Dynamic Model Selection and Combination in Forecasting: an Empirical Evaluation of Bagging and Boosting

The 31st Annual International Symposium on Forecasting | June 26-29, 2011 | Prague | The University of Economics

Devon K. Barrow
Dr. Sven F. Crone
Combination vs. Bagging vs. Boosting?

- Motivation
 - Model Selection or Combination?
 - The Gap: forecasting vs. machine learning
 - Introduction to Bagging and Boosting
- Empirical Evaluation
 - Experimental Design: NN3 Data
 - Experimental results
- Conclusion and Future Work
Competing models and uncertainty
- Model selection or model combination?
- *Ex post* or *Dynamic* combination?

Forecasting research and industry best practice
- (Individual) Model selection (see also Fildes, 89):
 - Information criteria (e.g. AIC, BIC) using MLE (e.g. R, Hyndman, 2008, etc.)
 - 1-step-ahead in-sample errors, based on \(\min C(e) \) (e.g. SAP APO)
 - Cross validation \((k\text{-fold})\) possibly with early stopping e.g. Neural networks
 -> Contradiction of recommendations & best practices in model selection!
- Model combination:
 - M3-Competition (Makridakis et al. 2000) \(\rightarrow\) simple average (CombS-H-D) outperforms others
 - More robust and accurate than individual forecast. (Newbold and Granger, 74) (Palm and Zellner, 92) etc...
 - Generally leads to improved accuracy. (Stock and Watson, 2004) (Fildes, Nikolopoulos et al. 2008) etc...
 -> Contradiction between model combination & model selection (special case of comb.?)

Machine Learning
- **Bagging** and **Boosting** are most established, with excellent track record
- Predictive classification models are regularly combined in a *dynamic* way, not ex post
 -> Limited evaluations in time series prediction & forecasting

-> Contradiction of best practices in (automatic) model selection
-> No systematic evaluation of empirical accuracy across domains \(\rightarrow\) GAP in research
Results of literature survey (ISI Web of Knowledge Database)

- 800 papers in classification & regression → 15 apply boosting to time series forecasting.
- Limited scope of data
 - 8 of 15 focus in Finance (volatility prediction)
 - 4 forecast the sunspot or Mackey glass synthetic data
 - 7 apply AdaBoost: 1 uses multiple time series.
 → Focus primarily on (marginal) extensions of the algorithms
- Limitations of experimental design
 - None evaluate > 11 real time series and 12 evaluate < 2
 - 2 use rolling origin evaluation (Tashman, 2000)
 - MAE, Squared errors – do not compare across time series
 → Invalid and unreliable empirical evidence on method performance
- Limitations of comparisons across combination families
 - Only 3 papers compare Bagging vs. Boosting (however limited data)
 - No comparison against benchmark forecasting methods e.g. ExSmoothing
 → Limits evidence of performance gains from boosting over alternatives

→ Significant omissions in application domain
→ Substantial shortcomings in evaluative design
Bootstrap and Aggregating

Training Set $S = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \}$
Bootstrap and Aggregating

1) $S_1'(x,y) \rightarrow M_1(x) \rightarrow$

2) $S_2'(x,y) \rightarrow M_2(x) \rightarrow$

3) $S_3'(x,y) \rightarrow M_3(x) \rightarrow$
Boosting

1) W^1

$S(x, y)$

Errors1, β^1

2) W^2

$S(x, y)$

Errors2, β^2

3) W^3

$S(x, y)$

Weights

Value

1 4 7 10 13 16 19 22

0.00 0.02 0.04 0.06 0.08

0.10

0.10
and after three iterations ...

