SURVIVAL DATA MINING FOR BIG DATA: PRACTITIONER'S GUIDE

ISF 2013 – 24 JUNE 2013

Tae Yoon Lee Principal Analytical Consultant TaeYoon.Lee@sas.com

Company Confidential - For Internal Use Only Copyright © 2012, SAS Institute Inc. All rights reserved

This presentation is to explain about the Methodology of Survival Data Mining.

- What is Survival Data Mining?
- When do we use Survival Data Mining?
- How can we implement Survival Data Mining?
 - Models
 - Estimation
- How to use SAS EM Survival Data Mining?

2

- When the next event will occur
- Time dependent outcomes
- · Discrete event time
- Time-dependent covariates
- Time-varying covariates
- Competing risks

PROGRESSING IN SURVIVAL ANALYSIS AND DATA MINING

Survival Analysis

- Medical Patient database
- Death event

Survival Analysis

- Medical Patient database
- Death event
- NN, DT, LR
- Not Time-Dependent Outcome

Survival Data Mining

- Medical Patient database
- Death event

Data Mining for predictive models

- Commercial Customer database
- Credit Scoring

Survival Data Mining (**Time-Dependent Outcome**)

- Commercial Customer database
- Customer retention, cross selling, other database
 - marketing endeavors

Survival Analysis

- Censored duration data
- Predict a probability that an event will occur within a predefined time window.

Survival Data Mining

- Ultimate purpose of data mining is Prediction, so Predictive Scoring!
- Predict a time-dependent outcome, i.e. model the event likelihood over time.
- Look at predicting the likelihood of churn at each month over the next 12 months. Characteristics such as longer-term trends of the churn probability over time can be exposed (for better long-term strategies.)

SURVIVAL DATA MINING WHAT IS SURVIVAL DATA MINING?

- Survival Data Mining = Survival Analysis + Data Mining
 - Predicts when the next event will occur survival data mining
 - Not whether an event will occur in a certain time interval survival analysis
 - Key is to forecast survival patterns into the future by extrapolating survival probabilities beyond the time window of available data – predictive scoring in data mining.
- Survival Analysis
 - Parametric models based on PROC LIFEREG pick up best model / no time dependent covariates / Y=survival time (t or log(t)) / Y= f(time independent covariates).
 - Discrete-time logistic-hazard model using PROC LOGISTIC. Log (ht/ (1- ht)) = f(time, time dependent & time-varying covariates)
- Apply Data mining method to discrete-time logistic-hazard model (DTLHM)
 - Because this model is well suited to the challenging features of survival data mining problems

DISCRETE EVENT TIME (DET)

Discrete Event Times are represented by

- Nonnegative integer values and nonlinear
- Cubic Spline Basis Functions (CSBF)
- · used as predictors in the multinomial Logistic Regression

Transforming DET function with CSBF allows the Hazard and Subhazard functions to be more flexible. This results in a greater ability to detect & model Survival Pattern.

SURVIVAL DATA MINING SAS ENTERPRISE MINER SURVIVAL NODE USES:

Discrete-Time Logistic-Hazard Model with Cubic Spline Base Functions

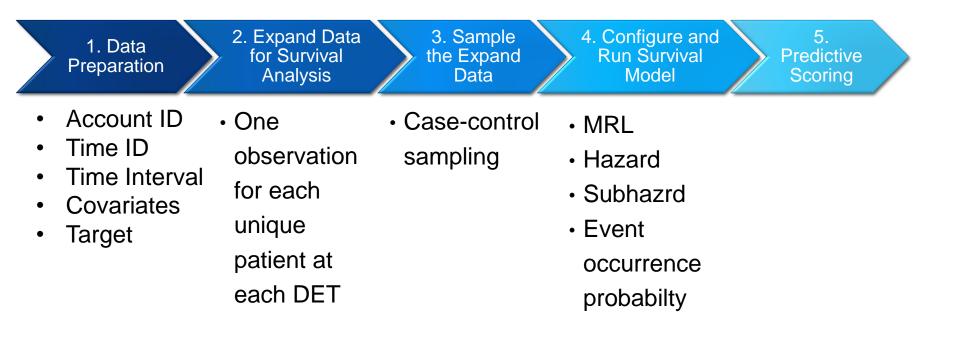
$$ln\left[\frac{h(t,m|x)}{1-h(t|x)}\right] = \alpha_{0m} + \left[\alpha_{00} + \alpha_0 t + \sum_{j=1}^{\#knots} \alpha_j \operatorname{csb}\left(t,k_j\right)\right] + \beta_{1m}x_1 + \dots + \beta_{pm}x_p$$

where
$$csb(t,k_j) = \begin{cases} -t^3 + 3k_jt^2 - 3k_j^2t & if t \le k_j \\ -k_j^3 & if t > k_j \\ constant \end{cases}$$
 cubic

