VaR and ES forecasts. The CESFE test results show that in about 90.9% of the comparisons,
the ALGJR-TVP model significantly contributes useful information to improve risk forecasting

performance through combinations. In about 63.6% of comparisons, the forecasts from the
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ALGARCH-CP model encompass those from competing models. The ALGARCH-CP model
has significant combination weights, 0.737 and 0.696, on average for its VaR and ES forecasts,
respectively. By contrast, about 36.4% of the CESFE test results show that the forecasts from
the GARCH-N model are encompassed by the forecasts of other competing models.

Overall, Table 4 shows that the risk models with the assumption of an asymmetric Laplace
distribution outperform other competing models considered in this empirical application for
daily S&P 500 index returns, although these models tend to overestimate tail risks so that higher
levels of minimum capital will be required for commercial banks. However, when encompassing
is rejected, forecast combination via the estimated optimal weights can to some extent correct

the overestimation of tail risks.

7 Conclusion

In this paper I propose a conditional encompassing test for comparing alternative VaR and ES
forecasts in an out-of-sample framework. I base the evaluation on the concept of encompassing,
which requires that a forecast be able to explain the predictive ability of a rival forecast. The
test thus can be viewed as a test of superior predictive ability. The setup proposed in this
paper also allows for discussing the benefit of forecast combination for VaR and ES forecasts,
which becomes relevant in cases where neither forecast encompasses its competitor.

The test relies on a conditional, rather than unconditional, approach to out-of-sample eval-
uation, and the proposed test is derived in an environment with asymptotically nonvanishing
estimation uncertainty. These features allow comparison of forecasts based on both nested
and nonnested models and of forecasts produced by general estimation procedures. A fairly
standard GMM estimation technique is implemented for the encompassing test, with the op-
timization procedure appropriately modified to accommodate the non-differentiable criterion
functions. The proposed test displays good size and power properties for samples of sizes
typically available in financial applications.

I apply the new encompassing test to evaluate and compare forecasts of conditional value-

at-risk and expected shortfall for daily S&P 500 index returns. In addition to standard GARCH
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models with the assumptions of normal and Student-t distributions, several recently developed
risk models are considered to forecast tail risks, including the semiparametric approach of Taylor
(2019) based on a quasi-maximum likelihood function and the parametric approach of Chen
et al. (2012) that assumes that error terms follow an asymmetric Laplace distribution with a
time-varying shape parameter to capture potential skewness and heavy tails.

The encompassing test results have revealed that the risk models of Chen et al. (2012) not
only often encompass other competing models, but also contribute useful information to improve
risk forecasting performance through forecast combinations. Nonetheless, the risk models of
Chen et al. (2012) tend to overestimate tail risks so that higher levels of minimum capital
are required for commercial banks. On the other hand, when neither forecast encompasses
its competitor (for example, encompassing is rejected), a forecast combination through the

estimated optimal weights outperforms individual forecasts.
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A Proof for (3.10)

Proof. Let
&(0) = By [7’ —1I (Yt+1 - elmﬁ-l < 0)} <Yt+1 - GIth)
= /RT (yt+1 — elth) dF; (ye+1)

— /R]I (Yt+1 — 0/70,7%“ < 0) (Yt+1 — GIVGT%H) dFy (ye+1)

+oo e 0 S
= / T (3/t+1 -0 VaRt+1> dFy (Yer1) —/ et1dFy <€t+1 +0 VaRt+1)

—00 —00

where Et+1 = Y,5+1—9,VaRt+1. ThllS, Vg&(&) = —TVa,Rt_;,_l—fi)oo VaRt+15t+1ft (5t+1+
0/70,7%15“) de; 1, because I assume that the random variable Y, has a continuously

differentiable density f;, that is, dF; (yir1) = fi(yse1)dyr and f; continuous. By
arranging the previous equality, I obtain

