

Performance measures of models to predict Loss Given Default: a critical review

Katarzyna Bijak

34th International Symposium on Forecasting 30th June 2014, Rotterdam

Outline

- Introduction
- Loss Given Default (LGD)
- Models to predict LGD
- Performance measures
 - Error measures
 - Other measures
- Conclusions

Loss Given Default (LGD)

- The lender's loss on a loan due to the customer's default, i.e. failure to meet the credit commitment
- "The ratio of the loss on an exposure due to the default of a counterparty to the amount outstanding at default" (Article 4(27) of the Council Directive 2006/48/EC)
- Basel II and III
 - Under the Advanced Internal Ratings-Based (AIRB) approach, lenders are allowed to use their own predictions of risk parameters, including LGD

LGD distribution example

Models to predict LGD

- Unsecured loans
 - One-stage models
 - Multi-stage approaches
 - Separation of os (+ Separation of 1s) + Prediction
- Mortgage loans
 - One-stage models
 - Two-stage approaches
 - Repossession model + Haircut model

Models to predict LGD

- Separation stage(s)
 - Logistic regression
 - Decision trees
- Prediction stage/One-stage models
 - Regression models
 - Tobit models
 - Survival analysis
 - Classification and Regression Trees (CART)
 - Other nonlinear models

Performance measures

- Credit scoring
 - Gini coefficient
 - Kolmogorov-Smirnov (KS) statistic

- LGD
 - **- 333**

Error measures: MSE

• Mean Square Error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Sensitive to extreme values of the residuals
- E.g. Bellotti and Crook (2008)

Error measures: RMSE

Root Mean Square Error (RMSE):

$$RMSE = \sqrt{MSE}$$

- Expressed in the same units as LGD
- Bastos (2010)

Error measures: MAE

 Mean Absolute Error (MAE) a.k.a. Mean Absolute Deviation (MAD):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- Expressed in the same units as LGD
- Compare with RMSE
- E.g. Bellotti and Crook (2008)

Error measures: RAE

• Relative Absolute Error (RAE):

$$RAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{\sum_{i=1}^{n} |y_i - \bar{y}_i|}$$

- Ratio of MAE of the model and MAE of a simple predictor
- E.g. Bastos (2010)

Error measures: AOC

- Regression Error Characteristic (REC) curve estimates the CDF of the squared or absolute residual
- Area Over the REC Curve (AOC) estimates the expected regression error (Bi and Bennett, 2003)
- If the REC curve is derived using the squared (absolute) residuals, then AOC \rightarrow MSE (MAE) as the sample size $\rightarrow \infty$

Error measures: AOC

- Loterman *et al.* (2012) calculated both RMSE and AOC (based on the squared residuals)
 - LGD models: 24 various techniques and six datasets
 - Differences between AOC and the squared RMSE:
 - < 0.001 for five larger datasets
 - < 0.01 for the smallest dataset (test: ca. 1100 loans)
- We recommend applying either AOC or MSE/MAE in order to avoid information redundancy

Other measures: R-squared

• Coefficient of determination (R-squared):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

- E.g. Loterman *et al.* (2012)
- In an OLS regression model with a constant term, R-squared can be interpreted as the proportion of variation in LGD that is explained by variation in the regressors
- We only recommend using R-squared in OLS models

Other measures: Adjusted R-squared

• Adjusted coefficient of determination (adjusted R-squared):

$$\bar{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

- Corrected for the number of regressors (*k*)
- Useful when comparing a number of linear LGD models
- E.g. Caselli *et al.* (2008)

Other measures: Correlation coefficients

- Measure correlation between the observed and predicted LGD (Loterman *et al.*, 2012)
- Pearson's correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \hat{\bar{y}})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \hat{\bar{y}})^2}}$$

- Measures the strength of the linear relationship between the observed and predicted LGD ($r^2 = R^2$ in OLS models)
- Spearman's and Kendall's correlation coefficients

Other measures: AUC

- Loans need to be classified into two groups based on the observed LGD, e.g. below-the-mean and over-the-mean
- CDFs of the predicted LGD are computed for the groups
- Receiver Operating Characteristic (ROC) curve is drawn by plotting the CDFs against each other
- Area Under the ROC Curve (AUC) measures how well the model separates loans belonging to the two groups
- E.g. Gupton and Stein (2005)

Proposed measure: MAUC

- AUC has a drawback when applied to LGD as it requires an arbitrary classification of the dependent variable
- m the number of unique values of the observed LGD
- Mean AUC (MAUC) is calculated as the average of AUC for all possible divisions into two groups:

$$MAUC = \frac{1}{m-1} \sum_{j=1}^{m-1} AUC_j$$

• MAUC takes values from the interval [0.5, 1] like AUC

Example

• Two-stage model applied to the data on personal loans granted by a large UK bank

Measure	Value	Measure	Value
MSE	0.143	Spearman	0.255
MAE	0.329	Kendall	0.179
R-squared	0.072	AUC	0.637
Pearson	0.268	MAUC	0.616

Example

Conclusions

- Recommendations for LGD model developers/users
 - Apply either AOC or MSE/MAE
 - Only use R-squared in OLS models
 - Look for an alternative to AUC

- Further research
 - MAUC computed as the weighted average of AUC
 - Impact of segmentation on performance of LGD models

References

- Bastos, J.A. (2010) Forecasting bank loans loss-given-default, *Journal of Banking and Finance*, 34(10), pp. 2510-2517.
- Bellotti, T. and Crook, J. (2008) *Modelling and estimating Loss Given Default for credit cards*, University of Edinburgh Business School, Credit Research Centre Working Paper 08-1.
- Bi, J. and Bennett, K.P. (2003) Regression Error Characteristic Curves, In: Fawcett, T. and Mishra, N. (eds.) *Proceedings of the Twentieth International Conference on Machine Learning*, Menlo Park, CA: AAAI Press, pp. 43-50.
- Caselli, S., Gatti, S. and Querci, F. (2008) The Sensitivity of the Loss Given Default Rate to Systematic Risk: New Empirical Evidence on Bank Loans, *Journal of Financial Services Research*, 34(1), pp. 1-34.
- Gupton, G.M. and Stein, R.M. (2005) LossCalc v2: Dynamic prediction of LGD, Moody's KMV Research Paper.
- Loterman, G., Brown, I., Martens, D., Mues, C. and Baesens, B. (2012) Benchmarking regression algorithms for loss given default modeling, *International Journal of Forecasting*, 28(1), pp. 161-170.

Thank you!