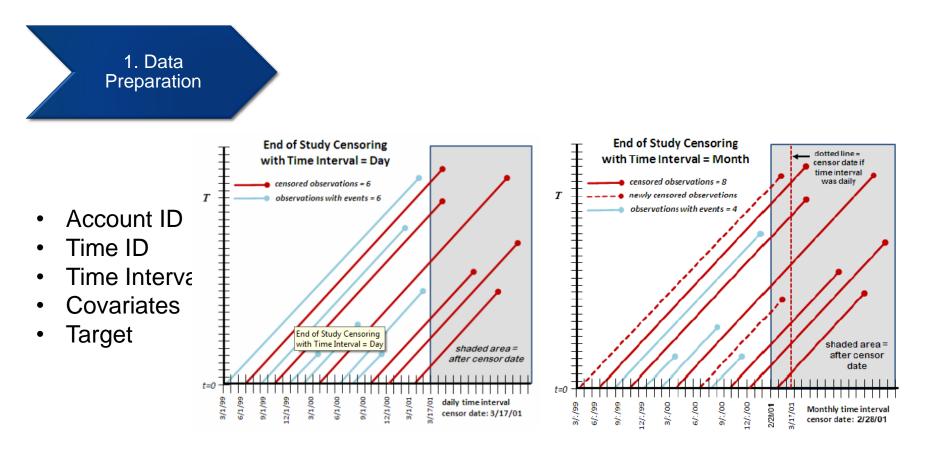
- No Time Dependent covariates
- No time-varying effects

8

For Time Dependent Covariates and Time-Varying Effects


 $ln\left[\frac{h(t,m|x)}{1-h(t|x)}\right] =$

$\alpha_{0m} + \left[\alpha_{00} + \alpha_0 t + \sum_{j=1}^{\#knots} \alpha_j \, csb\left(t, k_j\right)\right] + \beta_{1m}(t)x_1(t) + \dots + \beta_{pm}(t)x_p(t)$


9

OVERVIEW OF DISCRTE EVENT TIME LOGISTIC HAZARD MODELING IN SAS ENTERPRISE MINER SURVIVAL NODE

Company Confidential - For Internal Use Only Copyright © 2012, SAS Institute Inc. All rights reserved.

2. Expand Data for Survival Analysis

One observation for each unique patient at each DET

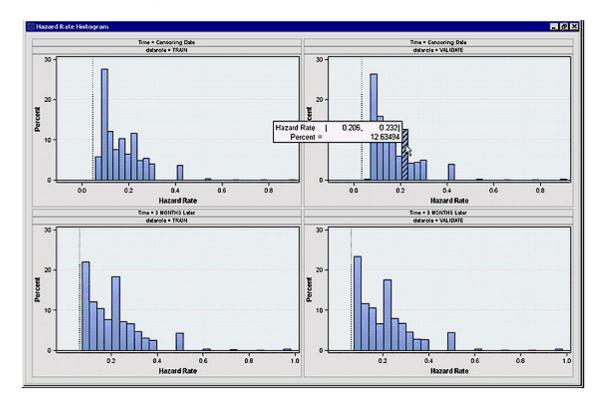
	Account Number	Event Time	Event Type	Good Bad Credit Indicator	Disable Reason	Type of Rate Plan	Activation Date	Deactivation Date	Provider sactivation Type Date	Provider Type
1	180437080184	16	0	1		3	09/28/1999		PR0V1	. PROV1
2	180437283474	0	0	1		1	01/09/2001		PROV1	. PROV1
3	180437340410	13	0	0		1	12/31/1999		PROV1	. PROV1
4	180437356568	6	2	0	DUE	1	12/22/1999	06/28/2000	PROV2 36/28/200	0 PROV2
Ę	180437356837	9	0	1		1	04/17/2000		PROV3	. PROV3
	180437375280	12	1	1	TRANSFER	2	08/16/1999	08/21/2000	PROV1 38/21/20	0 PROV1
	180437392909	18	0	1		1	07/26/1999		PROV3	. PROV3
	180437420657	13	0	0		1	12/15/1999		PROV2	. PROV2
9	180437433673	2	0	0		3	11/21/2000		PROV1	. PROV1
10	180437452331	1	0	0		2	12/28/2000		PROV3	. PROV3