_— — ) — 0
Votu(0) = ~VaRis1 — [VaReerf (e1 + 0 VaRy )| N

o o
+/ VaRt+1ft <5t+1 + o VaRt+1) d€t+1

so that Vg&(@) = _Tm—i-l + mt_;'_l f_ao‘:aRH_l ft (yt+1) dyt+1. I can then write
Ve&i(0) = —F { [7‘ -1 <Yt+1 — almt+1 < O)] %T%m}. If 8" is a solution to the

minimization problem of quantile regression, then
Vth(a)lg* =0 as.—P

that is,
E, { [T 1 (Y;H 0" VaR,, < 0)} VaRtH} —0, as —P

—_—
Because VaR; ., is F;—measurable, I can rewrite the previous equation as

E, [T 1 (Ym —0"VaR < 0)} —0, as.—P

B Proof for (3.11)

Proof. Consider the first-order condition of optimization,

Vols (Ytﬂ W ES,1; 0*’Vcﬁt+1> — 9ESi (Ytﬂ - w’ES’tH) i <Yt+1 < O*Ith) —0
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so that the solution, w*, satisfies

Et |:-E§t+1 <}/t+1 - w*,l/'T.\S'Hl) I (}/tJrl < 0*/mt+1)} == O, as.— P
Because E.\S'Hl is F;—measurable, I can rewrite the previous equation as

Et [(Y%_H — w*/E.\St+1) I (Y;t—f—l < O*Imﬁ_l)} = 0, a.s.— P

]
C Proof of Theorem 1
Proof. The derivative of g (3; Y11, Z1;, Z2) with respect to 3 is given by
391(9§3@4717Z1z)
V,@g(ﬁ) = 392(w;g€1,z2t79) (Cl)
o8’

which is a k x4 derivative matrix. (C.1) requires that g(3) be once differentiable, which
is not the case here. Applying Newey and McFadden (1994), Giacomini and Komunjer

(2005) have shown that 9 [T 1 (Ytﬂ < e’mmﬂ Z.,)00 = —6 <9’ﬁ.7zm - ml)

—

ZyVaR,, , is aky x2 derivative matrix, where § (-) represents the Dirac function, that
is, 0(x) = 0if v # 0 and [ 6(x)dz = 1. Using this result, I obtain the following matrix
of two partitions

Vgg,(0) = <—5 (elmtﬂ - Yt+1) thmlﬂf 0k1x2>
which is a k; X 4 derivative matrix. Furthermore,
Vpg2(B) = <—5 <9,mt+1 - Y2+1> Z2tm;+1 (yt+1 - w,E'\StJrl) :
—ZQtETS';HH (yt—i-l < g/mt—&—l))

is a ko X 4 derivative matrix of two partitions.

The proof of Proposition 2 in Giacomini and Komunjer (2005) shows that E; [5 (0*/
Va?%tﬂ — Ytﬂﬂ = f (9*/%7%”1) where f;(-) is the density of Y;,; conditional on
the information set F;. From (3.10), it is easy to show that E; []I (ytH < 9*’%7{t+1)] =

F, (0*,m+1> 2 + where F,(+) is the continuous cumulative distribution function
of Y,y conditional on F;. Then, I have

11 = EVa0,(0)] = (-8 |1 (0 VaRen) 2uValt,| 10
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and

Yo =F [Vﬁgz(,@)]

= (—E |:ft (0*/@15“) (yt+1 — w*lﬁt+1> thmt+1:| —7F |:Z2t-ﬁt+1:|>

such that
Y11 Y12
_ B[Vag(3 :< )
v (Vg (B)] S
E [ i (0" VaRi) zumm] O o

FE |:ft (9*/ﬁt+1> (ytH — w*'ﬁg’tH) thmt+1:| TFE |:Z2tE'\St+1:|

From Assumptions 2643, I can now apply the Delta method to show that \/n <Bn — ,8*) a4
N (O, ('7/5_1'7)71)
O

D Proof of Theorem 2

Proof. From Theorem 1, it follows that /n (Bn — ﬁ*) 4 N (0,9), with nonsingular
Q= (7’5‘17)_1. A consistent estimate € of € provides that
e * "a-l(z * d

see, e.g., Theorem 4.30 of White (2001), Greene (2012), §13. From (D.1) Theorem
2(a)&(b) follow.

]
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