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Loss Given Default (LGD)

e The lender’s loss on a loan due to the customer’s default,
1.e. failure to meet the credit commitment

e “The ratio of the loss on an exposure due to the default
of a counterparty to the amount outstanding at default”
(Article 4(27) of the Council Directive 2006/48/EC)

e Basel IT and III

— Under the Advanced Internal Ratings-Based (AIRB)
approach, lenders are allowed to use their own
predictions of risk parameters, including LGD
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LGD distribution example
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Models to predict LGD

e« Unsecured loans

— One-stage models

— Multi-stage approaches

 Separation of 0s (+ Separation of 1s) + Prediction

e Mortgage loans

— One-stage models

— Two-stage approaches

« Repossession model + Haircut model
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Models to predict LGD

« Separation stage(s)
— Logistic regression
— Decision trees

« Prediction stage/One-stage models

— Regression models

— Tobit models

— Survival analysis

— Classification and Regression Trees (CART)

— Other nonlinear models
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Performance measures

e Credit scoring

— Gini coefficient

— Kolmogorov-Smirnov (KS) statistic

« LGD

— 7?7
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Error measures: MSE

« Mean Square Error (MSE):

1w o
MSE = EZ(% ),
i=1

o Sensitive to extreme values of the residuals

« E.g. Bellotti and Crook (2008)
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Error measures: RMSE

« Root Mean Square Error (RMSE):

RMSE = VMSE

« Expressed in the same units as LGD

« Bastos (2010)
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Error measures: MAE
Mean Absolute Error (MAE) a.k.a. Mean Absolute Deviation
(MAD):

n
1
MAEz—Z: 9,
", 1Iyl Vil
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Expressed in the same units as LGD

Compare with RMSE

E.g. Bellotti and Crook (2008)
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Error measures: RAE
e Relative Absolute Error (RAE):

RAE = —
?=1|Yi — ¥il

« Ratio of MAE of the model and MAE of a simple predictor

« E.g. Bastos (2010)
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Error measures: AOC

« Regression Error Characteristic (REC) curve estimates
the CDF of the squared or absolute residual

« Area Over the REC Curve (AOC) estimates the expected
regression error (Bi and Bennett, 2003)

 If the REC curve is derived using the squared (absolute)
residuals, then AOC — MSE (MAE) as the sample size —
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Error measures: AOC

e Loterman et al. (2012) calculated both RMSE and AOC
(based on the squared residuals)

— LGD models: 24 various techniques and six datasets

— Differences between AOC and the squared RMSE:

« < 0.001 for five larger datasets
e < 0.01 for the smallest dataset (test: ca. 1100 loans)

« We recommend applying either AOC or MSE/MAE
in order to avoid information redundancy
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Other measures: R-squared

Coefficient of determination (R-squared):

7l:l=1(yl' - yi)z
i —yi)?

R*?=1-—

E.g. Loterman et al. (2012)

In an OLS regression model with a constant term, R-squared
can be interpreted as the proportion of variation in LGD that
is explained by variation in the regressors

We only recommend using R-squared in OLS models
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Other measures: Adjusted R-squared

Adjusted coefficient of determination (adjusted R-squared):

n—1

R? =1 — (1 — R?
( )n—k—l

Corrected for the number of regressors (k)
Useful when comparing a number of linear LGD models

E.g. Caselli et al. (2008)
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Other measures: Correlation coefficients

« Measure correlation between the observed and predicted LGD
(Loterman et al., 2012)

o« Pearson’s correlation coefficient:
?=1(Yi — 3_’)(371' — f’)

r =
\/ml(yi _ 2T (5 5

— Measures the strength of the linear relationship between
the observed and predicted LGD (r? = R? in OLS models)

« Spearman’s and Kendall’s correlation coefficients
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Loans need to be classified into two groups based on the
observed LGD, e.g. below-the-mean and over-the-mean

CDFs of the predicted LGD are computed for the groups

Receiver Operating Characteristic (ROC) curve is drawn
by plotting the CDFs against each other

Area Under the ROC Curve (AUC) measures how well the
model separates loans belonging to the two groups

E.g. Gupton and Stein (2005)
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Proposed measure: MAUC

AUC has a drawback when applied to LGD as it requires
an arbitrary classification of the dependent variable

m — the number of unique values of the observed LGD

Mean AUC (MAUQC) is calculated as the average of AUC
for all possible divisions into two groups:

1 m—1
MAUC=—ZAUCJ-
m—1 4 4
]:

MAUC takes values from the interval [0.5, 1] like AUC
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Example

« Two-stage model applied to the data on personal loans
granted by a large UK bank

Ty ey

0.143 Spearman 0.255
MAE 0.329 Kendall 0.179
R-squared 0.072 AUC 0.637

Pearson 0.268 MAUC 0.616



UNIVERSITY OF

Southampton

School of Management

Example

AUC for different divisions into two groups
0.66

0.65
0.64
0.63
0.62
0.61
0.60
0.59

0.58
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00



UNIVERSITY OF

Southampton

School of Management

Conclusions

« Recommendations for LGD model developers/users

— Apply either AOC or MSE/MAE
— Only use R-squared in OLS models

— Look for an alternative to AUC

o Further research

— MAUC computed as the weighted average of AUC

— Impact of segmentation on performance of LGD models
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Thank you!