Bagged output:

\[M_e(x) = M_1(x) + M_2(x) + \ldots + M_3(x) \]

Boosted output:

\[M_e(x) = \beta_1 M_1(x) + \beta_2 M_2(x) + \ldots + \beta_3 M_3(x) \]
Agenda

<table>
<thead>
<tr>
<th>Combination vs. Bagging vs. Boosting?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>• Model Selection or Combination?</td>
</tr>
<tr>
<td>• The Gap: forecasting vs. machine learning</td>
</tr>
<tr>
<td>• Introduction to Bagging and Boosting</td>
</tr>
<tr>
<td>Empirical Evaluation</td>
</tr>
<tr>
<td>• Experimental Design: NN3 Data</td>
</tr>
<tr>
<td>• Experimental results</td>
</tr>
<tr>
<td>Conclusion and Future Work</td>
</tr>
</tbody>
</table>
Experimental Design

Times series data
- NN3 competition complete dataset (NN3, 2007).

<table>
<thead>
<tr>
<th>Length</th>
<th>Seasonal</th>
<th>Non-seasonal</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>25</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Short</td>
<td>25</td>
<td>25</td>
<td>7</td>
</tr>
</tbody>
</table>

Experimental Setup
- The following experimental setup is used:
 - Forecast horizon: 12 months
 - Holdout period: 18 months
 - Error Measures: SMAPE and MAE.
 - Rolling origin evaluation (Tashman, 2000).

Established benchmark dataset (taken from M3 data)

CONDITIONS where Boosting / Bagging works (long vs. short, seasonal vs. non seasonal)
Experimental Design

Model Design

<table>
<thead>
<tr>
<th>Dynamic Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBoost.R2 (Boost AR2)</td>
</tr>
<tr>
<td>AdaBoost.RT (Boost ART)</td>
</tr>
<tr>
<td>Bagging (Bagg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Averaging (ModAvg)</td>
</tr>
</tbody>
</table>

Combination versus selection

- **Aggregate Selection**
 - Random Walk
 - Seasonal Random Walk
- **Individual Selection**
 - Exponential Smoothing (ExSm)
 - Single MLP (Model Selection)

Network design:
- Univariate Multiplayer Perceptron (MLP) with Y_t up to Y_{t-13} lags.
- 30 runs using random initialisations
- 1Family of exponential smoothing algorithms.
Experimental Results

Dynamic combination versus single MLP model

<table>
<thead>
<tr>
<th>Method</th>
<th>SMAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Train</td>
</tr>
<tr>
<td>Single MLP</td>
<td>13.1%</td>
</tr>
<tr>
<td>Boost AR2</td>
<td>12.3%</td>
</tr>
<tr>
<td>Boost ART</td>
<td>13.4%</td>
</tr>
<tr>
<td>Bagging</td>
<td>12.7%</td>
</tr>
</tbody>
</table>

Bagging and Boosting improve forecast accuracy. Bagging outperforms Boosting. Significance (Freidman Nemenyi) confirmed by test (not shown).

Results averaged across 111 time series, 30 initialisations.
Experimental Results

Model combination versus single model – Gains in forecast accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>MAE</th>
<th>MAE % Reduction (increase)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Train</td>
<td>Validation</td>
</tr>
<tr>
<td>Single MLP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boost AR2</td>
<td>602.95</td>
<td>720.21</td>
</tr>
<tr>
<td>Boost ART</td>
<td>675.03</td>
<td>710.16</td>
</tr>
<tr>
<td>Bagg</td>
<td>626.55</td>
<td>668.90</td>
</tr>
</tbody>
</table>

Results averaged across 111 time series, 30 initialisations

- Quantifiable gains in accuracy from Bagging and boosting
- Significance (Freidman Nemenyi) confirmed by test (not shown)
Experimental Results