	Account Number	Event Time	Discrete Event Time	Event Type	Good Bad Credit Indicator	Disable Reason	Type of Rate Plan	Activation Date	Deactivation Date	Provider Type
1	180437080184	16	0	0	1		3	09/28/1999		PROV1
2	180437080184	16	1	0	1		3	09/28/1999		PROV1
3	180437080184	16	2	0	1		3	09/28/1999		PROV1
4	180437080184	16	3	0	1		3	09/28/1999		PROV1
5	180437080184	16	4	0	1		3	09/28/1999	14	PROV1
6	180437080184	16	5	0	1		3	09/28/1999		PROV1
7	180437080184	16	6	0	1		3	09/28/1999		PROV1
8	180437080184	16	7	0	1		3	09/28/1999		PROV1
9	180437080184	16	8	0	1		3	09/28/1999		PROV1
10	180437080184	16	9	0	1		3	09/28/1999		PROV1
11	180437080184	16	10	0	1		3	09/28/1999		PROV1
12	180437080184	16	11	0	1		3	09/28/1999	2.4	PR0V1
13	180437080184	16	12	0	1		3	09/28/1999		PROV1
14	180437080184	16	13	0	1		3	09/28/1999		PR0V1
15	180437080184	16	14	0	1		3	09/28/1999		PROV1
16	180437080184	16	15	0	1		3	09/28/1999		PROV1
17	180437080184	16	16	0	1		3	09/28/1999		PROV1

- Case-control (or Choice-based) sampling is used, which is a well-known method that is used to handle rare categorical outcomes.
- Choose all events and sample from non-events
- To correct the sampling bias, the subhazard functions are adjusted after the model built.

Discrete-Time Logistic-Hazard Model with Cubic Spline Base Functions

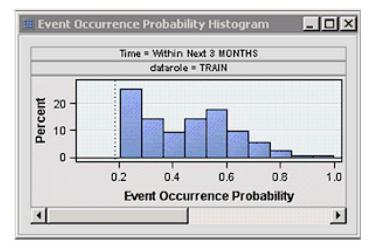
$$ln\left[\frac{h(t,m|x)}{1-h(t|x)}\right] = \alpha_{0m} + \left[\alpha_{00} + \alpha_0 t + \sum_{j=1}^{\#knots} \alpha_j \operatorname{csb}\left(t,k_j\right)\right] + \beta_{1m}x_1 + \dots + \beta_{pm}x_p$$


Examine and Interpret the output results:

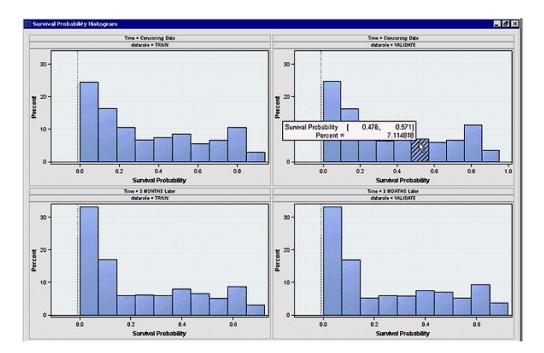
- Mean Residual Life
- Hazard Rate Histogram
- Event Occurrence Probability Histogram
- Survival Probability Histogram

Examine and Interpret the output results:

Hazard Rate Histogram (Time=Censoring Date and Time=3 Time Units Later):

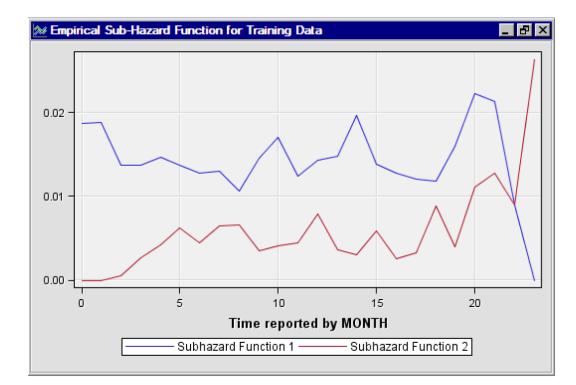


Examine and Interpret the output results:

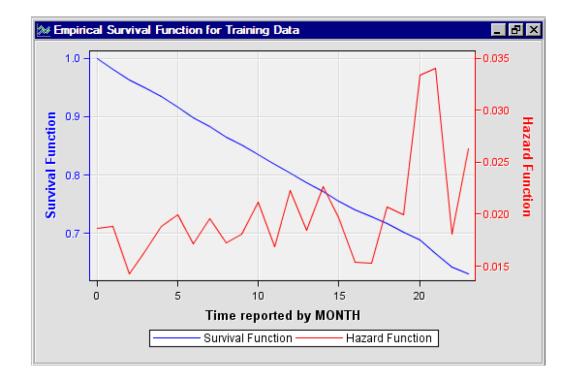

Event Occurrence Probability Histogram (within next 3 time units):

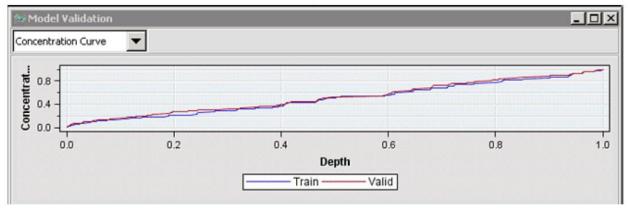
Examine and Interpret the output results:

Survival Probability Histogram (Time=Censoring Date and Time=3 Time Units Later):



Examine and Interpret the output results:


Empirical Subhazard Function for Training Data:


Examine and Interpret the output results:

Empirical Survival Function for Training Data:

Examine and Interpret the output results:

Model Validation Plots

- Concentration Curve
- Lift
- Benefit

5. Predictive Scoring

/*-----*/ /*Survival Score Code*/ /*-----*/

length _warn_ \$ 4; label _warn_ = "Warnings"; label EM_SURVIVAL = "Survival Probability at Censoring Time"; label EM_SURVFCST = "Survival Probability at Future Time"; label EM_SURVEVENT = "Event Probability before or at the Future Time"; label EM_HAZARD = "Hazard Function at Censoring Time"; label EM_HZRDFCST = "Hazard Function at Future Time"; length _uname \$32; DROP _uname;

if _T_ ne . then do; T_FCST=_T_+5 ;

/*------Generate Cubic Spline Basis Functions-----*/ if _T_ > 8 then _CSB2 =(_T_-8)**3 - _T_**3 + 24*_T_**2 - 192*_T_; else _CSB2=-_T_**3 + 24*_T_**2 - 192*_T_;

*Currently only available for Teradata and EMC Greenplum.

** Only available via SAS Enterprise Miner Node

Experimental procedure in HPAS 12.1

5. Predictive Scoring

```
EM SUBHZRD2 SURV=
exp(log(EM_SUBHZRD2_SURV/EM_SUBHZRD0_SURV)+log(0.0749796251))/ denom:
end:
else do:
 EM SUBHZRD2 SURV=
exp(log(EM_SUBHZRD2_SURV/0.0001)+log(0.0749796251))/ denom;
end:
end:
else do:
EM SUBHZRD2 SURV= exp(0.0749796251)/ denom;
end:
EM HZRDFCST=0 + EM SUBHZRD1 SURV + EM SUBHZRD2 SURV;
EM SUBHZRD0 SURV = 1-(0 + EM SUBHZRD1 SURV + EM SUBHZRD2 SURV);
EM SURVFCST=EM SURVFCST*(1-EM HZRDFCST);
if T = T0 then EM SURVIVAL=EM SURVFCST:
if EM SURVIVAL >0 then do:
if T =t0 fcst then EM SURVEVENT=(EM SURVIVAL-
EM SURVFCST)/EM SURVIVAL;
```

end;

else do;

if _T_=t0_fcst then EM_SURVEVENT=(EM_SURVIVAL-EM_SURVFCST)/0.00001; end;

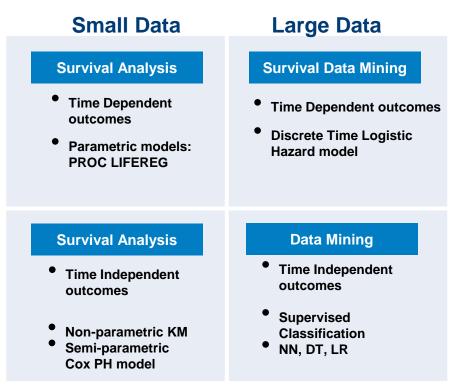
*Currently only available for Teradata and EMC Greenplum.

** Only available via SAS Enterprise Miner Node

Any Questions?

THANK YOU!

ISF 2013 – 24 JUNE 2013


Tae Yoon Lee Principal Analytical Consultant TaeYoon.Lee@sas.com

Company Confidential - For Internal Use Only Copyright © 2012, SAS Institute Inc. All rights reserved

SURVIVAL DATA MINING

SURVIVAL ANALYSIS & DATA MINING CLASSIFICATION

Dependent Time **Time Independent**

Company Confidential - For Internal Use Only Copyright © 2012, SAS Institute Inc. All rights reserved.