Model Selection versus **Model Combination** versus **Benchmarks**

<table>
<thead>
<tr>
<th>Model</th>
<th>Training Set</th>
<th>Rank</th>
<th>Validation Set</th>
<th>Rank</th>
<th>Test Set</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>12.16%</td>
<td>4</td>
<td>14.78%</td>
<td>5</td>
<td>16.23%</td>
<td>6</td>
</tr>
<tr>
<td>AR2</td>
<td>10.32%</td>
<td>1</td>
<td>12.63%</td>
<td>2</td>
<td>15.51%</td>
<td>3</td>
</tr>
<tr>
<td>ART</td>
<td>12.44%</td>
<td>5</td>
<td>13.42%</td>
<td>3</td>
<td>15.40%</td>
<td>2</td>
</tr>
<tr>
<td>Bag</td>
<td>11.67%</td>
<td>3</td>
<td>12.62%</td>
<td>1</td>
<td>15.08%</td>
<td>1</td>
</tr>
<tr>
<td>EnsAvg</td>
<td>11.55%</td>
<td>2</td>
<td>13.72%</td>
<td>4</td>
<td>16.13%</td>
<td>4</td>
</tr>
<tr>
<td>NaiveL</td>
<td>23.33%</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>21.19%</td>
<td>8</td>
</tr>
<tr>
<td>NaiveS</td>
<td>19.03%</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>17.75%</td>
<td>7</td>
</tr>
<tr>
<td>ExSm</td>
<td>18.82%</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>16.19%</td>
<td>5</td>
</tr>
</tbody>
</table>

Results averaged across 111 time series

→ Bagging and boosting perform best across all time series
→ AdaBoost.R2 is best on training data – possible overfitting
Experimental Results

Comparing against NN3 Competition results

<table>
<thead>
<tr>
<th>Competition Code</th>
<th>Method Name</th>
<th>SMAPE</th>
<th>Rank</th>
<th>All Candidates</th>
<th>NN Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>B09</td>
<td>Wildi</td>
<td>14.84</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B07</td>
<td>Theta</td>
<td>14.89</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>Illies</td>
<td>15.18</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B03</td>
<td>ForecastPro</td>
<td>15.44</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Bagging</td>
<td></td>
<td>15.82</td>
<td>5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>B16</td>
<td>DES</td>
<td>15.90</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B17</td>
<td>Comb S-H-D</td>
<td>15.93</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B05</td>
<td>Autobox</td>
<td>15.95</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>Flores</td>
<td>16.31</td>
<td>9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>** AdaBoost.RT</td>
<td></td>
<td>16.39</td>
<td>10</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>B14</td>
<td>SES</td>
<td>16.42</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>HES</td>
<td>16.49</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** AdaBoost.R2</td>
<td></td>
<td>16.80</td>
<td>13</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>** MLP</td>
<td></td>
<td>16.94</td>
<td>15</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Bagging improves base MLP model by 10 places, Boosting 5 places.
Conclusions and Future Work?

- **Conclusions**
 - Bagging and boosting improve forecasting accuracy of a single base model
 - Bagging is however better than boosting (both algorithms)
 - **Some conflicts with previously reported findings**
 - AdaBoost.RT outperformed AdaBoost.R2 (Shrestha and Solomantine, 06)
 - **Limitation**: few time series - 2 hydrological, laser data (Santa Fe).
 - AdaBoost.R2 outperforms bagging (Drucker, 97)
 - **Limitation**: small number of time series - laser data and Mackey-Glass
 - Bagging and boosting (dynamic) performed better than
 - Model selection (select the best MLP)
 - Neural Network Model averaging
 - Boosting is prone to overfitting - noise and outliers

- **Future work**
 - Investigate performance of boosting
 - Meta parameter analysis of boosting algorithms
 - Loss function, combination method and stopping criteria
 - Can the performance of boosting be improved? **Yes**
 - Bagging and boosting: diversity, base learner, combination method and size

These slides are from a presentation by Dr. Sven F. Crone and Devon Barrow and subject to copyright ©. You may use these slides for internal purpose, so long as they are clearly identified as being created and copyrighted © by Dr. Sven F. Crone and Devon Barrow, Lancaster Centre for Forecasting. You may not use the text and images in a paper, tutorial or external training without explicit prior permission from Dr. Crone.